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Abstract. The future trajectory of atmospheric CO2 concentration depends on the devel-
opment of the terrestrial carbon sink, which in turn is influenced by forest dynamics under
changing environmental conditions. An in-depth understanding of model sensitivities and
uncertainties in non-steady-state conditions is necessary for reliable and robust projections of
forest development and under scenarios of global warming and CO2 enrichment. Here, we sys-
tematically assessed if a biogeochemical process-based model (3D-CMCC-CNR), which
embeds similarities with many other vegetation models, applied in simulating net primary pro-
ductivity (NPP) and standing woody biomass (SWB), maintained a consistent sensitivity to its
55 input parameters through time, during forest ageing and structuring as well as under climate
change scenarios. Overall, the model applied at three contrasting European forests showed low
sensitivity to the majority of its parameters. Interestingly, model sensitivity to parameters var-
ied through the course of >100 yr of simulations. In particular, the model showed a large
responsiveness to the allometric parameters used for initialize forest carbon and nitrogen pools
early in forest simulation (i.e., for NPP up to ~37%, 256 g C�m�2�yr�1 and for SWB up to
~90%, 65 Mg C/ha, when compared to standard simulation), with this sensitivity decreasing
sharply during forest development. At medium to longer time scales, and under climate change
scenarios, the model became increasingly more sensitive to additional and/or different parame-
ters controlling biomass accumulation and autotrophic respiration (i.e., for NPP up to ~30%,
167 g C�m�2�yr�1 and for SWB up to ~24%, 64 Mg C/ha, when compared to standard simula-
tion). Interestingly, model outputs were shown to be more sensitive to parameters and pro-
cesses controlling stand development rather than to climate change (i.e., warming and changes
in atmospheric CO2 concentration) itself although model sensitivities were generally higher
under climate change scenarios. Our results suggest the need for sensitivity and uncertainty
analyses that cover multiple temporal scales along forest developmental stages to better assess
the potential of future forests to act as a global terrestrial carbon sink.

Key words: autotrophic respiration; climate change; forest development; forest structuring; model
sensitivity; model uncertainty; net primary productivity.

INTRODUCTION

Terrestrial ecosystems, and forests in particular, are
contributing substantially to climate change mitigation

by absorbing a considerable fraction of anthropogenic
carbon dioxide emissions and storing large amount of
carbon in biomass and soils (Le Quer�e et al. 2018). The
terrestrial sink, resulting from the balance of photosyn-
thesis and respiration, is extremely sensitive to variation
in environmental conditions (climate, seasonality, atmo-
spheric CO2 concentration, nitrogen deposition) and to
disturbances, including management practices (Nol�e
et al. 2015, Erb et al. 2018). Future changes in the
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terrestrial carbon budget are therefore very relevant for
the trajectory of CO2 atmospheric concentrations and the
Earth’s climate (IPCC 2014). To better understand the
future role that forests may play in climate change mitiga-
tion, and to optimize land-based mitigation options, it is
useful to understand which processes are dominating for-
est dynamics in the short and even long term. For this
purpose, process-oriented terrestrial ecosystem models
embedded into large Earth System Models (ESMs) are
important tools (Bonan 2014). These models’ predictions
have proven to be very uncertain, to the point that the
future dynamic of terrestrial ecosystems is one of the
most uncertain aspects of the global carbon budget
(Friedlingstein et al. 2014, Noce et al. 2016, Mercado
et al. 2018). Model construction is based on the represen-
tation, at different levels of realism, of specific processes
that are subsequently grouped in an ensemble of underly-
ing chains of interacting modules. Within the domain of
plant process modeling, the current knowledge of leaf-
level instantaneous responses such as photosynthesis, res-
piration, and stomatal conductance is rather solid. How-
ever, our ability to scale up these responses to larger
spatial (e.g., stand level) and longer temporal scales (e.g.,
decadal to centennial stand development) is less robust
(Way and Sage 2008). Ultimately, forest dynamics is con-
sidered one of the greatest sources of uncertainty in pre-
dicting the future trajectory, in magnitude as well as in
direction, of the terrestrial carbon sink under future cli-
mate (Friedlingstein et al. 2014).
Uncertainty in model simulations is the quantitative

measure of systematic and random variation from the
“true” value of a simulated entity (Aubinet et al. 2012).
Uncertainty arises from three main sources, which are
strongly linked: parameter values, model structure, and
input data (Medlyn et al. 2005). In particular, modeling
uncertainty can stem from incomplete data for model ini-
tialization (i.e., data used to define the initial state of the
system), for model parameterization over large spatial
scales, and for representing forest development in nonequi-
librium conditions. Parameter shifts due to ecosystem per-
turbations from climate change and disturbances are
additional sources of potential uncertainty. These latter
factors may increase the relevance of specific processes and
decrease the importance of others, ultimately changing the
model sensitivity to parameters across temporal scales. To
date, models are typically evaluated and optimized with
short-term simulations under present-day climate (with
only some few exceptions, e.g., see TRENDYproject; Sitch
et al. 2008), and, consequently, leaving open questions on
their capability to reproduce robust and less uncertain
results in much longer simulations (Wolf et al. 2011a,
Bonan 2014). However, the variability of sensitivity and
uncertainty over the course of ecosystem development has
rarely been studied (Law et al. 2003).
Since forests are long-lived ecosystems, it is of key

interest to understand the causes of such variability also
at long-temporal scales, exploring the relative impor-
tance of parameters, processes (and their interactions)

