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The rapidly-advancing field of pharmaceutical and clinical
research calls for systematic, molecular-level characterization
of complex biological systems. To this end, quantitative proteo-
mics represents a powerful tool but an optimal solution for
reliable large-cohort proteomics analysis, as frequently involved
in pharmaceutical/clinical investigations, is urgently needed.
Large-cohort analysis remains challenging owing to the deteri-
orating quantitative quality and snowballing missing data and
false-positive discovery of altered proteins when sample size
increases. MS1 ion current-based methods, which have become
an important class of label-free quantification techniques
during the past decade, show considerable potential to achieve
reproducible protein measurements in large cohorts with high
quantitative accuracy/precision. Nonetheless, in order to fully
unleash this potential, several critical prerequisites should be
met. Here we provide an overview of the rationale of MS1-
based strategies and then important considerations for experi-
mental and data processing techniques, with the emphasis on
(i) efficient and reproducible sample preparation and LC
separation; (ii) sensitive, selective and high-resolution MS
detection; iii)accurate chromatographic alignment; (iv) sensi-
tive and selective generation of quantitative features; and (v)
optimal post-feature-generation data quality control. Prominent
technical developments in these aspects are discussed. Finally,
we reviewed applications of MS1-based strategy in disease
mechanism studies, biomarker discovery, and pharmaceutical
investigations.
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ABBREVIATIONS

AMRT accurate mass retention time
AUC area under curve
BAL bronchoalveolar lavage
COW correlation-optimized warping
CPM continuous profile model

CLL chronic lymphocytic leukemia
DTW dynamic time warping
DTT dithiothreitol
DIA data-independent acquisition
DDA data-dependent acquisition
DICE direct ion current extraction
FFId feature finder Identification
FC fold changes
FDR false discovery rate
FASP filter-assisted sample preparation
HGSOC high-grade serous ovarian cancer
iTRAQ isobaric tagging for relative and absolute quantifi-

cation
iBAQ intensity-based absolute quantification
iST in-StageTip
LC-MS liquid chromatography-mass spectrometry
LIMMA linear models for microarray data
MPs membrane proteins
PTW parametric time warping
PCT pressure cycling technology
PBMC peripheral blood mononuclear cells
PLOT porous layer open tubular
PTW parametric time warping
PCA principal component analysis
RT retention time
SILAC stable isotope labelling by amino acids in cell

culture
SpC Spectral counting
SWATH sequential window acquisition of all theoretical

fragment-ion spectra
SDS sodium dodecyl sulfate
SDC sodium deoxycholate
SPE solid-phase extraction
SEPOD surfactant cocktail-aided extraction/precipitation/

on-pellet digestion
SCAD surfactant and chaotropic agent assisted sequential

extraction/on pellet digestion
SC surfactant cocktail
SAM significance analysis of microarray
TPP trans-proteomic pipeline
TDA target-decoy approach
TIC total ion current
TMT tandem mass tag
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TBI traumatic brain injuries
UHF ultra-high-field

INTRODUCTION

Quantitative proteomics based on liquid chromatography-mass
spectrometry (LC-MS) represents a powerful tool for biomedi-
cal research. For pharmaceutical and clinical investigations, it is
often necessary to analyze large numbers of biological samples
(e.g., tissues, body fluids, or cellular conditions) to warrant
quantitative reliability and statistical power, and more impor-
tantly, to minimize the false-positive discovery of altered
proteins arising from the typically high inter-individual variabil-
ity in these studies. Nonetheless, large-scale proteomics quanti-
fication has been quite challenging owing to the technical
difficulties in achieving high-quality quantification of large
cohorts, including but not limited to suboptimal quantitative
accuracy, precision, and robustness when measuring proteins in
many samples, as well as high missing data and false-positive
discoveries (Domon & Aebersold, 2010; Webb-Robertson et al.,
2015). Isotope-labeling-based methods such as stable isotope
labeling by amino acids in cell culture (SILAC) (Ong et al.,
2002), isobaric tagging for relative and absolute quantification
(iTRAQ) (Ross et al., 2004), stable isotope dimethyl labeling
(Boersema et al., 2009), tandem mass tag (TMT) (Thompson
et al., 2003), rely on incorporation of isotopic tags (either
chemically or biologically) for relative quantification. Despite
recent advances that have substantially improved quantitative
depth, accuracy, and precision (Mallick & Kuster, 2010;
McAlister et al., 2014; Sonnett et al., 2018), labeling methods
fall short in achieving robust large-cohort analysis, as the
replicate capacity of labeling methods is limited by the number
of isotopic tags (usually �10 for commercially-available
reagents) (Wasinger et al., 2013). Moreover, selectivity for low-
abundant peptides quantification might be compromised by
some labeling methods because of co-isolation and co-fragmen-
tation of interfering ions (Ow et al., 2009; Erickson et al., 2017).
By comparison, label-free quantification methods are theoreti-
cally unlimited in sample numbers, and have more flexible
samples preparation options at lower costs, thus appearing to be
a logical choice for analyzing large biological cohorts (Higgs
et al., 2008; Merl et al., 2012). Nevertheless, achieving reliable,
high-quality qualification of many biological samples (e.g.,
�20) is also challenging for label-free strategies (Cox et al.,
2014; Shen et al., 2015a). On one hand, it is difficult to attain
high quantitative accuracy and precision when analyzing a large
cohort of samples by label-free methods, largely because the
absence of an internal standard to correct quantitative variations
arising from sample preparation and analytical process. Such
technical variations could lead to the inaccurate measurement
especially for low-abundance proteins, as well as high false-
positives in discovering altered-proteins (or biomarkers in
certain contexts) (Nahnsen et al., 2013). To alleviate this issue,
highly robust, reproducible, and well-controlled experimental
procedure for sample preparation, LC separation, and MS
analysis across large cohorts is critical. On the other hand,
missing data remains a prominent issue for both labeling and
label-free methods even though the recent advancements in
informatics and LC-MS instruments have greatly enhanced the
proteome coverage, sensitivity and selectivity of quantitative
proteomics. This problem becomes much more pronounced
when the number of samples increases (Old et al., 2005; Zhang

