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Abstract
The interactions between climate and land‐use change are dictating the distribution 
of flora and fauna and reshuffling biotic community composition around the world. 
Tropical mountains are particularly sensitive because they often have a high human 
population density, a long history of agriculture, range‐restricted species, and high‐
beta diversity due to a steep elevation gradient. Here we evaluated the change in 
distribution of woody vegetation in the tropical Andes of South America for the pe‐
riod 2001–2014. For the analyses we created annual land‐cover/land‐use maps using 
MODIS satellite data at 250 m pixel resolution, calculated the cover of woody vege‐
tation (trees and shrubs) in 9,274 hexagons of 115.47 km2, and then determined if 
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1  | INTRODUC TION

Land‐cover change, particularly the distribution of woody vegeta‐
tion, plays a key role in conservation of biodiversity and ecosystem 
services such as watershed and soil protection, carbon sequestra‐
tion, and food production. Most research on land‐cover dynamics 
has focused on lowlands as they include the greatest proportion of 
land on earth, most of the human population, and the majority of 
agricultural production (Verburg et al., 2015). In contrast, there are 
fewer land change studies of mountain regions because topography 
and frequent cloud cover limit the use of remote sensing (Rudel, 
Sloan, Chazdon, & Grau, 2016). Nevertheless, mountain ecosystems 
harbor high biodiversity, endemism, agrobiodiversity, and cultural di‐
versity, and they play key roles in regulating watershed and soil con‐
servation in the sources of the most important rivers of the world 
(Viviroli, Dürr, Messerli, Meybeck, & Weingartner, 2007). A para‐
mount example of this ecological relevance is the Andes of South 
America. The tropical and subtropical Andes extend for ~5,000 km 
and include many peaks >6,000 m, some of the world's most diverse 
biological communities, high cultural and agricultural diversity, and 
the most developed historical human societies in South America 
(Veblen, Young, & Orme, 2007).

The Andes mountains have been occupied for millennia, and his‐
torically, agropastoral activities have been the dominant influence 
on Andean ecological systems (Dantas, Figueroa, & Laguens, 2014; 
Etter, McAlpine, Wilson, Phinn, & Possingham, 2006; Hess, 1990). 
These activities have greatly reduced the area of forest cover in the 
past (Josse et al., 2011), and in many regions, deforestation continues 
(Armenteras, Rodríguez, Retana, & Morales, 2011; Fjeldså, Álvarez, 

Lazcano, & Leon, 2005; Hansen et al., 2013; Young, 1998). An im‐
portant agropastoral activity in the Andes is subsistence agriculture. 
Andean subsistence agriculture is vulnerable to socioeconomic and 
climate changes because it is often practiced in marginal conditions 
and could consequently lead to abandonment and secondary forest 
recovery (Aide et al., 2013; Grau & Aide, 2008). Local and regional 
studies have described forest recovery in the Andes in Venezuela 
(Gutiérrez, Gärtner, López H., Pacheco, & Reif, 2013), Colombia 
(Sánchez‐Cuervo, Aide, Clark, & Etter, 2012), Bolivia (Redo, Aide, & 
Clark, 2012), and Argentina (Grau et al., 2008; Nanni & Grau, 2014), 
but there is still some skepticism about the generality of these dy‐
namics (Farley, 2010).

Although studies in the Andes have associated forest recovery 
with decreasing rural population and a decline in agricultural ac‐
tivities (Aide & Grau, 2004; Grau & Aide, 2008), including grazing, 
others have argued that a decline in the rural population does not 
necessarily lead to forest recovery (Gray, 2009a; Radel, Schmook, 
& Chowdhury, 2010). Instead, the decline in local labor can be 
compensated by shifting from labor‐intensive agriculture to graz‐
ing, high input agriculture, mining, or the establishment of tree 
plantations, as well as agricultural mechanization in lower and mid‐
elevation Andean sites (Zimmerer & Vanek, 2016). Furthermore, 
grazing could expand, reducing forest cover, if fire is used more 
frequently as a response to a decline in the availability of labor 
(Carilla & Grau, 2010). Forest cover could also decline if agriculture 
shifts to higher elevations due to increasing temperatures (Tito, 
Vasconcelos, & Feeley, 2018), or due to increasing demand for ag‐
ricultural products as observed in the Southeast Asia Massif (Zeng, 
Gower, & Wood, 2018).