and model assumptions that drive variability in model
outputs (Huber et al. 2018). This variability extends
from young stands, with many small trees with propor-
tionately large foliage biomass, to old stands, with few
large trees with proportionately larger stem biomass
(Wolf et al. 2011a). Studies at local scales indicate that
young and old stands react differently to environmental
conditions (Anthoni et al. 2002, Curtis and Gough
2018), due to their developmental stage and to their
adjusting physiology with ageing (Zaehle et al. 2006,
Sala et al. 2011). The complexity of these interactions
has been recognized by forest growth modelers in the
last decades, and attempts have been made to devise
models that adequately describe the growth response
along time of whole ecosystems. Conversely, global mod-
els, due to their relatively more abstract nature, usually
have considered forests in steady-state conditions or
ignoring stand density and demography (Sitch et al.
2008) leading them to potentially overestimate biomass
(Ciais et al. 2008) and underestimate carbon sink (Car-
valhais et al. 2010) and neglecting any age-related effect
in forest productivity. Clearly, such results largely vary
depending on the model used.
Sensitivity analysis, as the first diagnostic in assessing

the uncertainty in model assumptions, process represen-
tations and parameterizations, is considered essential to
quantifying reliability, robustness, and limitations of
models suggesting directions for further improvements
aiming to reduce uncertainty (Pappas et al. 2013, Pia-
nosi et al. 2016). Thus, sensitivity analysis (or uncer-
tainty analysis) is the method to quantify the sensitivity
in model outputs induced by changes to model inputs
(Uusitalo et al. 2015). Despite the growing number of
studies that investigate models’ sensitivity to parameters
controlling “fast” processes (Lombardozzi et al. 2015),
and steady-state conditions (Ricciuto et al. 2018), sur-
prisingly, relatively few studies challenged the inherent
hypothesis of changes in model sensitivity to different
parameters (even in their magnitude) across forest devel-
opment at non-stationary conditions and consequently
investigated the impact of such parameters under med-
ium- (~50 yr) and/or long-term (>50 yr) periods (i.e.,
temporal position relative to the start of simulations).
Thus, here we specifically address the question, whether
models’ sensitivity to parameters or processes changes
in medium- to long-term simulations compared to short-
term runs (~10 yr). In particular, we investigate the
long-term emerging patterns of model sensitivity to
parameters or processes according to the simulation of
forest development and their rates in uncertainty propa-
gation under climate change (i.e., warming and atmo-
spheric CO2 enrichment). The main objective of this
study is to explore variability in the model’s sensitivity
parameters spectrum for key variables (i.e., net primary
productivity [NPP] and standing woody biomass [SWB])
by focusing on the modeled processes along with forest
structuring, ageing, and climate change scenarios in a
systematic fashion (Fig. 1). In brief, we hypothesize that
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some parameters may change their influence on modeled
processes according to forest development and related
functional adjustments because the processes that they
control may become more (or even less) relevant with
changes in forest structure and at increasing age and tree
size. Concurrently, unexpected significance of a parame-
ter or lack of significance can lead to questioning of our
mechanistic understanding and the relative role of differ-
ent processes (Prihodko et al. 2008). Notably, most stud-
ies found in literature including forest development and
ageing are, to our knowledge, mostly based on Gap
Models and Dynamic Vegetation Models (DGVMs)
analysis (e.g., LPJ family; see Pappas et al. 2013), with a
few studies focused on more general ecosystem process
models (Law et al. 2001, 2003).
In order to address these questions we employed here

the process-based model 3D-CMCC-CNR (Collalti
et al. 2014, 2016, Marconi et al. 2017), developed to
simulate the growth and dynamics in forest ecosystems
at three contrasting European forest stands, and specifi-
cally (1) to evaluate the model sensitivity bounds to dif-
ferent parameters under different climate change and
present-day climate scenarios for (i) the initialization
phase and in the (ii) short- (~30 yr), (iii) medium-
(~60 yr), and (iv) long-term (>90 yr) runs; (2) to identify
key parameters and/or dominant processes, pinpointing
their control on the overall physiological and functional
responses of forest development and changing climate;
(3) to assess and evaluate the physiological and func-
tional plausibility of the model parameter (or process)
sensitivity, including the lack of sensitivity, and struc-
tural uncertainty; and (4) to discuss whether, as currently

considered, some “fixed” (over time) parameters should
be otherwise defined as “dynamic” parameters, thus
reflecting an endogenous model structural uncertainty.
Since many of the parameters, processes representa-

tion and assumptions adopted into 3D-CMCC-CNR
model are also typical for a large family of other forest
stand models (e.g., 3-PG [Landsberg and Waring 1997],
Biome-BGC-like models’ family [Thornton et al. 2002],
G’DAY [Dezi et al. 2010]), age/size-gap models (ED2
[Medvigy et al. 2009], LPJ-GUESS [Smith et al. 2001]),
and land (or component of) surface models (LPJ-
DGVM [Sitch et al. 2003], CTEM [Arora and Boer
2005], ORCHIDEE [Krinner et al. 2005], JULES
[Zaehle and Friend 2009], ACASA [Staudt et al. 2010],
Community Land Model, CLM, and its derivates [e.g.,
Fisher et al. 2015], and the E3SMv0 Land Model [Ricci-
uto et al. 2018]), we suggest that this work may be of lar-
ger and general relevance, offering new insights on
forests development and ageing representation.