et al., 2009). The high missing data critically compromises the
quality of quantification, and may lead to incorrect biological
interpretation owing to the suboptimal characterization of
biological functions, pathways, and networks (Domon &
Aebersold, 2010). One primary reason of missing data is the use
of data-dependent acquisition (DDA) in the quantitative process
(Karpievitch et al., 2012). In DDA, a survey scan of precursors is
performed followed by sequential MS2 events based on the
observed precursors, where the most intensive precursors are
usually prioritized (Mann et al., 2001; Xie et al., 2011). Spectral
counting (SpC) and other DDA-MS2-based methods (e.g., SpC-
Normalized Spectral Abundance Factor (NSAF) (Paoletti et al.,
2006), Exponentially Modified Protein Abundance Index (em-
PAI) (Ishihama et al., 2005), MS2 Total-Ion-Current (TIC) (Tu
et al., 2014b), normalized Spectral Index (SIn) (Griffin et al.,
2010)), constitute a prevalently-employed type of approach
which measure a protein based on the total number of tandem
mass spectra matching to peptides of the protein (Paoletti et al.,
2006). The stochastic nature of DDA in precursor selection
among different runs leads to considerable under-sampling of
low-abundance, regulatory proteins (Zhou et al., 2012b; Geib
et al., 2016). Furthermore, dynamic exclusion which is devised
to improve the depth of identification, substantially decreases
the reproducibility of MS2 spectra acquisition among runs and
thereby increasing the stochasticity and missing data of MS2-
based quantification. The acquisition of MS2 spectra usually
occurs outside the elution peak apex, which may compromise
the sensitivity and quality of MS2 spectra (Michalski et al.,
2011). Because of these issues, MS2-based methods show low
consistency in quantification, especially for low abundance
ones; for example, as high as 20–50% identified proteins with
missing quantitative values in 6–20 samples even higher when
sample size increases (Bruderer et al., 2015; Zhang et al.,
2016b). To improve the reproducibility of protein measurement
across a large number of biological replicates, the MS2-based
“data-independent acquisition (DIA)” was developed, and the
most prominent example is SWATH (sequential window acqui-
sition of all theoretical fragment-ion spectra), which triggers
MS2 scans in a window-based, independent and unbiased
manner, and therefore alleviates the missing data to <10% at
protein level for relatively large cohorts (Geib et al., 2016; Hu
et al., 2016 Collins et al., 2017). Although MS2-DIA represents
an enormous advance in reproducible protein measurement,
some limitations are also noted: (i) as DIA uses multiplexed
fragmentation of many precursors, it may be difficult to interpret
these MS2 spectra containing multiple co-fragmented precur-
sors while maintaining low false-positives and (ii) the depth of
identification using spectral library matching is often limited
(Rost et al., 2014). More recently, a number of new pipelines
were developed to address these issues, such as PECAN (Ting
et al., 2017), DIA-Umpire (Tsou et al., 2015), and DirectDIA in
SpectronautTM Pulsar (Bruderer et al., 2016). These methods
still suffer from the above problems intrinsic to MS2-DIA, and
their performance in large-cohort analysis remains to be
comprehensively evaluated.

Recently, MS1-based methods showed considerable prom-
ise in high-quality quantification of large cohorts. In this review,
we will introduce the rationale and technicality of MS1-based
quantification, and discuss its potential for large-cohort analysis,
important considerations (e.g., experimental procedures, MS
resolution, data processing strategies, etc.) affecting the
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quantitative data quality, and applications in molecular mecha-
nism exploration of diseases, biomarker discovery, and drug
discovery/therapeutics.

RATIONALE OF MS1-BASED QUANTIFICATION
AND ITS HIGH PROMISE IN LARGE-COHORT
ANALYSIS

A generic scheme for MS1-based quantification is shown in
Figure 1. As with all label-free methods, samples are analyzed
sequentially by LC-MS. The MS is usually operated in scan
cycles each containing one high-resolution MS1 full scan
followed by dependent fragmentation events of precursors. The
high-resolution precursor (i.e., MS1) ion current peaks are
extracted as quantitative features (Shen et al., 2017a) while the
accompanying MS2-DDA is often utilized merely to assign
peptide ID to quantitative features but not involved in determin-
ing quantitative values.

The MS1-based method exhibits remarkable potential for
large-cohort analysis for several reasons. First, MS1 quantifica-
tion is performed in a strictly MS2-independent manner, which
opens the possibility for reproducible protein measurement
among many samples. Additionally, this approach allowed
inference of peptide ID across all sample runs, which is
tremendously useful for reliable and consistent quantification of
low-abundance species. For example, even if a peptide was
identified successfully only once by MS2 in the entire dataset, it
could be successfully quantified across all biological samples
(i.e., without missing data) as long as well-defined MS1 ion
current peaks of this peptide are acquired in all samples. An
illustration of this point is shown Figure 2, where quantification
of a low-abundance peptide by a DDA method (spectra count)
exhibited severe missing data (in 10 out of 12 samples) while

quantification by MS1-based method is missing-data-free with
ID inferred from the few runs with successful identification.
Therefore, MS1 strategies can be used to substantially alleviate
the missing data problem that plagues DDA-based proteomics
quantitation in large sample sets.

Second, MS1-based methods have the potential for highly
sensitive and selective protein quantification, which permits
both in-depth proteomics analysis and high-quality quantifica-
tion of low-abundance proteins in large-cohort analysis. This
feature greatly reduces the need for sample fractionation prior to
LC-MS analysis, as is often used in identification experiments to
enhance the depth of proteomic analysis but not practical for
analyzing a large sample set (Pernemalm et al., 2009; Zhang
et al., 2011; Choi, 2012). Therefore, the MS1-based strategy can
employ extensive one-dimensional separation (e.g., using long
columns with small particles) to substitute the need of sample
fractionation and to achieve extensive separation, enabling a
practical, high-throughput large-cohort analysis. Moreover,
comparing to MS2 product ions, MS1 signal intensity of a
peptide is significantly higher (often by >10-fold) as the
fragmentation process can markedly decrease the signal strength
(Qu & Straubinger, 2005). However, it has long been well
recognized that MS2-based methods (e.g., SRM, product ion
scan, PRM, etc. (Ronsein et al., 2015; Meyer & Schilling,
2017)) almost always achieve higher sensitivity than MS1
approaches, because of its much higher selectivity and thereby
lower chemical noises, which markedly improves signal-to-
noise ratio despite the lower signal strength. Consequently, if
MS1-based strategy could achieve high selectivity with substan-
tially lowered chemical noises, then a highly sensitive analysis
can be attained by taking advantage of the high MS1 signal
intensity. This rationale is illustrated in Figure 2. The selectivity
for MS1-based methods can be achieved by (i) sufficient

FIGURE 1. The general workflow for MS1 ion current-based quantitative strategy.
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chromatographic separation and (ii) high-resolution MS1 detec-
tion AND narrow m/z window for XIC extraction. Detailed
discussions are in the following sections. As exemplified in
Figure 3, the increase of resolutions resulted in drastically
improved selectivity and S/N when analyzing a highly complex
proteomics sample.