there was a statistically significant (p < 0.05) 14 year linear trend (positive—forest 
gain, negative—forest loss) within each hexagon. Of the 1,308 hexagons with signifi‐
cant trends, 36.6% (n = 479) lost forests and 63.4% (n = 829) gained forests. We esti‐
mated an overall net gain of ~500,000 ha in woody vegetation. Forest loss dominated 
the 1,000–1,499 m elevation zone and forest gain dominated above 1,500 m. The 
most important transitions were forest loss at lower elevations for pastures and crop‐
lands, forest gain in abandoned pastures and cropland in mid‐elevation areas, and 
shrub encroachment into highland grasslands. Expert validation confirmed the ob‐
served trends, but some areas of apparent forest gain were associated with new 
shade coffee, pine, or eucalypt plantations. In addition, after controlling for elevation 
and country, forest gain was associated with a decline in the rural population. Although 
we document an overall gain in forest cover, the recent reversal of forest gains in 
Colombia demonstrates that these coupled natural‐human systems are highly dy‐
namic and there is an urgent need of a regional real‐time land‐use, biodiversity, and 
ecosystem services monitoring network.
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Along with the impacts of humans in the Andes, climate change 
and variability also have and will continue to play an important 
role in land‐cover and land‐use dynamics (Tovar, Arnillas, Cuesta, 
& Buytaert, 2013). Climate change has had diverse effects on eco‐
systems worldwide (Leemans & Eickhout, 2004; Moritz et al., 2008; 
Parmesan & Yohe, 2003; Pecl et al., 2017; Wiens, 2016). While the im‐
pacts in tropical regions have not been as dramatic as those described 
for the polar regions (Chapin et al., 2010; Massom et al., 2018; Paolo, 
Fricker, & Padman, 2015), researchers have documented shifts in the 
distributions of plants (Duque, Stevenson, & Feeley, 2015; Fadrique 
et al., 2018; Feeley et al., 2011; Morueta‐Holme et al., 2015), in‐
sects (Chen et al., 2009; Moret, Aráuz, Gobbi, & Barragán, 2016), 
birds (Campos‐Cerqueira, Arendt, Wunderle, & Aide, 2017; Forero‐
Medina, Terborgh, Socolar, & Pimm, 2011; Freeman & Freeman, 
2014), amphibians (Campos‐Cerqueira & Aide, 2017; Pounds et al., 
2006; Pounds & Crump, 1994; Pounds, Fogden, & Campbell, 1999; 
Raxworthy et al., 2008; Seimon et al., 2017), dramatic declines in 
bird populations (Blake & Loiselle, 2015), changes in forest plant 
composition (Esquivel‐Muelbert et al., 2019), upslope shifts of crops 
including indigenous food plants (Zimmerer et al., 2018), and upward 
displacement of the forest–paramo ecotone (Rodríguez‐Morales, 
Chacón‐Moreno, & Ataroff, 2009). Furthermore, the flora and fauna 
of tropical mountains are especially susceptible to the effects of cli‐
mate change because many species have limited altitudinal distribu‐
tions and small changes in climate could result in local extinctions 
(Laurance et al., 2011).

Climate models (i.e., RCP4.5 and RCP8.5) predict increases in 
temperature up to 5°C by 2,100 in the central and southern Andes 
(Zazulie, Rusticucci, & Raga, 2017). This level of change will affect 
community composition (Ramirez‐Villegas et al., 2014) and the distri‐
butions and functioning of whole ecosystems (Dangles et al., 2017). 
For example, highland grasslands are warming (Tovar et al., 2013; 
Vuille, Bradley, Werner, & Keimig, 2003) and this is expected to lead 
to a dramatic decline in their extent (Buytaert, Cuesta‐Camacho, & 
Tobón, 2011). Andean wetlands are also changing in relation to cli‐
mate‐induced glacier recession (Polk et al., 2017). These new abiotic 
conditions are expected to promote the encroachment of shrubs 
and trees into tropical montane grasslands and paramos (Helmer et 
al., 2019). In the Venezuelan Andes, these changes are predicted to 
decrease the area of paramo by 7 to 36% during the next 30 years 
(Suárez del Moral & Chacón‐Moreno, 2011). Furthermore, fire re‐
gimes are also expected to change in response to changes in climate 
and land‐use dynamics (Aráoz & Grau, 2010; Grau & Veblen, 2000; 
Holz et al., 2017; Uriarte et al., 2012).

Given the diversity of climates, habitats, and economic condi‐
tions across the Andes, we can expect a diversity of responses. For 
example, a decrease in forest cover is expected in regions where in‐
creasing temperatures force crops (e.g., coffee or potato) to higher 
elevations or where socioeconomic conditions promote rural devel‐
opment and new agricultural activity (e.g., Colombian Peace agree‐
ment). Better roads, stable socioeconomic conditions, and increase 
in the global demand for agricultural commodities could promote 
agricultural expansion in the foothills (e.g., oil palm, soybean, and 

sugar cane). In contrast, forest gains may occur if socioeconomic 
changes (e.g., urbanization) lead to rural out‐migration and/or the 
abandonment of pastures and agriculture followed by secondary 
succession. Alternatively, the expansion of plantations (e.g., cacao, 
coffee, eucalyptus) into abandoned pastures may be detected as 
forest expansion. At the highest elevations (e.g., tropical alpine 
grasslands, paramo, puna), increasing temperatures could facilitate 
the encroachment of trees and shrubs. These scenarios highlight the 
urgent need to understand how the spatiotemporal interactions be‐
tween human and natural systems are changing the distribution of 
biodiversity, ecosystem services, and socioeconomic environment in 
the Andes.