MATERIALS AND METHODS

Model description

The 3D-CMCC-CNR forest model (v.5.4 BGC) is a
biochemical, biophysical, and physiological process-
based model developed to predict carbon, energy, and
water fluxes coupled with stand development processes
that determine relative stock changes in forest ecosystems
at species-level (Collalti et al. 2014, 2016, 2018, Marconi
et al. 2017). The model is designed to simulate the main
physiological processes (e.g., photosynthesis and

FIG. 1. Graphical representation of the set of processes, data, and parameters involved in the model sensitivity under forest
development and climate change scenarios. Gear wheels with circular arrows refer to processes and data, arrows refer to parameters.
NPP, net primary productivity.
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respiration) and hydrological processes (e.g., rain and
snow interception) at daily scale, with other processes
simulated at monthly and annual scales (e.g., mortality,
self-pruning) and at the species-specific level. Although
the 3D-CMCC-CNR is spatially implicit, it embeds a
physical representation of forest horizontal and vertical
structure with a similar spatial arrangement of crowns as
in the “Perfect Plasticity Approximation” (Purves et al.
2008, Strigul et al. 2008, Fisher et al. 2015). The model
requires data on initial forest stand condition at the
beginning of the run, including species composition,
average tree diameter at breast height (DBH), tree height,
and stand age and density (number of trees per grid cell).
Six main carbon (C) and nitrogen (N) structural biomass
pools are considered by the model: leaves, stems,
branches, fine and coarse roots, and fruits. A non-struc-
tural tree C pool (NSC, or carbohydrate storage pool;
i.e., starch and labile carbon) is also considered. Other C
and N sub-pools are also considered by the model (e.g.,
sapwood vs. heartwood and live vs. deadwood). These
pools are initialized at the beginning of the simulation
and are updated daily, monthly, or annually, depending
on the processes. All the main equations adopted by the
model, as the ways in which they are linked from daily to
annual scale, are described in Appendix S1 and
Appendix S1: Table S1. Similarities of algorithms,
approaches, and assumptions with other vegetation mod-
els are also described in detail in Appendix S1: Model
description. For a full description of key model principles
and theoretical framework see also Collalti et al. (2014,
2016, 2018) and Marconi et al. (2017).

Experimental setup

Overall, across sites 1,665 independent runs were per-
formed encompassing: (1) four different climate change
scenarios plus (2) one present-day baseline climate of
‘no climate change’ (The climate-forcing data) for (3) 55
“perturbed” model parameters (which represent the total
number of model parameters), which become twofold
considering both positive and negative changes in their
values, plus an additional “optimized” parameters sam-
ples, (see details in Sensitivity analysis). One modeled
annual C flux variable (net primary production [NPP])
and one C pool, namely, standing woody biomass (stem,
branch, and coarse root biomass, or SWB), were consid-
ered in this analysis as key metrics to represent the

autotrophic component of the carbon budget and to
quantify vegetation responses at short-, medium- and
long-term changes in model simulations, stand develop-
ment, and climate (Zaehle et al. 2005). At each site, the
model was run for ~100 yr, spanning the period from
~1996 to 2099 depending on the availability of stand
data for model initialization.

Study sites

The analysis was applied to three different even-aged,
managed, European forests: an adult (80 yr old), Dan-
ish, temperate, European, beech forest (Fagus sylvatica
L.; Sorø [Pilegaard et al. 2011]), a moderately young
(28 yr old), Finnish, boreal, Scots pine forest (Pinus syl-
vestris L.; Hyyti€al€a [Mencuccini and Bonosi 2001,
M€akel€a et al. 2006]) and a young (16 yr old), Czech,
temperate-humid, Norway, spruce forest (Picea abies
Karst.; B�ıl�y K�r�ı�z [Godbold et al. 2015]). The study sites
were selected because the three species are representative
of the most common types of European deciduous and
coniferous species. For the selected sites, at different
developmental stages, downscaled and site-level bias-
corrected ISIMIP-ESMs (Inter Sectoral Impact Model
Intercomparison Project and Earth System Models) cli-
mate data were available. General information about the
stands and how they are initialized for simulations can
be found in Table 1. Model robustness and reliability at
these sites under present-day conditions and considera-
tions about climate change scenario outcomes have been
described in earlier works (Collalti et al. 2016, 2018,
Marconi et al. 2017).

The climate-forcing data

Input surface weather data include the following vari-
ables: daily maximum (Tmax, °C) and minimum air tem-
perature (Tmin, °C), vapor pressure deficit (VPD, hPa),
shortwave solar radiation (MJ�m�2�d�1), precipitation
(mm/d), and annual atmospheric CO2 concentration
(ppmv [ppm by volume]). For climate change scenarios
we used climate data from the ISIMIP Fast Track initia-
tive (Warszawski et al. 2014), based on the Climate
Model Intercomparison Project 5 (CMIP5; data available
online).9 The ESMs were driven by four Representative

TABLE 1. Sites description with stand initialization data used in simulations.

Site name Species Climate
DBH
(cm)

Age
(yr)

Tree
height (m)

Density
(trees/ha)

LAI
(m2/m2) Source

Hyyti€al€a Pinus sylvestris L. boreal 10.3 28 10 1,800 3 Mencuccini and Bonosi
(2001), M€akel€a et al. (2006)

B�ıl�y K�r�ı�z Picea Abies Karst. cold continental 7.1 16 5.6 2,408 7.5 Godbold et al. (2015)
Sorø Fagus sylvatica L. cool temperate,

sub-oceanic
25 80 25 400 5 Pilegaard et al. (2011)

Notes: Data correspond to the year 1996 for Hyyti€al€a and Sorø sites and 1997 for B�ıl�y K�r�ı�z. DBH and tree height refer to mean
values.

9 https://www.isimip.org
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Concentration Pathways (RCPs) associated with different
scenarios of greenhouse gas (GHG) concentrations,
namely RCP 2.6 (~490 ppmv CO2-equivalent), RCP 4.5
(~650 ppmv CO2-equivalent), RCP 6.0 (~850 ppmv CO2-
equivalent), and RCP 8.5 (~1,370 ppmv CO2-equivalent;
Moss et al. 2010, van Vuuren et al. 2011). To reduce the
inherent uncertainty related to climate projections (Mor-
ales et al. 2007), the five ESMs (HadGEM2-ES, IPSL-
CM5A-LR, MIROC-ESM-CHEM, GFDL-ESM2M,
and NorESM1-M, respectively) were averaged in one sin-
gle “representative” climate data set, for each of the four
RCPs and for each of the sites, which was used to run the
model. Finally, to disentangle the effects of forest devel-
opment to those related to climate change, a “no climate
change” scenario was generated by randomly repeating
the 1996–2005 climate years up to 2099 with atmospheric
CO2 concentration held fixed at ~370 ppmv and used as
reference level.