IMPORTANT CONSIDERATIONS FOR MS1-BASED
QUANTIFICATION IN LARGE COHORTS

To fully realize the potential of MS1-based quantification in
large-cohort analysis with high quantitative accuracy, precision,
low missing-data, and false-positives, it is essential to meet
some critical requirements in terms of experimental strategies,
data processing methods as well as stringent control of false-
positives. These requirements and related techniques are
reviewed in this section.

A. Experimental Strategies

Experimental procedures should enable in-depth proteomics
analysis (i.e., quantify as many proteins as possible), as well as
reliable, consistent quantification in large-cohorts, especially for
low-abundance proteins. To achieve this, highly robust,

reproducible, and well-controlled experimental strategies in-
cluding (i) efficient and reproducible sample preparation across
large cohorts; (ii) extensive and consistent LC separation in
many samples; and (iii) high-resolution, sensitiveMS1 measure-
ments are all essential to warrant high-quality MS1-based
quantification. Nonetheless, these prerequisites have long been
underappreciated while most efforts have been focused on the
informatics approaches to correct bias and variability, which is
difficult to achieve in the event of large errors and variations
rooting from suboptimal experimental practices (Shen et al.,
2017a).

1. Efficient and Reproducible Sample Preparation Across
Large Cohorts

Efficient and well-controlled sample preparation is the key to
successful large-cohort proteomics analysis. Specifically, the
sample preparation strategy should fulfill the following impor-
tant requirements across a large sample set: (a) exhaustive and
consistent protein extraction; (b) robust and reproducible
cleanup of detrimental non-protein matrix components which
may potentially undermine digestion and LC-MS analysis; (c)
extensive protein denaturation to ensure efficient and reproduc-
ible proteolytic cleavage; (d) reasonable throughput for large-

FIGURE 2. Comparison of MS1 and MS2-based method. Upper: an illustration showing MS1 based methods
resulted in much higher signal intensity of a peptide comparing to MS2-based methods. Therefore, MS1-based
methods can achieve high sensitivity if a high selectivity is realized, for example, by high MS resolution. Lower:
an example for quantifying a low-abundance protein in human tissue samples (group A vs. B, n¼ 6 per group).
MS1 ion current-based method was able to quantify the protein in all samples without missing data while MS2
spectral counting (SpC) method is not useful owing to the very high missing data, that is, only two MS2
identifications in all runs.
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cohort analysis. These requirements also universally apply to all
quantitative proteomics techniques.

Protein extraction profoundly affects both proteomic cover-
age and quality of quantification. Extraction buffers with
denaturing agents such as surfactants coupled with mechanical
disruptions (e.g., sonication, mechanical homogenization,
French pressing, pressure cycling technology (PCT) (Olszowy
et al., 2013)) were shown to achieve effective protein extraction
(Raynie, 2010). It is important to ensure high and consistent
protein yields for large-cohort analysis, especially for membrane
proteins (MPs), which consist a substantial fraction of the total
proteome and are usually more versatile and critical in biologi-
cal functions (Savas et al., 2011). However, extraction of MPs
remains challenging because of their heterogeneous and hydro-
phobic characteristics (Duan et al., 2009). Various detergents are
often utilized to solubilize MPs and to avoid the formation of
hydrophobic aggregates when the MPs are extracted from the
lipid bilayer. Two commonly used surfactants are sodium
dodecyl sulfate (SDS) and sodium deoxycholate (SDC). SDC
has shown the ability to improve protein solubility while
retaining trypsin digestion efficiency even at high concentrations

(Lin et al., 2008, 2013), for example, 77.4% trypsin activity can
be retained with 10% SDC (Lin et al., 2008; Masuda et al.,
2008). SDC can be removed via acidification or ethyl acetate
phase transfer before MS analysis (Lin et al., 2010; Masuda
et al., 2008). SDS is another common surfactant that performs
well in solubilizing MPs, yet it compromises enzyme activity
and therefore should be removed prior to digestion. One popular
method utilizing SDS is Filter-Assisted Sample Preparation
(FASP) (Wisniewski et al., 2009), which dissolves the proteins
in SDT buffer (contains SDS and dithiothreitol (DTT)) followed
by a molecular weight-based cutoff centrifugal filter or spin
plate to effectively remove small-molecule components (e.g.,
SDS, salts, lipids, etc.), while proteins are retained and then
digested on the filter unit (Coleman et al., 2017). Consequently,
FASP is quite versatile, for example, can be applied to process
samples extracted with high concentrations of compatible
surfactants (e.g., 4% SDS). One reported drawback is irrepro-
ducible and low peptide yields likely arising from in-filter
adsorption (Choksawangkarn et al., 2012), which may consider-
ably compromise quantitative quality in large sample cohorts.
Furthermore, the capacity of sample loading on the filter is

FIGURE 3. High-resolution MS measurement of peptide precursor substantially improves selectivity and
therefore sensitivity. Upper: the effect of MS resolution on the selectivity for MS1-based quantification, illustrated
via simulatedMS spectra. Lower: examples showing higher MS resolution drastically lowered chemical noises for
MS1-based analysis of low-abundance protein in tissue samples.
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limited. Recently, a number of modified FASP procedures have
been reported. For instance, an enhanced FASP (eFASP)
strategy (Erde et al., 2014) was found to improve proteome
coverage and sample recovery by adding 0.2% deoxycholic acid
(DCA) in digestion buffer, though a later study observed eFASP
showed no significant differences over the original procedure
other than slightly more recovery of basic peptides (Nel et al.,
2015); the multi-enzyme digestion FASP (MED-FASP) through
consecutive use of LysC and trypsin in digestion showed
significantly more identified proteins and phosphorylation sites
with improved sequence coverage than FASP (Wisniewski &
Mann, 2012; Wisniewski, 2016); a high-throughput FASP
(Potriquet et al., 2017) using 96-well plate with polyethersulfone
molecular weight cutoff membrane instead of the cellulose
membrane was found to enable efficient, high-throughput
processing of protein samples (Potriquet et al., 2017). To
overcome sample loss via filter-adsorption which is an intrinsic
issue of FASP, a “single vessel” in-StageTip (iST) approach was
introduced. The procedure performs all steps (e.g., protein
extraction, digestion, cleanup) in a vial containing a C18 disk,
which serves as a barrier for macromolecules, and enables
sample cleanup using solid-phase extraction (SPE) (Kulak et al.,
2014). Although representing a remarkable advancement, the
method falls short in the limited use of reagents, for example,
SDS and other surfactants cannot be utilized as these cannot be
removed by the C18 material, which limits its application in
proteomic studies (Sielaff et al., 2017). Another single-tube
sample preparation approach is the single-pot solid-phase-
enhanced sample preparation (SP3). In SP3, surface-functional-
ized (e.g., carboxylate-coated) paramagnetic beads are used to
trap proteins in the hydrophilic layers around the beads using
increased organic composition with properly buffered pH. The
contaminants and detergents can be removed by washing with
different organic solvents (e.g., ethanol, acetonitrile), while the
bound proteins can be eluted from the beads with an aqueous
solution. The applicability of SP3 for sensitive proteome
analysis has been demonstrated by the identifying >15,000
unique peptides from as little as 1000 HeLa cells (Hughes et al.,
2014). In a recent study, both SP3 and iST were found to have
provided higher proteome coverage in the low sample amount
(<10mg) than FASP, and the reproducibility of SP3 was higher
than iST (Sielaff et al., 2017). The performance of these device-
dependent single-vessel approaches on large-cohort samples has
yet been demonstrated.