Here we document how land‐use patterns are changing in the 
subtropical and tropical Andes of South America as a consequence 
of the interaction between natural and human systems. We focus 
on the change in woody vegetation (i.e., shrubs and trees) above 
1,000 m between 2001 and 2014, based on a land‐use classifica‐
tion derived from MODIS satellite data at 250‐m pixel resolution. 
Specifically, (1) we determine how the distribution of woody vegeta‐
tion is changing at the scale of the Andes, within each country, and 
along the elevation gradient; (2) we relate changes in woody vegeta‐
tion with country, elevation, slope, nighttime lights, and population 
change; and (3) we document the drivers of change in “hotspots” of 
forest loss and gain based on local expert knowledge, literature, and 
sources of high resolution imagery (e.g., Google Earth).

2  | METHODS

2.1 | Study region

The Andes of South America are the longest continental mountain 
range in the world, with many peaks above 6,000 m. The tropical and 
subtropical Andes, between 11° N and 33° S, spans approximately 
5,000 km across six countries, and are one of the global regions of 
highest biodiversity as well as a major center of agro‐biodiversity. 
The study area extends from the Sierra Nevada de Santa Marta in 
northern Colombia to the province of San Luis, Argentina (Figure 1). 
The major biomes in this region are: tropical and subtropical moist 
broadleaf forest, tropical and subtropical dry broadleaf forest, mon‐
tane grasslands and shrublands, and tropical and subtropical grass‐
lands, savannas, and shrublands (Olson et al., 2001). The tropical 
Andes are the largest biodiversity hotspot in the world with >45,000 
plant species and >3,000 vertebrate species (Myers, Mittermeier, 
Mittermeier, Fonseca, & Kent, 2000).

Human populations have played an important role in the trans‐
formation of Andean environments, with civilizations beginning 
more than 2,000 years ago (Burger, 1992) and achieving a large 
geographic influence, with Inca empire spreading from southern 
Colombia to Chile. Today the major cities of Merida in Venezuela, 
Medellin, and Bogota in Colombia, Quito and Cuenca in Ecuador, 
Arequipa, Ayacucho, and Cuzco in Peru, La Paz/El Alto, Cochabamba, 
Oruro, and Tarija in Bolivia, and Jujuy and Salta in Argentina all occur 
above 1,000 m in the Andes.
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F I G U R E  1   The distribution of elevation classes within the tropical and subtropical Andes and the hexagons that had a significant 14 year 
linear increase or decrease in woody vegetation in each country. Clusters of woody vegetation gain and loss (i.e., numbered circles) were 
evaluated by in‐country experts. The number associated with each cluster corresponds with information in Table 2
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The Andes mountains have also been an important center for ag‐
riculture domestication (e.g., potatoes, quinoa, tomatoes, chili pep‐
pers, cotton, coca, tobacco, peanuts) (Piperno, 2011). Today, while 
a high diversity of crops continues to be cultivated in the Andes, 
maize and potatoes are by far the most important (Tito et al., 2018; 
Zimmerer et al., 2018).

2.2 | Land‐use classification

The maps used in this study were a subset of annual land‐cover maps 
created for Latin America and the Caribbean for the period 2001 
to 2014. Following methods outlined elsewhere (Aide et al., 2013; 
Clark, Aide, & Riner, 2012; Graesser, Aide, Grau, & Ramankutty, 
2015; Nanni et al., 2019), Random Forest land‐cover classification 
models defined for each biome in Latin America and the Caribbean 
(Olson et al., 2001) were used to classify the following land‐cover 
categories in the MODIS imagery: cropland, pastureland, woody (in‐
cluding both natural tree cover and shrubs), plantations, and other 
(i.e., bare soil, ice, snow, rock, sand dunes, built‐up structures, and 
water).

Annual land‐cover maps were produced by classifying the MODIS 
satellite MOD13Q1 Vegetation Indices 250 m product for the period 
2001–2014. The product is a 16 d composite of the highest qual‐
ity pixels from daily images and includes the Enhanced Vegetation 
Index (EVI), blue (459–479 nm), red (620–670 nm), near infrared 
(NIR: 841–876 nm), and mid‐infrared (MIR: 2,105–2,155 nm) reflec‐
tance and pixel reliability, with 23 scenes per year. For each pixel, we 
calculated the mean, standard deviation, minimum, maximum and 
range for EVI, and blue, red, NIR, and MIR reflectance values from 
each year between 2001 and 2014. These statistics were calculated 
for all 12 months, two 6 month periods, and three 4 month periods. 
The pixel reliability layer was used to remove all unreliable samples 
(value = 3) prior to calculating statistics. These statistics were used 
as predictive variables in the Random Forest classifier.