Sensitivity analysis

The 3D-CMCC-CNR forest model uses overall 55
species-specific eco-physiological, biophysical, biogeo-
chemical, and structural time-independent parameters
(for a full description, see Table 2 and, for model stan-
dard values and references, see Appendix S1: Table S2).
Parameter values were previously gleaned mostly from
the literature and previous model calibration, optimiza-
tion, and validation exercises (Collalti et al. 2016, 2018,
Marconi et al. 2017), trying to avoid the use of parame-
ters directly measured at the sites, in order to increase
generalization of the model use.
Conceptually, the parameter hyperspace describes spe-

cies-specific plant traits by avoiding excessive details and
poorly documented parameters, while still aiming to
maintain reliable vegetation descriptions. Among the
eco-physiological parameters embedded in the model
there are, for example, maximum stomatal conductance
or Rubisco nitrogen concentration, while the structural
parameters are, for example, leaf area to sapwood area
ratio, whereas other parameters are strictly related to
species phenology. All model parameters were consid-
ered in the sensitivity analysis, as long as they do not
violate functional, physical, or phenological relation-
ships, for instance, leaf life span for deciduous species.
Some of the parameters are structurally (e.g., allometric
parameters) or biologically related (e.g., sapwood to leaf
area) and are expected to show covariation among spe-
cies as also to vary with age. Additionally, some of the
parameters are used by the model only at the beginning
of the simulation starting from mandatory initial state
variables (i.e., DBH, tree height, stand density, and age)
to initialize C and N pools at tree and stand level. Con-
versely, other parameters are used throughout the simu-
lation. The baseline or standard parameterization
represents here the benchmark, as the result of previous
studies where the model has been evaluated. Results
from simulations using different climate change

scenarios (which implies also different atmospheric CO2

concentrations) where compared against the no climate
change scenario results to assess model sensitivity to cli-
mate-forcing data.
Due to the high number of model parameters and the

potentially high interactions across different processes
simulated, a less computationally demanding method
was chosen to perform the sensitivity analysis, compared
to other much more computationally demanding meth-
ods (e.g., Latin hypercube sampling, as in Huber et al.
[2018] or Wramneby et al. [2008]) or as previously done
with 3D-CMCC-PSM model but for a much shorter
time-scale (i.e., 3 yr) and under present-day climate as
described in Marconi et al. (2017). Lu et al. (2013) have,
however, shown that, in most of the cases, model param-
eter sensitivities may be dominated by first-order effects.
Following the “one-[factor]-at-a-time” method (OAT;
Morris 1991), in this study, for each simulation, a single
parameter has been perturbed by �10% (constant frac-
tion analysis; Medlyn et al. 2005, Zaehle et al. 2006,
Zaehle and Friend 2009, Pianosi et al. 2016), which ide-
ally represent the upper and lower bounds of prior
parameter uncertainty, i.e., �10% represent the tails of
this uniform distribution. The OAT and/or the constant
fraction analysis have been applied in many other fields
and described in numerous other studies (Dufrêne et al.
2005, Medlyn et al. 2005, Tatarinov and Cenciala 2006,
Dezi et al. 2010, Campioli et al. 2013). The choice of
�10% is based on several considerations: (1) the vari-
ability domain or the most common physical and biolog-
ical reasonable range of values found in literature for
many (but not for all) of the parameters (Hirsch et al.
2004) and (2) to give each of the parameters for each of
the species analyzed the same rate of variation avoiding
any a priori “expert knowledge” (see Friedlingstein et al.
2014). Furthermore, (3) the use of �10% helped us to
compare against other published studies that have
adopted the same level of parameter perturbation.
Moreover, (4) the OAT approach allows us to clearly
identify and estimate the effects of every tested parame-
ter during the simulated time period, potentially reveal-
ing linearity (or non-linearity) across parameter changes
and model outputs and the variations in the model sensi-
tivity to each parameter at different times during the
simulation. This is an advantage over more complex and
computationally demanding methods that vary multiple
parameters at once (global sensitivity), which proved to
be infeasible, especially in the case of many parameters
to test for long-simulated periods like those presented in
this study. In addition, (5) the treatment of each parame-
ter as a single varying factor (local sensitivity), allows
for a simpler and unambiguous synthesis and interpreta-
tion of the results by creating a system derivatives space
with a number of model simulations lower than the num-
ber of derivatives to be estimated (limitations of the
OAT method are, however, presented in Discussion).
These settings, known as “factor prioritization settings,”
allow us to identify and rank parameters that are shown
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to be the most influential, to minimize the output vari-
ance, and to prioritize parameter influence (Cariboni
et al. 2007). At the same time (6), this method avoids
extreme and implausible results that can be obtained by
improbable non-functional parameter combinations,
which might emerge from a multiple parameterization
and lead to overestimation of the model sensitivity. Such
anomalous parameter combinations are difficult to
reject a priori, or from expert judgment, especially under
climate change scenarios (Wramneby et al. 2008, Reyer
et al. 2016).
The relative changes of model outputs produced by

perturbing parameters are computed annually as the rel-
ative percentage of change (d) of the variable x on the
time t from the reference (baseline, 0) parameter value
(param; Medlyn et al. 2005, van Griensven et al. 2006,
Tatarinov and Cenciala 2006) as

ddx
dt

¼ maxðjXparamn0 � Xparamn�10%jÞ
Xparamn0

� 100 (1)

The maximum difference from each of the two pertur-
bations (i.e., positive or negative changes) and the base-
line value (0) has been considered as representative of
the maximum model sensitivity to changes in parameter
value. Eq. 1 is also expressed in relative unit terms (i.e.,
g C�m�2�yr�1 and Mg C/ha, that is, the residual) by
excluding denominator and the multiplier factor.
Results were then averaged over the simulation period

by summing annual values obtained from Eq. 1 as

dx ¼ 1
n

Xn

i¼1

ddx
dt

� 100 (2)

To comply with the initial hypothesis that model sensi-
tivity to parameters may not be constant all over the
simulation, none of the parameters could be excluded a
priori from the analysis.