The in-solution digestion is an alternative method of single-
vessel sample preparation performing both protein extraction
and digestion in single tube, which has been popular owing to
the minimized sample loss and variability introduced by sample
transfer/manipulation. However, strong denaturing agents such
as surfactants are often not permitted in the protocol and
therefore urea is most often employed as the only denaturant,
which results in suboptimal extraction efficiency; moreover,
matrix components (e.g., salts, phospholipids, fatty acids, DNA/
RNA, etc.) remaining in the solution may severely compromise
digestion efficiency, reverse-phase LC separation and MS
detection (Zhou et al., 2012a). Thus, extra cleanup procedures
are often necessary, though at the cost of introducing consider-
able quantitative variability and biases. To address these issues,
a number of acid-cleavable or degradable surfactants (i.e., MS-
compatible surfactants) have been developed such as PPS Silent
Surfactant (Norris et al., 2003), RapiGest SF and

ProteaseMAXTM, which help to solubilize and denature proteins
with minimized negative impact on both digestion and LC-MS
analysis, as shown in both in-gel and in-solution digestion
applications (Norris et al., 2003; Chen et al., 2007; Winter &
Steen, 2011). Though the above studies showed these surfactants
allowing improved protein extraction and in-solution digestion,
a recent report found that a traditional, less expensive surfactant,
SDC, enabled superior proteomics coverage especially for
membrane proteins compared with RapidGest SF in Saccharo-
myces cerevisiae (Moore et al., 2016).

Another type of approaches compatible with strong surfac-
tant extraction/denaturation is precipitation/on-pellet-digestion,
which was firstly described in 2009 (Duan et al., 2009). After
detergent extraction, the detergent as well as most matrix
components are removed via an organic solvent precipitation;
without re-suspension of the pellet, digestion buffer containing
enzymes is added followed by incubation with agitation, which
rapidly dissolves the pellet by continuously cleaving pelleted
proteins into solution. A number of similar procedures were
later reported for global proteomics quantification (Ouyang
et al., 2012; Gong et al., 2015; Ma et al., 2018), as well as
reproducible, robust, and rapid sample preparation target protein
quantification (An et al., 2015). The most recently developed
methods were surfactant cocktail-aided extraction/precipitation/
on-pellet digestion (SEPOD), and surfactant and chaotropic
agent assisted sequential extraction/on pellet digestion (SCAD).
SEPOD utilizes a high-concentration surfactant cocktail (SC)
buffer containing multiple non-ionic/anionic surfactants (e.g.,
SDS, SDC, IGEPAL CA-630), which are then removed by
precipitation with organic solvent (e.g., acetone). The detergent
cocktail achieves three important goals: (i) exhaustive/reproduc-
ible protein extraction, including MPs from cells and tissues; for
example, the SC buffer significantly outcompeted SDT buffer in
protein extraction from lung and brain, suggesting the use of
multiple surfactants may afford more efficient disruption of
cellular compartments and thereby enhancing protein extraction
from tissues (Shen et al., 2018a); (ii) effective removal of
detrimental non-protein matrix components (e.g., fatty acids,
phospholipids, etc.) which would otherwise compromise the
robustness of digestion and LC-MS analysis; (iii) highly
effective proteolytic digestion owing to the through, dual-action
(surfactantsþ precipitation) denaturation. Compared with FASP
and in-solution digestion, SEPOD showed substantially higher
peptide/protein (including MPs) recovery and �20–40% more
peptide identifications, as well as improved quantification of
peptides with extreme physicochemical properties in large
sample cohorts (Shen et al., 2018a). More importantly, the
procedure enabled highly efficient, reproducible and robust
preparation of large sample cohorts, as exemplified by analysis
of 44 lung tissue samples in a time-course investigation post
virus infection (Shen et al., 2018a). SCAD utilizes extraction
buffer containing SDS, which is removed afterwards by a two-
round acetone-precipitation (Ma et al., 2018). This protocol
provides high protein yields and peptide recovery with minimal
sample loss. Compared with FASP and in-solution digestion
with urea, SCAD showed superior protein extraction efficiency
and peptide yield (three-fold and 20% more peptide yields than
FASP and in-solution with urea method, respectively) (Ma et al.,
2018). Moreover, precipitation/on-pellet digestion methods are
not subjected to limited sample loading amount, a prominent
issue for FASP.
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One common issue of most digestion approaches is the long
digestion time (e.g., overnight) needed to achieve complete and
reproducible cleavage, not only limiting the throughput of large-
scale quantitative proteomics studies, but more importantly,
affecting the reproducibility and sensitivity arising from unsta-
ble proteolytic peptides under digestion conditions that appears
to be quite common albeit overlooked (Duan et al., 2012; Nouri-
Nigjeh et al., 2014; Shen et al., 2017a). Despite various harsh
denaturation approaches such as high pressure or temperature,
ultrasound, microwave, and infrared radiation have been used to
accelerate digestion speed (Wang et al., 2008; Ye & Li, 2012),
the suboptimal digestion efficiency and reproducibility owing to
the compromised enzymatic activity under these harsh con-
ditions, have been reported (Havlis et al., 2003; Canas et al.,
2007; An et al., 2015). It was observed that extensive denatur-
ation by a high concentration of detergents followed by organic
solvent precipitation in SEPOD protocol allowed highly effi-
cient and consistent on-pellet digestion of tissue proteome
across a large number of samples, within 6 hr at mild conditions
that maximize trypsin efficiency (i.e., 37˚C, without pressuriza-
tion or radiation) (Shen et al., 2018a), which permits reproduc-
ible same-day sample preparation for large cohorts.