Training data for each classifier were collected by overlaying a 
grid of MODIS pixels (250 m × 250 m) onto multitemporal high‐res‐
olution imagery in Google Earth and registering the land‐cover class 
and date. More than 60,000 MODIS pixels were labeled to create 
the classification models used in this study. These data were asso‐
ciated with the pixel statistics to create a Random Forest classifica‐
tion model for each mapping zone. The mapping zone boundaries 
followed ecoregion and biome delineations. To train a zone‐specific 
Random Forest model, land‐cover samples within the mapping zone 
of interest and the samples’ Google Earth high‐resolution image 
acquisition date were paired with MODIS time series variables. For 
example, samples collected from 2005 Google Earth high‐resolution 
imagery were paired with 2005 MODIS time series variables. The 
zone‐specific Random Forest models were then applied annually to 
produce 14 annual land‐cover maps for each mapping region.

This study focused on the woody class (i.e., trees and shrubs) and 
the overall postclassification accuracy for the woody/non‐woody 
classification within the Andes was 94%. Accuracy was evaluated 
by comparing random pixels from the 2013 classification map with 

high‐resolution imagery from 2013 in Google Earth. For this study, 
a hexagon grid was placed over each annual land‐use classification 
map. Each hexagon had a size of 11 km (north to south) and an area 
of 115.47 km2 (~11,547 ha). All hexagons with a median elevation 
≥1,000 m that intersected with the tropical and subtropical moist 
broadleaf forest, tropical, and subtropical dry broadleaf forest, 
montane grasslands and shrublands, and tropical and subtropical 
grasslands, savannas, and shrublands biomes in South America were 
included. A few hexagons occurred in Brazil and Venezuela, which 
were clearly not part of the Andes and they were eliminated. For 
each hexagon, we summed the area of all MODIS pixels classified 
as woody vegetation (trees or shrubs) for each year. The 14 years 
of woody vegetation area were used in a simple linear regression 
against time (i.e., year). Only hexagons with a statistically signifi‐
cant linear trend (p > 0.05, positive—forest gain, negative—forest 
loss) were included in the analyses. For these hexagons with a sig‐
nificant 14 year trend, we report the net change in woody vegeta‐
tion between 2001 and 2014. This multiyear multipixel approach 
ensured that significant hexagons represented regions where there 
were long‐term (i.e., 14 year) directional changes in woody cover, 
rather than pixel‐level year to year fluctuation in a cover class due 
to droughts or fire. To capture the variability in land use along the 
elevation gradient, the patterns of woody vegetation gain and loss 
were summarized within seven elevation zones (1,000–1,499 m, 
1,500–1,999 m, 2,000–2,499 m, 2,500–2,999 m, 3,000–3,499 m, 
3,500–3,999 m, and >4,000 m).

2.3 | Expert opinion

For each country, we visually identified clusters of hexagons 
with significant trends of forest loss and forest gain. For each 
cluster, in‐country experts (i.e., authors) determined if there 
was sufficient information to evaluate the cluster. Potential 
sources of information included: high‐resolution images in 
Google Earth, local or regional published studies, a global for‐
est/no forest map based on Landsat 30 m resolution images 
(Hansen et al., 2013), and direct observations by the experts. 
If there was sufficient information to evaluate a cluster, the 
expert: (1) determined if the information supported or contra‐
dicted the MODIS classification; (2) determined the major driver 
of the observed changes; and (3) provided the source(s) of infor‐
mation used to evaluate the cluster of hexagons. In the Andes, 
pastures and natural grassland cover extensive areas and both 
cover types are actively grazed. In our classification these areas 
were included as a single class because it is difficult to distin‐
guish them. In general, pastures mainly occurred in forested bi‐
omes (e.g., tropical moist forest) and an important driver of an 
increase in woody vegetation in these biomes was pasture aban‐
donment. This was verified by reviewing images from previous 
years in Google Earth. In contrast, shrub invasion was a common 
cause of an increase in woody vegetation in natural grassland 
and this occurred predominantly at high elevation in the tropical 
montane grassland biome.
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2.4 | Environmental and socioeconomic variables

To determine the socioeconomic and environmental variables as‐
sociated with deforestation and reforestation trends in the Andes 
we performed a logistic regression analysis in R using the glmulti 
package (Calcagno & Mazancourt, 2010). For this analysis, we used 
the 1,308 hexagons that had a statistically significant 14 year trend 
of forest loss (0) or gain (1) as the dependent variable and country, 
elevation class, mean slope, change in nighttime lights, and change 
in rural population as the independent variables. Mean slope of 
each hexagon was calculated with the slope spatial analysis tool in 
ArcGIS 10.6 using the SRTM 90m Digital Elevation Database v4.1 
downloaded from http://srtm.csi.cgiar.org. The change in nighttime 
light (NTL) between 2001 and 2011 was taken from Andrade‐Núñez 
and Aide (2018) who analyzed NTL change for South America. We 
extracted the change in NTL for the Andes study region and ag‐
gregated the data to the hexagon level. The municipality level 
(i.e., third administrative unit) population change data set was cre‐
ated by Andrade‐Núñez and Aide (2018). Rural and urban popula‐
tion data were obtained from the last two census for each country 
from Redatam (http://www.redatam.org/redatam/en/index.html) 
and national census webpages and were extrapolated to 2001 and 
2011. A detailed explanation of the methodology is described in 
Andrade‐Núñez and Aide (2018). The municipality population data 
was rescaled to the hexagon level.