RESULTS

Outcomes of the sensitivity analysis are reported in
Table 3, in three equal-length reference periods called
short (1996–2030), medium (2031–2064), and long
(2065–2099), respectively, while in Fig. 2, the model sen-
sitivity with its density distribution in Fig. 3 are shown
for each single year. Overall, out of the 55 analyzed
parameters, 9 parameters show an effect >5% (assumed
arbitrarily as reference level) and can be considered as
key parameters potentially critical for the prediction of
both NPP and SWB (Appendix S1: Fig. S1).

Sensitivity of NPP

As displayed in Figs. 2 and 3 and summarized in
Table 3, modeled NPP sensitivity changes along the sim-
ulation where some parameters systematically decrease
their importance whereas other appear as progressively

dominant at increasing stand age and forest structuring
(see also in Appendix S1: Table S3 for the corresponding
values in g C�m�2�yr�1). Notably, for both NPP and
SWB, the model is more sensitive for some parameters
(e.g., CN_LIVEWOOD, live-wood nitrogen concentra-
tion; LIVE_TOTAL_WOOD, live-to-total wood frac-
tion) at increasing warming and atmospheric CO2

concentrations, while, for other parameters (e.g., the
allometric parameters STEM_B and SAP_B), the model
responsiveness decreases. In addition, the model sensitiv-
ity and the ranking of parameters show an agreement
between evergreen and deciduous species.
In the short period (i.e., 1996–2030, that is, the first

30 yr of simulation) and across sites, the model shows
maximum overall responsiveness to a set of eight param-
eters. The two most important of these are the exponen-
tials of the power-law allometric equations used to
initialize stem biomass (STEM_B) and sapwood biomass
(SAP_B), estimated from stand DBH (i.e., the exponen-
tial parameters in the y = a 9 xb allometric equation).
At the beginning of each modeled year, STEM_B is used
to compute the current year DBH from annually
increased biomass. Particularly, the SAP_B is the main
driver in controlling sensitivity response at two sites
(Hyyti€al€a, 33%, corresponding to 202 g C�m�2�yr�1; and
B�ıl�y K�r�ı�z, 22%, corresponding to 160 g C�m�2�yr�1),
while at Sorø, the maximum sensitivity values (37%, i.e.,
257 g C�m�2�yr�1) are showed for the parameter
STEM_B. In the short period the perturbation of other
parameters such as, e.g., CN_LIVEWOOD, LIVE_TO-
TAL_WOOD, LIVE_WOOD_TURNOVER (i.e., live-
to-deadwood turnover), SAP_A, SAP_LEAF (i.e., the
relationship between sapwood and leaf area), and k
(i.e., the light extinction coefficient) have little influence
on NPP, with sensitivity values between ~5% (35
g C�m�2�yr�1) and the ~9% (64 g C�m�2�yr�1) under all
the RCPs. The sensitivity analysis in the short period did
not highlight any dependence on the climate scenario
also because climatic forcings are similar at the beginning
of simulations. In the medium period (i.e., 2031–2064) at
the two evergreen sites (Hyyti€al€a and B�ıl�y K�r�ı�z), the
model shows a reduced responsiveness to parameter
perturbations (the maximum is close to ~15%, 150
g C�m�2�yr�1); a similar sensitivity is found at Sorø but,
for STEM_B, the model sensitivity was >~28%
(168 g C�m�2�yr�1). In the long period, the sensitivity is
generally close to 10% for all parameters, but, for some
of them, the climate scenarios affected model sensitivity,
with some effects becoming more notable at increasing
temperature and CO2 concentration. The maximum
overall sensitivity is found for STEM_B at Sorø (>23%,
116 g C�m�2�yr�1). Conversely, the sensitivity of LIVE_-
WOOD_TURNOVER tended to increase with increas-
ing warming at Hyyti€al€a and B�ıl�y K�r�ı�z sites. In general,
during the entire simulation period, the sensitivity is less
than ~17% except for SAP_B and STEM_B, which pro-
duce changes in NPP greater than ~22%. At Hyyti€al€a
and B�ıl�y K�r�ı�z, the maximum bound of sensitivity is
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for SAP_B (~33%, 202 g C�m�2�yr�1, and ~22%, 160
g C�m�2�yr�1, respectively), whereas at Sorø, the
STEM_B variation change forest annual productivity by
37% (257 g C�m�2�yr�1). Overall, due to the narrow
variability of modeled NPP among different RCPs, the
model shows to be much more sensitive to parameter val-
ues rather than to climate scenarios (Table 3, Fig. 3, and
Appendix S1: Table S2).