2. Extensive and Consistent LC Separation Across a
Large Numbers of Samples

In order to achieve in-depth, high quality MS1 analysis of large
numbers of samples, three prerequisites in chromatographic
separation are indispensable: first, extensive chromatographic
separation to enable in-depth identification and quantification,
as well as selective procurement of MS1 peptide signals in
complex matrices; second, high separation reproducibility
among many sample runs to permit reliable peak alignment,
accurate ID inference among runs as well as precise quantifica-
tion of large-cohorts; finally, high analytical sensitivity to
warrant reliable quantification of low-abundance proteins.

Though two-dimensional (2D) chromatographic fraction-
ation has been used to increase sensitivity and the depth of
analysis by some quantitative proteomics pipelines (Dowell
et al., 2008), this time-consuming procedure is apparently not
practical for analysis of a large cohort. To realize extensive
separation of the highly complex proteomics samples without
fractionation, single-dimension LC separation (usually re-
versed-phase LC) with increased column lengths and smaller
particle sizes is employed. The early developed capillary
columns were usually short (�20 cm) with low peak capacity
(e.g., �100 (Shen et al., 2005a,b)). Shen et al. firstly demon-
strated peak capacity of �1000 with long capillary column
(80 cm� 150mm i.d, 3-mm porous particles) over a 3-hr
gradient (Shen et al., 2002). Since then, various lengths of LC
columns and particle sizes (�3mm) were examined (Hsieh
et al., 2013; Shen et al., 2005b, 2017b; Lan et al., 2018). Using
an Orbitrap XL, it was demonstrated the 100-cm column with 2-
mm particles and a 7-hr gradient resulted in 3.2-fold greater
numbers of quantifiable proteins than a 25 cm columns packed
with same materials with a 1.5-hr gradient (Nouri-Nigjeh et al.,
2014). While the quickly expanding availability of the fast-
scanning ultra-high-field Orbitrap seems to have decreased the
need for long gradient, using long column remains beneficial in
terms of sensitivity and selectivity of analysis (Shen et al.,
2017a). However, it remained difficult to achieve BOTH

extensive separation with a long column and excellent run-to-
run reproducibility across a large number of biological samples,
largely because of the difficulties in stabilizing the long-column-
LC-MS system for an extended period of time and the buildup of
matrix components in the LC-MS system, which significantly
deteriorate chromatographic performance over time. Another
issue is the very high pressure needed to drive such columns.
Though recent developments showed feasibility of attaining
45 k psi by isolated pneumatic amplifier pump with a storage
loop (Grinias et al., 2016), the access to such instruments is
limited to proteomics communities. One commonly-utilized
method is elevated separation temperature (e.g., up to 60˚C),
which not only substantially reduces back pressure but also
improves peptide separation, especially for hydrophilic ones
(Yan et al., 2000). Furthermore, it has been demonstrated that
highly homogeneous heating of long nano-column in heat-
conductive silicon markedly improved run-to-run repeatability
compared to a standard column oven (Nouri-Nigjeh et al., 2014;
Shen et al., 2017a). One practical and easy-to-implement
approach to achieve highly reproducible and robust separation
across a large sample cohort is to use a large-ID trap, which
permits high separation reproducibility for two reasons (Nouri-
Nigjeh et al., 2014; Shen et al., 2017a): first, the trap enables
reproducible gradient delivery to the downstream column by
providing homogeneous mobile phase mixing and dampened
pump noise, as confirm by real-time conductivity profiles;
second, a optimized, selective peptide trapping/delivery strategy
on the trap prevents detrimental hydrophobic and hydrophilic
matrix components from entering the nano-LC�MS system,
which permits highly reproducible and robust separation of
many biological samples without appreciable loss of chro-
matographic resolution. The use of large-ID trap also eliminates
the need of offline sample cleaning, one major source of
compromised reproducibility of label-free quantification in
large-cohorts (Nouri-Nigjeh et al., 2014; Tu et al., 2014a; Shen
et al., 2017a). Moreover, the large-ID trap enables rapid sample
loading and 5–10 folds higher loading of peptide digests without
compromising the chromatographic resolutions and quantitative
linearity, which substantially improved the sensitivity for MS1-
based quantification (Shen et al., 2017a).

Another approach to enhance analytical sensitivity is to use
smaller-ID columns, based on the notion that ESI-MS is a
concentration-dependent detector (Zhang et al., 2018). For
example, Shen et al. (2002) showed drastically improved protein
identification in 100 ng yeast digest when column I.D. decreased
from 75 to 15mm. A more recent work demonstrated a 30-mm
I.D. column increased signal intensity by >3-fold and 32%
more peptides identifications than using a 75mm I.D. column
(Zhu et al., 2018b). Although the increased signal strength by
smaller-I.D. columns is highly valuable in the event of very
small sample size, these columns fall short because of difficul-
ties in high-quality column packing, compromised separation
efficiency and robustness, as well as low loading capacity (Horie
et al., 2014), which markedly limits their application in large-
scale quantitative analysis. The advent of monolithic columns
with small-sized skeletons, high permeability (i.e., low back-
pressure) and relatively large pores are considered promising
alternatives to packed columns. These techniques allowed
practical utilization of columns with very small I.D. (e.g.,
10mm) and extended lengths (up to 8m), which markedly
improves sensitivity (Yi et al., 2017). A number of works
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relating to this technique are reported (Luo et al., 2007; Iwasaki
et al., 2010). Furthermore, more recently developed polymer
monolithic porous layer open tubular (PLOT) columns showed
improved reproducibility (Rogeberg et al., 2013). The perfor-
mance of these techniques in the analysis of large-cohorts of
biological samples have not been evaluated yet.