3  | RESULTS

The study region included 9,274 hexagons (~1,000,000 km2) and 
1,308 had a significant trend; 36.6% (n = 479) lost forests and 63.4% 
(n = 829) gained forests. This resulted in a net gain of woody vegeta‐
tion above 1,000 m in the Andes (Figure 2, Table 1). When we re‐
stricted the analyses to hexagons with significant linear trends over 
the 14 year study period, there was 488,353 ha of forest loss and 
988,790 ha of forest gain (Table 1). The 1,000–1,499 m elevation 
zone had the greatest area of forest loss, while the 1,500–1,999 m 
and 2,000–2,499 m elevation zones had the greatest area of forest 
gain (Figure 2, Table 1). The amount of forest gain or loss was less 
than 2% of the total area within all elevation zones over the 14 year 
period (Table 1). It is notable that even above 4,000 m, in areas of 
native highland grasslands, there were hexagons with significant in‐
creases in woody vegetation.

There were important differences at the country scale. For ex‐
ample, Colombia, Ecuador, Peru, and Bolivia had net gains in woody 
vegetation above 1,000 m, while Argentina and Venezuela had 
net losses (Figure 2). In all countries, most notably in Argentina, 
Ecuador, and Peru, the majority of forest loss occurred in the 
1,000–1,499 m elevation zone. In contrast, forest gain occurred 
across a wider range of elevation zones (Figure 2). These gains in 
woody vegetation were mainly due to woody vegetation replacing 
areas that were previously classified as herbaceous (i.e., pasture/
grasslands) (Figure S1).

Forest gain (n = 25) and forest loss (n = 26) clusters were evalu‐
ated by in‐country experts (Figure 1). These clusters included a total 
of 849 hexagons with significant positive or negative woody vegeta‐
tion trends during the 14 years of the study. Expert opinion agreed 
with the remote sensing analysis (agreed with 48 clusters (94%) and 
disagreed with 3 (6%)). The most common land‐cover category re‐
placing forests were pastures and crops, while forest gain often oc‐
curred following the abandonment of pasture and crops associated 
with rural–urban migration, shrub invasion/expansion in the high‐
lands, and establishment of plantations (e.g., pine/eucalyptus) and 
crop expansion (e.g., shade‐grown coffee) (Table 2).

A logistic regression analysis to test if forest loss or gain was re‐
lated to country, elevation class, slope, change in nighttime lights, 
or change in rural population showed that elevation class and coun‐
try were the most important variables among all models (Table 3). 
Overall the proportion of forest loss to gain shifted from loss dom‐
inating in the 1,000–1,499 m class and gain dominating above 
1,500 m, but this pattern varied among countries (Figure 2). After 
controlling for elevation class and country, the next most important 
variable was the change in rural population between 2001 and 2011, 
and forest gain was associated with a decline in the rural population.

4  | DISCUSSION

Patterns of woody cover change in the Andes varied along the eleva‐
tion gradient and among countries. The overall pattern of an increase 
in woody vegetation, particularly at higher elevations (>1,500 m), is 
consistent with the expected effects of rural–urban migration (Aide 
& Grau, 2004), climate change, specifically increasing temperature 
(Feeley et al., 2011; Song et al., 2018), and the abandonment of 
marginal (i.e., low productivity) pasturelands and croplands (Curtis, 
Slay, Harris, Tyukavina, & Hansen, 2018; Grau & Aide, 2007, 2008). 
Land‐use change in the Andes between 2001 and 2014 resulted 
in the loss of ~500,000 ha and a gain of ~1,000,000 ha of woody 
vegetation cover, emphasizing the importance of land‐cover redis‐
tribution as a process at least as important as the overall net change 
(Aide et al., 2013; Nanni & Grau, 2014). In the foothills of the Andes 
(1,000–1,500 m), the overall pattern was forest loss mainly caused 
by an increase in pastures and croplands. Above 1,500 m, the domi‐
nant pattern was forest gain mainly due to abandoned pastures and 
small‐scale agriculture associated with rural–urban migration and 
woody vegetation densification and encroachment into the montane 
grasslands and paramo. In addition, the expansion of shade coffee 
cultivation and pine and eucalyptus plantations were also responsi‐
ble for increases in woody vegetation in some areas of Colombia and 
Ecuador. This net gain in woody vegetation may provide opportuni‐
ties for biodiversity conservation and the recovery of environmen‐
tal services such as watershed protection and carbon sequestration 
(Chazdon et al., 2016; Grau & Aide, 2008), but the details and spa‐
tial patterns of these dynamics are complex because they reflect 
the dynamic interplay between natural (e.g., climate, topography) 
and human (e.g., migration, agriculture markets) systems, and these 

http://srtm.csi.cgiar.org
http://www.redatam.org/redatam/en/index.html
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interactions can vary greatly along the elevation gradient and within 
and among the six countries included in this study.