Sensitivity of standing wood biomass

In the short period, the SWB sensitivity is mainly con-
trolled by perturbations of three parameters, i.e., SAP_B,
STEM_A, and STEM_B. The variation of STEM_B
shows the highest effect with a change in the annual bio-
mass amount of about 68%, 40%, and 90%, corresponding
to 23 Mg C/ha, 10 Mg C/ha, and 67 Mg C/ha at
Hyyti€al€a, B�ıl�y K�r�ı�z, and Sorø, respectively. In the medium
period, the sensitivity is significant (i.e., >5%) only at Sorø
with a maximum value close to 24% (68 Mg C/ha) for
SAP_B. In the long period, the modeled SWB sensitivity
is almost always less than 10%, although at Sorø for
parameter SAP_B, the value is >24% (64 Mg C/ha). Over
the whole simulation period, the parameter sensitivities

vary between 5% (19 Mg C/ha) and 25% (65 Mg C/ha) at
Sorø with very high (>40%) value if the STEM_B is per-
turbed. Also for SWB, the model shows a transient sensi-
tivity to different parameters across forest development
(Fig. 2 and Table 3), as well as on the whole, the model
shows to be more responsive to parameter changes rather
than to climatic change scenarios (Fig. 3 and
Appendix S1: Table S2).

DISCUSSION

Short-term sensitivity

Initialization and allometry.—The 3D-CMCC-CNR
model outputs are strongly controlled by allometric
parameters (e.g., STEM_B or SAP_B) used to initialize
the stem biomass and to define the forest structure at the
beginning of simulation and (for STEM_B) also along
simulations by monthly updating tree diameter incre-
ments from biomass growth. The model sensitivity to
these parameters is highest for larger initial standing bio-
mass (Bellassen et al. 2010, Song et al. 2012, Marconi
et al. 2017). Since many of the other variables are scaled
by the initial DBH (which may be itself prone to

FIG. 2. Sensitivity in modeled annual NPP (net primary productivity, left panel) and SWB (standing woody biomass, right
panel) expressed in percentage across forest development and climate change scenarios at each of three selected sites. Shaded areas
represent the maximum and the minimum relative sensitivity (in absolute values) for the most influential parameters considering
that the maximum among the maximum annual values of NPP and SWB changes and the minimum among the maximum annual
values of NPP and SWB changes over the climate change and present-day climate scenarios (RCPs) as summarized in Table 3. An
arbitrary threshold of 5% level was used as the reference level.
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measurement errors) and stem biomass through other
allometric functions, their impact on model sensitivity
was expected. However, their influence on NPP is sub-
stantially dampened along the forest development,
becoming systematically and progressively less influential
at the end of simulation because of, among others, satura-
tion of LAI and canopy closure. More generally, the
accompanying uncertainty related to the usage of allo-
metric equations is not easily avoidable since most of the
field data, concerning some of the physiologically relevant
but infrequently sampled pools (i.e., coarse and fine root
biomass), are not easily available or directly measurable,
while they are more easily obtainable by using generic
allometric functions. Allometric equations can be used in
the model code to initialize and to update C and N pools,
or by the user to produce the model input data, ultimately
affecting the sensitivity and the uncertainty of the model
outputs in a similar manner. Despite the intrinsic uncer-
tainty, the use of allometric relationships is largely
adopted in forest and terrestrial-land modeling and they
are probably necessary scaling tool for both initializing
and updating tree pools (e.g., 3-PG [Landsberg and War-
ing 1997], LPJ family [Smith et al. 2001, Sitch et al.
2003], Biome-BGC [Bond-Lamberty et al. 2005], JULES
[Clark et al. 2011], ORCHIDEE [Bellassen et al. 2010])
and for model evaluation (Wolf et al. 2011a).
Different climate scenarios show that allometric

parameters progressively increase model sensitivity to
changes in climate but tend to decrease in the medium-
(i.e., 2031–2060) and long-term (i.e., 2061–2099) simula-
tion. The reasons for this behavior are likely to be traced
to the control that these parameters (i.e., SAP_A,
SAP_B, and SAP_LEAF) have on LAI and on the maxi-
mum annual LAI. In particular, the canopy closure sim-
ulated by the model after some years tends to dampen
the control of these parameters on LAI. This pattern
was also found by Zaehle et al. (2005, 2006) for LPJ-
DGVM. In addition, the greater stem biomass is simu-
lated through the parameter STEM_B: (1) the faster
canopy closes, and (2) the more live cells are in stem bio-
mass, leading stem maintenance respiration to increase
and ultimately reducing the NPP available for the
growth of the subsequent years, and vice versa. Such
positive feedback behavior becomes progressively more
active under warming conditions as autotrophic respira-
tion in the model is temperature controlled. Conse-
quently, changes in annual NPP will lead to functional
plant adjustments and to different increases in stem bio-
mass and different growth and maintenance respiration
costs for the subsequent years. Any negative imbalance

between photosynthesis and autotrophic respiration is
buffered by NSC usage that is refilled at the expense of
biomass growth (Fatichi et al. 2014).

Medium- to long-term sensitivity

Over the medium- to long-term periods (i.e., 2031–
2099) the 3D-CMCC-CNR model shows a greater sensi-
tivity to parameters related to SWB respiration. This
analysis approach differs from short-term sensitivity
studies performed, for instance, with the ACASA model
(Staudt et al. 2010) or with ED2 (Dietze et al. 2014b).
These earlier studies also found that at different years,
parameter sensitivity and parameter ranking, as well as
parameter values, may vary. The comparison between
the results studied in the literature and the results pre-
sented in this study, raises a question about the correct
representation for the plant traits analyzed: are they
constant over time, or do they vary as a function of, for
example, forest biomass (i.e., size), structure, or age?
Some studies have shown, for instance, changes in speci-
fic leaf area (SLA) with age (Forrester et al. 2017),
which have been translated in top-down model parame-
ter values that allow the SLA to decrease with ageing
(Landsberg and Waring 1997) and, at the same time, to
increase with canopy depth (Thornton and Zimmer-
mann 2007). Other parameters (for instance, LIVE_-
WOOD_TURNOVER or C:N stoichiometry in tree
pools) are expected also to systematically (co)vary with,
among others, tree-size, age, or climate and environmen-
tal changes (Machado and Reich 2006, De Kauwe et al.
2014, Walker et al. 2015). These results suggest that
underlying ontogenic functional adjustments or accli-
mation/adaptation processes may lead plants to react
differently over the course of their life. However, the
same recognition of the dependence on the drivers that
should lead processes to be more sensitive to one or
another is debated (e.g., see Mencuccini et al. 2005).
Ultimately, in-depth experimental observations in this
area are lacking, and we are currently not able to pro-
vide a definitive answer to these questions (see also
Bond-Lamberty et al. 2005), therefore, in most cases the
use of fixed parameter values represents rather a simpli-
fication adopted for the lack of a complete mechanistic
understanding about certain processes.