3. High-Resolution, Sensitive, and Consistent MS1
Measurement

Selecting an MS instrument with the following characteristics is
critical for MS1-based quantification: (a) high-resolution MS
measurement to achieve selective procurement of MS1 signal;
(b) high sensitivity to analyze low-abundance proteins; and (c)
stable, robust signal intensity with a wide quantitative linear
range. Resolution or resolving power, the ability of a MS
analyzer to separate adjacent mass peaks, is one of the most
important considerations as it profoundly affects the quality of
MS1 quantification. A MS analyzer with higher resolution
enables extraction of peptide ion currents with narrower m/z
windows, which substantially reduces the chemical noises and
matrix interference and thereby improving sensitivity, accuracy
and specificity of MS1-based quantification (Tu et al., 2014b;
Shen et al., 2017a). Moreover, higher MS resolution also enables
more precise peptide matching among samples and improves
the confidence of peptide identification (May et al., 2008; Tu
et al., 2017a,b). A growing record of studies utilize high-
resolution MS analyzers to achieve sensitive and specific protein
quantification (Henry et al., 2012; Krey et al., 2014; Geib et al.,
2016). Historically, when low-resolution MS (e.g., an ion trap)
was used, the performance of MS1-based quantification was
found far inferior to MS2-based methods (e.g., spectral count-
ing) owing to the poor selectivity (Tu et al., 2014b). Nonetheless,
the advent of high-resolution MS techniques shifted the balance
drastically and greatly encouraged the development/optimiza-
tion of MS1-based strategies (Zhang et al., 2006; Gautier et al.,
2012). For example, more recently, the Orbitrap MS analyzer
rapidly gained popularity (Kelstrup et al., 2014; Rose et al.,
2012), as reflected by �3000 peer-reviewed publications to
date. Figure 3 demonstrates that the higher resolutions afforded
by Orbitrap enables higher selectivity, lower chemical noises
and thereby higher sensitivity for MS1 ion current-based
quantification of low-abundance species in biological samples.
At the resolution of 60 k and 120 k (FWHM@m/z¼ 200, same
below) which is typical for the first-generation Orbitrap (e.g.,
Orbitrap XL, Q-Exactive, etc.), substantially higher signal-to-
noise ratios were achieved than 30 k resolution (i.e., the
resolution by a typical Q-TOF). Higher resolutions by the ultra-
high-field (UHF) Orbitrap (240 k and 500 k, respectively by a Q-
Exactive HF and a Fusion LUMOS) enabled extraction of
peptide ion currents at extremely-narrow m/z windows, which
further enhanced selectivity and sensitivity. Higher MS resolu-
tion was also found to improve quantitative accuracy and
precision for MS1-based analysis in large cohorts, as bench-
marked by a recent study (Shen et al., 2017a). Moreover, UHF-
Orbitrap enables faster scan speed with higher sensitivity than
the first-generation Orbitrap, which reduces the need of long-
gradient LC separation: for example, it was reported that a 2.5-
hr gradient on a 100-cm column achieved optimal proteomic
depth and throughput with UHF-Orbitrap, while a 7-hr gradient
was deemed optimal for the same column on a first-generation

Orbitrap (Nouri-Nigjeh et al., 2014; Shen et al., 2017a). Finally,
besides high MS resolution, Orbitrap also provides excellent
signal stability, which renders it an instrument-of-choice for
MS1-based quantification.

In order to obtain consistent, stable MS signal across many
samples, it is important to attain efficient and robust ionization
and ion transmission. Recent techniques such as Ion Funnel
(Kelly et al., 2010) and new front-end designs greatly contribute
to this regard by affording resistant to contamination and highly
efficient ion transmissions. Furthermore, it is essential to remove
detrimental matrix components by both sample preparation and
chromatography in order for stable ionization. The abovemen-
tioned IonStar experimental pipeline (Shen et al., 2017a; Shen
et al., 2018a) significantly cleaned biological samples, which
showed extraordinary reproducibility in MS signal and excellent
robustness: no appreciable signal decrease across 100 samples,
which laid a solid foundation for reliable large-cohort analysis
(Shen et al., 2017a).

B. Optimal Data Processing Methods

For MS1-based quantification methods, a generic workflow for
data processing encompasses several essential steps: (1) peptide
and protein identification; (2) sensitive and selective generation
of quantitative features; (3) data integration and quality control.
Among these, approaches for quantitative feature generation
and subsequent data processing steps vary substantially among
different techniques in terms of the rationales and algorithms
used. To achieve high-quality quantification in large-cohort
analysis, rigorous evaluation, and optimization of these proce-
dures are essential.

1. Peptide and Protein Identification

This section provides a brief overview of peptide and protein
identification as a common procedure in most quantitative
proteomics pipelines. Generally speaking, peptide, and protein
identification is performed by three steps: (i) conversion of MS2
spectra to putative peptide sequences; (ii) protein inference (i.e.,
mapping peptide sequences to the corresponding protein en-
tries); (iii) filtering and validation of peptide/protein identifica-
tions. As the quantification process of MS1-based methods is
independent of the identification process, theoretically an MS1
quantitative pipeline can be conjugated with any identification
strategy chosen by the users.

Peptide and protein identification is usually accomplished
by either sequence database searching or spectral library
matching. Because of its ease to use, sequence database
searching is by far the most prevalent approach for MS1
quantitative proteomics, which compares and matches the
observed versus theoretical MS2 spectra. To date, a number of
database search engines have been developed with varied
descriptive models, searching speed, matching accuracy, and
sensitivity/specificity, for example, SEQUEST (Eng et al.,
1994), Mascot (Perkins et al., 1999), MS Amanda (Dorfer et al.,
2014), Andromeda (Cox et al., 2011), OMSSA (Geer et al.,
2004), X!Tandem (Craig & Beavis, 2004), MS-GFþ (Kim &
Pevzner, 2014), Phenyx (Allet et al., 2004), MyriMatch (Tabb
et al., 2007), Morpheus (Wenger & Coon, 2013), andMSFragger
(Kong et al., 2017). By comparison, spectral library matching,
though less practiced and requiring significant efforts to build
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spectral libraries, may confer several advantages over sequence
database searching by including non-canonical product ions and
the measured distribution of product ion intensities under the
collision energy set (Griss, 2016) as well as shrinking the
searching space by eliminating a large population of sequences
either nonexistent or undetectable. Currently, this strategy is
mainly adopted by MS2-DIA strategies but may represent a
promising alternative to enhance the depth of analysis for MS1-
based quantification.