4.1 | Variation along the elevation gradient

In the 1,000–1,499 m elevation class, all countries except Colombia 
had greater loss of woody vegetation than gain, and Colombia, 
Ecuador, and Argentina were the countries that lost the greatest 
area (Figure 2). Forests were replaced mainly by pastures for cat‐
tle grazing, but also for mechanized croplands (e.g., sugar cane, soy‐
beans, fruit orchards in Argentina) (Gasparri & Grau, 2009; Nanni & 
Grau, 2014).

Above 1,500 m the dominant dynamic was an increase in woody 
vegetation due to the abandonment of pasture and agricultural 
lands, similar to patterns observed globally (Curtis et al., 2018). In 
most cases, this was associated with out‐migration; including the 
dramatic case of Colombia where violence displaced more than 7 
million rural people (UN Refugee, 2018), but most commonly due 
to working age out‐migration looking for better jobs, education, 
and health care in national cities (e.g., medium and large cities of 
Colombia—Lozano‐Gracia, Piras, Ibáñez, & Hewings, 2010, Bolivia‐
Redo et al., 2012); or in other countries, (particularly important in 
Ecuador, Jokisch & Lair, 2002). In general, these changes suggest a 
trend of land‐use disintensification and woody vegetation regrowth 
in many areas, with intensive farming in peri‐urban locales and selec‐
tive hotspots of commercial agriculture (Zimmerer, Carney, & Vanek, 
2015). Another important driver of woody vegetation increase above 
1,500 m was the expansion of shade coffee cultivation and the de‐
velopment of silvopastoral and conservation projects (e.g., payment 
for ecosystem services) in Colombia (León‐Escobar, 2011) and pine 
or eucalyptus plantations in Ecuador (Farley, 2010). In the highest 
elevation zones, the increase in woody vegetation in all countries 
also points to increasing temperatures, and possibly drier conditions 
facilitating shrubs encroachment and tree invasions above treeline 
into highland grasslands (e.g., Peru) and paramos (e.g., Venezuela), 

and grasslands of Argentina (Grau &Veblen, 2000). These results are 
consistent with an observed gain in canopy tree and net bare ground 
loss in mountain regions worldwide (Song et al., 2018). Although 
these higher elevation habitats have some agriculture (e.g., potatoes, 
wheat, quinoa), and grazing, if out‐migration reduces these activities 
and the use of fire, this could create a positive feedback accelerat‐
ing shrub encroachment (Aráoz & Grau, 2010; Lambin & Meyfroidt, 
2010; Lutz, Powell, & Silman, 2013).

4.2 | Variation among countries

In Venezuela, woody vegetation loss (Figure 1, clusters 1, 3) mainly 
occurred in the 1,000–1,500 m elevation zone and the major driver 
of loss was pastures replacing shade coffee. In contrast, woody 
vegetation gain (e.g., clusters 2, 4) occurred at higher elevations 
(2,000–4,500 m) and the most likely driver was shrub densifica‐
tion at the cloud forest/paramo ecotone (Rodríguez‐Morales et al., 
2009; Suárez del Moral & Chacón‐Moreno, 2011). These areas occur 
within or near national parks where access is difficult.

Land‐use change in the Andes of Colombia was very dynamic. It 
was the country with the greatest net increase in woody vegetation, 
but it also had the greatest loss in woody vegetation. Forest loss in the 
1,000–1,499 m elevation class was mainly due to pasture expansion 
(e.g., clusters 10–12), while most forest gain occurred above 1,500 m 
associated with rural–urban migration and abandonment of pastures 
and agricultural lands (e.g., cluster 8 north of Bogota, Rubiano, Clerici, 
Norden, & Etter, 2017). Increases in woody vegetation cover was also 
associated with a shift in the distribution of coffee cultivation in favor 
of regions that produce higher quality and eco‐friendly coffee (e.g., 
clusters 5, 7, Rueda & Lambin, 2013, FNC, 2017) and silvopastoral 
projects, that promoted the introduction of foraging tree species 
into cattle pastures (e.g., cluster 9, Calle, Murgueitio, & Chará, 2012). 
However, it is important to note that although we detected gains in 
woody vegetation over the 14 year study period, in some areas these 
forests are being transformed again into pasture and agriculture 

Elevation 
zone (m) Woody loss (ha) % loss Woody gain (ha) % gain Net change (ha)