Autotrophic respiration.—Parameters controlling main-
tenance respiration costs also showed high influence on
NPP and standing biomass in the long-term simulations.
These include factors controlling tissue nitrogen

FIG. 3. Sensitivity in modeled annual NPP (net primary productivity; upper panel) and SWB (standing woody biomass; lower
panel) across forest development and climate change and baseline climate (Cu) scenarios at the three selected sites. Gray-shaded
areas represent the relative modeled sensitivity bounds, considering the maximum annual values of NPP and SWB changes pro-
duced by perturbing parameter space across RCPs and the “no climate change” scenario (Cu) as summarized in Appendix S1:
Table S2. Colored lines represent the density distribution of sensitivity for 55 parameters using percentiles. The 50th percentile (yel-
low) represents the median of the values distribution, the 25 and 75 percentiles in red and the 0 and 100 percentiles (grey), the tails
of the model results distribution across parameter perturbations.
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concentrations (e.g., CN_LEAVES) and connections to
the relative size and longevity of live woody pools
(LIVE_TOTAL_WOOD and LIVE_WOOD_TURN-
OVER; see also Zaehle et al. 2006, De Kauwe et al.
2014, Ricciuto et al. 2018). In particular, the allometric
parameter controlling the sapwood area (SAP_B), which
in turn controls the minimum amount of NSC, maxi-
mum annual LAI, and the amount of live tissues, is
among the most sensitive parameters over medium- to
long-term periods (see Li et al. 2014). As hypothesized
by Sala et al. (2011), at increasing sapwood area, more
photosynthates are allocated to NSC, which may explain
the observed growth decline. Generally, within the
model, a decrease in NPP is consistently accompanied
by an increase of nitrogen tissue amount, with the con-
nection becoming stronger as substrates (and mainte-
nance respiration) increase, and vice versa.
A relevant aspect of our research deals with the cli-

mate and atmospheric CO2 concentration dependence of
the model sensitivity to physiological and structural
parameters. Under climate change scenarios, rising tem-
perature acts in two ways: (1) increasing the length of
the growing seasons and therefore potentially prolong-
ing the time for photosynthesis (at least in temperature-
limited forests), and (2) increasing respiration costs, that
in the model are actively fueled by NSC (negative feed-
back). NSC however needs to be restored to a critical
minimum value, thereby reducing carbon available for
increasing SWB (Sala et al. 2011). Conceptually, and
following eco-physiological strategies, the model com-
pensates imbalances in NSC amount by allocating
assimilated carbon to reserve pool at first, inhibiting
growth in the short term, and only subsequently allocat-
ing carbon to other compartments. If these higher respi-
ration rates for plants exposed to higher temperatures
are maintained for longer periods (also including both
acclimation responses for photosynthesis and respira-
tion, see Model description in Appendix S1), it would
mean that a proportionally greater fraction of assimi-
lated carbon is invested (i.e., lost) in respiration, with
consequently less C available for growth, entailing a
decrease of growth rates with increasing temperature
(Kirschbaum 2000).

Tissue turnover.—When compared to the two coniferous
stands, NPP of the deciduous forest studied here proved
to be sensitive to a smaller set of parameters controlling
autotrophic respiration (Ra). Among those, CN_LIVE-
WOOD controls the amount of respiring cells in woody
biomass, so that the increase of the fraction of respiring
cells leads to an increase in Ra and consequently to a
decrease in NPP. In a similar manner, the turnover rate
of live tissues (LIVEWOOD_TURNOVER) is shown to
affect the annual NPP (as also described for LPJ-
GUESS by Zaehle et al. [2005] and Pappas et al.
[2013], for LPJ-DGVM by Zaehle et al. [2006], and for
Biome-BGC by Cienciala and Tatarinov [2006] and by
Wolf et al. [2011b]) by controlling the amount of cells

that die and move into the non-respiring fraction of
biomass (heartwood; Larcher 2003) or remain as live
tissue. This factor is suggested to be influential also for
all models that simulate plants respiration through a
mass-based approach (e.g., CLM; Oleson et al. 2013)
and needs further investigation.

On the coupling of photosynthesis and plant respira-
tion.—In the model approach, photosynthesis and Ra

are considered to be independent (although feed-for-
ward) processes with different acclimation capacities,
resulting in reduced carbon use efficiency (CUE = NPP/
GPP, data not shown) at sustained higher temperatures
and, across time, with the accumulation of respiring bio-
mass. The hypothesis that respiring substrate and respi-
ration costs increase proportionally with biomass, which
is captured in 3D-CMCC-CNR behavior, is still a chal-
lenge and a matter of debate (Atkin et al. 2007, Drake
et al. 2016; A. Collalti and I. C. Prentice, unpublished
manuscript). The assumption of a constant Ra to GPP
(or NPP to GPP) ratio is particularly critical in trees, for
which the ratio between green biomass that support
GPP, and the living biomass that respires, may substan-
tially decrease during stand development (Vanninen and
M€akel€a 2005). Many forest models attempt to circum-
vent this problem by considering Ra (or NPP) as a fixed
fraction of GPP and maintaining the same relationship
under climate change scenarios (e.g.: 3-PG [Landsberg
and Waring 1997], BASFOR [Van Oijen et al. 2005],
G’DAY [Dezi et al. 2010]). In doing so, those models
assume that the two physiologically processes acclimate
at the same rate, although they have different tempera-
ture responses (Drake et al. 2016, Reich et al. 2016).