The assignment of identified peptides (i.e., peptide-spec-
trum matches; PSMs) to protein entries (i.e., protein inference)
is another crucial step, though to some extents has been plagued
by several problems intrinsic to the peptide-centric nature of
bottom-up proteomics. First, due to sequence homology among
different protein isoforms, an identified peptide may be assigned
to multiple protein entries (Zhang et al., 2010). These so-called
“shared peptides” often confounds the assembly process. A
simple solution is to remove all shared peptides at the cost of
losing these valid peptide IDs. The second problem is the so-
called “one-hit wonder,” referring to compromised confidence
in identification of proteins with only one valid peptide (Huang
et al., 2012). Therefore, >2 peptides/protein for protein
identification is widely accepted, although objection to this
practice has also been documented (Gupta & Pevzner, 2009). A
variety of computational methods have been developed to
assemble proteins from peptides and cluster proteins into protein
groups, and these methods can be either dependent or indepen-
dent of search engines. Pro and cons of these methods are
reviewed extensively by Huang et al. (2012).

As the identification process could be susceptible to random
errors where an MS2 spectrum is assigned to a spurious peptide
sequence (i.e., false discovery) (Deutsch et al., 2010), it is
necessary to confirm the validity of peptide identification and
control false discoveries. PSM validity are often evaluated by
two classes of statistical and computational strategies, recalibra-
tion of search engine scores and global assessment of false
discovery rate (FDR) (Nesvizhskii, 2010). The former inter-
rogates single-spectrum confidence by recalculating confidence
scores for individual PSMs and setting cutoff thresholds to
distinguish genuine versus spurious PSMs, for example, meth-
ods calculating P-value based on null distribution of search
engine scores, or E-value calculation of PSM (Fenyo & Beavis,
2003). In practice, a number of proteomics software suites also
provide their own functional module for PSM score recalibra-
tion, for example, Percolator in Proteome Discoverer (Kall
et al., 2008), PeptideProphet in Trans-Proteomic Pipeline (TPP)
(Deutsch et al., 2015), MaxQuant (Cox et al., 2014), and
OpenMS (Lange et al., 2007). Though recalibration of single-
spectrum confidence scores is a straightforward (Choi &
Nesvizhskii, 2008), the large number of PSMs in a dataset also
brings about the multiple testing problem and the lack of the
overall statistical characteristics. Therefore, global FDR assess-
ment methods have been devised.

The most prevalently practiced global FDR assessment
method is target-decoy approach (TDA) (Elias & Gygi, 2007,
2010), which appends a decoy database generated by reversal,
shuffling, or randomization of all sequences in the original
sequence database (Wang et al., 2009)), and estimates global
FDR based on the assumption that the search engine scores from
incorrect and decoy matches follow the same distribution. FDR
can then be controlled by adopting an optimized score cutoff,

above which the PSMs are accepted. TDA is quite straightfor-
ward in both concept and application, and thereby is universally
applied in proteomics. Nonetheless, users need to be cautious as
the performance of TDA can vary tremendously depending on a
number of factors, including the way the decoy sequence
database is created (Blanco et al., 2009), the scheme of
searching (Keich et al., 2015), and the formula used for FDR
calculation (Elias & Gygi, 2007; Jeong et al., 2012). Moreover,
TDA also bear certain limitations and pitfalls, such as incompat-
ibility with multi-stage searching strategies (Zhang et al., 2012),
overrepresentation of decoy peptide sequences due to single
nucleotide polymorphisms (Bessant, 2016), suboptimal perfor-
mance with scoring systems using protein inference, and varied
reliability when selecting a subset of whole PSM population
(Chalkley, 2013).

Finally, the estimation of protein-level FDR is another
important topic in sequence identification. Conventionally,
protein-level FDR is directly calculated based on the fixed PSM-
level FDR obtained from methods such as TDA; while such a
scheme works pretty well in smaller sample sets, it may result in
misleading outcomes in larger sample sets where overestimation
of protein-level FDR could occur frequently due to the faster
increase of spurious PSM/proteins than that of the target ones
(Savitski et al., 2015). A number of approaches, such as MAYU
(Reiter et al., 2009) and a “picked” TDA method (Savitski et al.,
2015) have been proposed to mitigate this problem (Hather
et al., 2010), however in general, accurate and confident
estimation of protein-level FDR still remains elusive and
challenging.

2. Sensitive and Selective Generation of Quantitative
Features

For data processing pipeline of MS1-based strategy, two
fundamental components are (i) chromatographic alignment,
which corrects retention time (RT) deviation among different
sample runs and clusters chromatographic peaks from the same
peptide and (ii) feature detection, which extracts the intensities
or peak areas of clustered peaks from the same peptide.
Currently, there are a variety of ready-to-use software packages
to execute these functions, and in this section, we will compare
the rationales and algorithms of some prevalently used methods.

Chromatographic Alignment.MS1-based quantification requires
retention time (RT) match of the same peptide among all runs.
However, perfectly reproducible LC separation is not achievable
especially for large-cohort analysis, due to a series of factors
such as random variations of separation conditions, fluctuation
of environmental temperature, column aging, and systematic RT
shifts over time (Smith et al., 2015), which can be controlled but
never completely eliminated. As a result, an effective chro-
matographic alignment procedure is critical to accurately
associate corresponding peaks among runs and thereby set solid
foundation for reliable feature generation. Warping is the most
widely used method so far, which reversely shift/stretch/squeeze
peaks to minimize variation based on a reference chromatogram
selected. A number of warping-based alignment algorithms
have been developed either as stand-alone tools or built-in
modules in software platforms, which can be categorized into
profile-based or feature-based workflows (Sandin et al., 2014).
Prominent examples of profile-based methods, where alignment
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is conducted prior to feature detection or peptide identification,
include dynamic time warping (DTW) (Charfi & Zrida, 2011),
correlation-optimized warping (COW) (Frusawa et al., 2003),
ChromAlign (Sadygov et al., 2006), parametric time warping
(PTW) (Eilers, 2004) and parallel factor analysis (PARAFAC)
(Smith et al., 2015). DTW models the variation of RT between
runs by equal weighing of all ion peaks from the total ion current
(TIC), with later modification adding the m/z dimension to
further facilitate RT alignment. COWemphasizes the alignment
of correlating ion peaks, and warps user-defined RT segments by
piecewise linear alignment to the reference chromatogram
(Frusawa et al., 2003). The selection of an optimal reference and
segment width therefore plays an important role on the perfor-
mance of COW as well as its derivatives. ChromAlign is a two-
step derivative of COW, which conducts a quick Fourier
transform-based pairwise correlation based on RT and intensity,
and then adopts a three-dimensional algorithm using m/z, RT
and intensity for more precise alignment. The crude alignment
as the first step significantly shortens the overall processing
time, and offers much improved alignment performance com-
pared to two-dimensional algorithms (Sadygov et al., 2006).
Recently, the use of an improved ChromAlign method in the
IonStar quantitative pipeline provided superior performance in
decreasing RT deviations (�97%) compared with the feature-
based alignment algorithm used in MaxQuant (�50%) as
benchmarked with a N¼ 20 sample set, setting a solid founda-
tion for high-quality MS1 ion-current based quantification
(Shen et al., 2018b). PTW employs a polynomial warping
function to minimize differences in abundance among sample
runs (Eilers, 2004), yet its performance could be suboptimal for
ion peaks with low intensities, as PTW largely relies on the
intensity dimension (Yao et al., 2007). PARAFAC is an
extension of principal component analysis (PCA) based on the
assumption of trilinear data structure in LC-MS chromatograms,
similar to COW (Bylund et al., 2002). Other examples of profile-
based methods encompass continuous profile model (CPM)
(Listgarten et al., 2007), MZmine (Katajamaa & Oresic, 2005),
MapAligner in OpenMS (Lange et al., 2007), SuperHirn
(Mueller et al., 2007), XCMS (Callister et al., 2006), SpecArray
(Li et al., 2005), and XAlign (Li et al., 2005).