1,000–1,499 −261,265 −1.0 195,679 0.7 −65,586

1,500–1,999 −99,630 −0.6 276,485 1.6 176,855

2,000–2,499 −51,020 −0.4 236,612 1.7 185,592

2,500–2,999 −26,964 −0.2 151,834 1.3 124,870

3,000–3,499 −27,158 −0.3 74,041 0.7 46,883

3,500–3,999 −21,697 −0.2 15,512 0.1 −6,185

>4,000 −619 0.0 38,627 0.3 38,008

Total −488,353   988,790   500,437

TA B L E  1   The absolute area and the % 
of the area of each elevation zone with 
significant woody vegetation loss or gain

F I G U R E  2   Gains and losses of woody vegetation from hexagons that had a significant linear 14 year negative or positive trend in the 
different elevation zones for the complete study region (Andes) and the six countries. The elevations zones were: 1,000–1,499 m, 1,500–
1,999 m, 2,000–2,499 m, 2,500–2,999 m, 3,000–3,499 m, 3,500–3,999 m, and ≥4,000 m. The values in parenthesis are the net change for 
all elevation 
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lands. The recent increase in deforestation in Colombia, mainly in 
the lowlands (<1,000 m), has been associated with changing dynam‐
ics related to the postconflict peace agreement (Clerici et al., 2018). 
Given that rural development incentives are an important component 
of the agreement, the trend of increasing forest cover is likely to be 
reversed as pastures and croplands expand in the Andes.

Ecuador clearly demonstrates the overall pattern documented 
for the Andes with woody vegetation loss in the foothills (1,000–
1,499 m) and gain above 1,500 m (Figure 1). Hotspots of loss oc‐
curred in the north on the western flank of the Andes (cluster #19), 
where pastures expanded and along the eastern flank of the Andes 
(Figure 1, clusters 20–22) where new roads into the Amazon low‐
lands are facilitating mining activities and pasture and agriculture 
expansion. The large area of woody vegetation gain in the province 
of Loja in southern Ecuador (cluster 18, Gray, 2009b) was associated 
with out‐migration, to other countries and into the Amazon lowlands. 
Although the abandonment or reduction of human pressure on the 
environment is a critical component of forest gain, given that much 
of this region occurs in the tropical dry forest biome, increase pre‐
cipitation associated with El Niño events in 1991/1992, 1994/1995, 
1997/1998, and 2004/2005 (Bendix & Bendix, 2006) may have con‐
tributed to the increase in woody vegetation. New pine and eucalyp‐
tus plantations (clusters 15–17, Jokisch, 2002; Jokisch & Lair, 2002) 
explain forest expansion in other regions above 2,000 m in Ecuador.

In Peru, the regions of forest loss were generally below 2,000 m 
(Figure 1 clusters 30, 31, 33, 36, 37) where forest were replaced by 
pastures, often as a consequence of new roads providing access to 
Amazon lowlands in Amazonas, Cusco, Madre de Dios, and Puno 
(Glinskis & Gutiérrez‐Vélez, 2019; Potapov et al., 2015). Migration out 
of the highlands into the lowlands may link the forest gain and forest 
loss with long‐settled areas in the higher elevations being abandoned 
and new areas in the Amazonian frontiers being settled. Most woody 
vegetation gain was associated with areas above 2,000 (Clusters 23, 
25–29) and the most common dynamic was shrub densification. In 
addition, in the Peruvian Cordillera Blanca, pioneer species have been 
documented colonizing area where glaciers have receded (Mark et al., 
2017; Young, Ponette‐González, Polk, & Lipton, 2017).

In Bolivia, woody vegetation gain and loss showed a strong 
spatial segregation (Figure 1) with woody loss in the north and 

gain in the south. In the northern clusters 43–45 in the La Paz and 
Cochabamba Departments (the “media luna” region), government‐
sponsored development and colonization policies have promoted 
migration from the highlands to the Andean foothills and this has 
resulted in an increase in small‐scale agriculture and coca production 
(Zimmerer, 2015). In the south (clusters 40–42), out‐migration within 
Bolivia (e.g., Santa Cruz) and internationally (e.g., Argentina) has led 
to pasture and small‐scale agriculture abandonment and secondary 
forest succession in the neighboring foothills.

Argentina was the country with the smallest total area in this 
study, yet it had the largest proportion of lowland deforestation, 
which was associated with the expansion of large‐scale agriculture 
(e.g., soybeans, sugarcane, blueberries, citrus) concentrated in the 
lowest hexagons where there is a rapid transition from the foothills 
to the plains that are more appropriate for mechanized agriculture 
(clusters 50–51) (Gasparri & Grau, 2009; Nanni & Grau, 2014). In 
contrast, regions of woody vegetation gain occurred at higher ele‐
vation (clusters 46–48), and the dominant dynamic appears to be 
the abandonment or a reduction in grazing and a shift in the local 
economy toward tourism.