The age effect.—Our model includes the parameter
MAX_AGE for stomatal conductance and photosynthe-
sis, representing one model assumption in simulating the
well-known age-related decline in growth (Ryan et al.
2006). Results here show this parameter to affect NPP,
through its influence on GPP and, indirectly, by the
mortality rate. At Sorø (the oldest stand among the stud-
ied sites), MAX_AGE has a strong influence on model
responses in the long-term period and under increasing
temperature, with a lower sensitivity at the other sites.
At the Hyyti€al€a and B�ıl�y K�r�ı�z sites, and under the warm-
est scenarios (RCP 8.5), other parameters controlling
stomatal conductance and the net leaf assimilation rate
(i.e., T_MAX) turned out to be influential; according to
this result, these two coniferous species may turn out to
be highly susceptible to raising temperature as also
recently noted in other modeling exercises and experi-
mental studies (Atkin et al. 2015, Kroner and Way 2016,
Mercado et al. 2018).

Sensitivity throughout the course of simulation

Summarizing, for NPP and SWB during the first
phase of simulation (short-term), the model is primarily
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controlled by parameters (and processes) that define
plant architecture and forest structure and that indirectly
regulate photosynthesis through LAI, light interception
and canopy coverage, and, with secondary influence, by
few parameters directly related to photosynthetic pro-
cesses. As the sensitivity of the model to the aforemen-
tioned parameters is progressively reduced, other
parameters, mostly related to the carbon storage, bio-
mass accumulation, autotrophic respiration and forest
ageing along the stand dynamic, emerge as key factors.
The accumulation of SWB coupled warming increases
the costs for maintenance respiration while, in parallel,
the reduction of stomatal conductance reduces photo-
synthesis leading to a decrease of NPP. Ultimately, for
all of the modeled sites, the parameters affecting NPP
are also those controlling the accumulation of SWB.
Our results are in line with the notation of Schulze

(2006) and Dietze et al. (2014a), which, based also on
field experiments (K€orner 2003, Muller et al. 2011,
Hoch and K€orner 2012), argued that results from com-
plex interactions should not be dominated by the pro-
cesses of photosynthesis but rather photosynthesis may
be more a consequence than a driver of plant structure
and architecture.
As displayed in Figs. 2 and 3 and in Table 3, for all

the studied sites, forests stages, and climate scenarios,
the model sensitivity to changes in parameters regulating
NPP shows a considerably lower variability than SWB.
This result is mostly due to the compensatory or level-
ing-off effects, buffered by NSC, of increases (or
decreases) in Ra and the consequent reduction (or
increase) in standing wood biomass changes.
In all cases, the model was not shown to be sensitive

to parameters controlling the water cycle, as also noted
for other models (Zaehle et al. 2005, Pappas et al. 2013,
Huber et al. 2018). This is possibly because here we did
not consider output variables related to water balance
(e.g., evapotranspiration) or due to the specific geo-
graphic location of the sites. In fact, as summarized in
the fifth IPCC report (IPCC 2013), Northern European
sites, even under the most pessimistic warming scenarios
(RCP 6.0 and 8.5), will likely not experience significant
decreases in precipitation. We also note the lack of
model sensitivity for parameters controlling C partition-
ing ratios, which, as described in the model description
in Appendix S1, are forced by limiting factors (i.e., light
and soil water content).
In conclusion, we believe that the results of this study

could be generalized well beyond the specific
3D-CMCC-CNR model, since its structure as well as
most of its algorithms, assumptions, and parameters,
are commonly embedded and adopted in other terres-
trial vegetation models (see Model description in
Appendix S1 for similarities and analogies with other
vegetation models, e.g., Biome-BGC, CLM, ORCHI-
DEE, or JULES). Despite the relative ease of the
method, the first-order partial-derivative methodology
adopted here was aimed at discovering hidden time-

and forest-phase-dependent parameter sensitivities, as
well as underlying parameter effects and model feed-
backs across processes. Notably, the modeled NPP and
SWB proved to be considerably more uncertain and
related to the stand development stage, which is deter-
mined by the level of standing biomass and long-term
processes that emerge only at forest ageing, rather
than to climate change scenarios that only increase
model sensitivity for such drivers (i.e., the spread of
the changes due to parameter perturbations is larger
than those due to different climate-forcing scenarios).
Therefore, this finding suggests that estimates of
model sensitivities and their relative uncertainties may
change substantially if forest development, that is,
changes in forest structure, biomass accumulation, and
ageing, would be considered. Thus, the current mod-
els’ predictions and the associated uncertainties on
forest behaviors may be biased in a way potentially
larger than previously assumed.
Finally, model behavior and responses may represent

a “wake-up call” for biologists, physiologists, and model-
ers that should focus in more detail on these aspects: (1)
effects of biomass accumulation, the turnover time of
live tissues, as well as the key role of the respiration costs
and NSC under forest development and particularly, (2)
when these are coupled to the acclimatory responses
under climate change scenarios in non-steady-state sys-
tems. In the literature, very little attention has been paid
to the analysis of models’ sensitivity over decades of for-
est development and under climate change and, to our
knowledge, this work may represent one of the first
examples.
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