4.3 | Agricultural implications

Although the major transitions detected in our analyses were be‐
tween areas classified as pastures and woody vegetation (i.e., shrubs 
or trees), the role of agriculture was not trivial. Expert opinion in 
the present study (Table 2) and a recent study of global forest loss 
drivers (Curtis et al., 2018) coincided in identified agriculture as an 
important driver of forest lost in the Andes. For example, expert 
opinion listed cropland expansion in ~ 25% of the clusters with 
woody vegetation loss (Table 2), mostly below 2,000 m and in as‐
sociation with crops for emerging markets (e.g., ethanol from sugar 
cane), niche crops (e.g., blueberries or coca), and subsistence ag‐
riculture along new roads into the lowlands of Ecuador, Peru, and 
Bolivia. In contrast, the decline in croplands was often associated 
with rural–urban migration. Rural out‐migration and the availability 
of nonagriculture jobs can discourage labor‐intensive agriculture, 
maintenance of terraces and irrigation systems, and time demanding 
herding leading to declining agricultural production. Furthermore, 
liberalization policies (e.g., free trade agreements) have reduced the 
costs of many imported foods (e.g., maize imported from the US), 
discouraging farmers from cultivating staples for the domestic mar‐
ket (Hazell, Poulton, Wiggins, & Dorward, 2010). Although the loss 
of croplands may contribute to new forests and increase habitat for 
many species above 1,500 m, it has negative impacts of the people 
that remain by reducing their agrodiversity (e.g., nutritional diver‐
sity and adaptive capacity of local food plants to climate change) 
(Zimmerer et al., 2018).

4.4 | Biodiversity and conservation implications

The change in the distribution of forests in the Andes could have im‐
portant repercussions for the biota of the world's largest biodiversity 

TA B L E  3   Summary of the best models with forest loss or gain as 
the dependent variable and country, elevation class, slope, change 
in nighttime lights, and change in rural population within each 
significant hexagon as the independent variable

Model AIC ∆AIC Model weight

Elevation class + country 1,649.53 0 0.244

Elevation class + country 
+ ∆ rural population

1,649.58 0.05 0.237

Elevation class + country 
+ ∆ rural population + ∆ 
NTL

1,651.10 1.57 0.111

Elevation class + country 
+ ∆ NTL

1,651.11 1.58 0.110



2122  |     AIDE et al.

hotspot (Myers et al., 2000), especially where it entails the conver‐
sion of mature forests (Watson et al., 2018). Species which have had 
less success adapting to changing conditions have often been range‐
restricted species with limited ecological plasticity (Sekercioglu, 
Schneider, Fay, & Loarie, 2008); a description that captures much of 
the diversity in the Andes. Understanding how species will respond 
to climate change is a fundamental step for effective biodiversity 
conservation, but land‐cover and land‐use change must be consid‐
ered given that it is the primary factor altering the contemporary dis‐
tributions of many species and restricting their adaptative response 
to climate change by migration.

4.5 | Climate–vegetation interactions

One possible implication of climate warming at high elevations is the 
reduction of cloudiness (Barros, 2013), which could have a strong im‐
pact on the vulnerability of forest ecosystems, especially at the highest 
elevations, independently of human activities. However, deforestation 
below 1,500 m also poses a significant threat to the climate–vegeta‐
tion interactions. For example, evapotranspiration from Andean low‐
land forests is critical to establish strong daytime upslope moisture 
convergence that is necessary to form clouds and produce precipita‐
tion, but latent heat fluxes in the lower troposphere can impact con‐
vective activity and precipitation (Sun & Barros, 2015a,2015b). This 
suggests that continued lowland deforestation and warming could 
lead to drought amplification at higher elevations, which could in‐
crease fire frequencies and possibly limit treeline expansion (Harsch, 
Hulme, McGlone, & Duncan, 2009; Rehm & Feeley, 2015).

4.6 | Data gaps and future directions

While remote sensing and global models will assist in predicting how 
forest will respond to a changing climate, it is much more compli‐
cated to predict how land‐use decisions (e.g., the pathways of ag‐
ricultural expansion vs. disintensification) and fauna will respond 
(Pontius & Spencer, 2005). An important example is the forests in 
Colombia. While this study documented and increase in woody veg‐
etation in the Andes of Colombia, recent reports have shown a rapid 
increase in deforestation in the lowlands (Hettler, Thieme, & Finer, 
2017) associated with the Peace Agreement and the difficulties the 
government has faced in establishing a presence in remote regions. 
These dynamics are likely to reverse the forest gain process in the 
Andes documented in this study.

To monitor and respond to these widespread and rapid changes 
in the Andes there is an urgent need for a regional land‐use, bio‐
diversity, and ecosystem services monitoring network. This will be 
a challenge given that fine‐grained/high spatial resolution land‐use 
maps do not exist at the scale of the Andes, demographic and so‐
cioeconomic data are collected sporadically, climate stations are 
scarce, and we do not have reliable distribution maps for the flora 
and fauna. Hopefully, we can overcome these challenges and do a 
better of managing and conserving the largest biodiversity hotspot 
in the world.
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