Feature-based algorithms conduct alignment after the
feature detection process (discussed in the following section),
which only pick true peptide signals and then condense the raw
data into m/z-RT coordinates of these features. Alignment is
only performed on detected features, enabling fast data process-
ing speed data albeit at the cost of possible compromise to
quantitative accuracy and sensitivity. Canonical examples of
feature-based algorithms include MaxQuant (MaxLFQ) (Cox
et al., 2014), OpenMS (Lange et al., 2007), MZmine (Katajamaa
& Oresic, 2005), XCMS (Smith et al., 2006), SuperHirn
(Mueller et al., 2007), SpecArray (Li et al., 2005), and XAlign
(Li et al., 2005). As one of the most popular software suites for
MS1-based quantitative proteomics, MaxQuant exerts a “match-
between-runs” function to infer the peptide ID of quantitative
features runs with valid identification to those without, which
demands aligned peak RTs among different sample runs (Cox
et al., 2014). Upon the completion of feature detection, a
hierarchical clustering is performed to determine the similarities
among all chromatographic profiles of sample runs; then the
runs with the highest similarities are aligned first, followed by
those with lower similarities. A two-dimensional Gaussian

kernel smoothing algorithm is employed for pair-wise RT
calibration. OpenMS offers a “MapAligner” module for identifi-
cation-based RTadjustment, which calibrates the RTof peptides
in a run with either RT from a user-defined reference or the
median RT across all runs based on a double Gaussian
distribution fitting model (Lange et al., 2007). MZMine assigns
an ion current feature in each sample to the closest one on the
master feature list within a tolerance window (Katajamaa &
Oresic, 2005). SuperHirn employs a modified accurate mass
retention time (AMRT) method to cluster common features
between two runs and generate a model reflecting RT fluctua-
tions. A robust smoothing method LOWESS is then applied to
obtain a nonlinear fitting model subsequently used for the RT
prediction of features with no valid identification (Mueller et al.,
2007). XAlign utilizes a piecewise alignment algorithm for
defined m/z-RT window segments after feature detection, and
pinpoints features with the highest intensity in each window as a
landmark, which is then employed for alignment via linear
warping function (Li et al., 2005). One potential pitfall for
XAlign, though, is that ion peaks from the same peptide may
vary significantly across different sample/groups, which may
lead to inaccurate landmark correspondence (Li et al., 2005).
Besides warping algorithms, several non-warping algorithms for
RT alignment have also been developed, such as MassUntangler
(Ballardini et al., 2011), MSInspect (Bellew et al., 2006), and
Peakmatch (Li et al., 2005). To sum up, a wide range of LC-MS
alignment approaches have been developed; since the quality of
chromatographic alignment is of extraordinary importance to
sensitivity and accuracy of MS1-based quantification in large
sample cohorts, an appropriate approach should be identified
based on extensive evaluation.

Quantitative Feature Detection. For MS1 ion current-based
quantitative proteomics, feature detection refers to the process
of discovering and extracting the set of MS1 ion chro-
matographic currents of the same peptide throughout all sample
runs. As the basic unit for MS1-based quantification, a quantita-
tive feature often encompasses a set of data including m/z of the
peptide, apex RT, charge state, and peptide peak intensity in all
sample runs. Under most circumstances, the area under curve
(AUC) of the peptide ion peaks is calculated as peptide signal
intensity, though apex intensity may sometimes be used for LC-
MS run with high noise levels (Sandin et al., 2014). The process
also assigns peptide sequences to quantitative data. For MS1-
based quantification, it is of key importance to achieve sensitive,
accurate, and robust feature detection in order to warrant high-
quality quantification, but remains challenging for large-cohort
analysis. The consistency of peak selection often deteriorates in
large sample cohorts, which is a major factor contributing to
missing data. This problem is further confounded by the
difficulty in robust detection of features for low-abundance
proteins with high sensitivity while eliminating interfering
signals and noises.

Generally speaking, there are two major types of feature
detection algorithms, and the Peak Property-Based (PPB)
methods (Sandin et al., 2014) is the one more frequently used.
PPB methods differentiate peptide signals from noises by
wavelet-based techniques and then filters the signals based on a
number of peak properties, for example, peak shape, peak
intensity, isotopic envelope, and peak length (Zhang et al.,
2009). For example, approaches such as VIPER (Monroe et al.,
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2007), SuperHirn (Mueller et al., 2007), OpenMS (Sturm et al.,
2008), and PepList (in SpecArray) (Li et al., 2005) detects
features primarily based on isotopic envelope matching in the
m/z dimension. Other packages such as MaxQuant (Tyanova
et al., 2016), MEND (Andreev et al., 2003), Vectorized peak
detection (Hastings et al., 2002) and MZMine (Katajamaa et al.,
2006) rely more on chromatographic peak shape. Some alterna-
tive peak detection algorithms (e.g., MapQuand (Leptos et al.,
2006) and msInspect (Bellew et al., 2006)) are based on the two-
dimensional nature of LC-MS, which process the data in the LC
dimension or on the LC-MS plane before performing isotopic
envelope matching. Theoretically, PPB methods should enable
stringent quality control for feature generation. In practice,
quantitative features for peptides of relatively high abundance
can be confidently generated by these methods; however, it is
very difficult to accurately modulate the peak properties of low-
abundance peptides against a complex background of co-eluted
matrix interferences, which is typical for biological samples.
Such a scenario could markedly compromise sensitivity and
reproducibility of feature generation. Therefore, PPB methods
are prone to missing ion current peaks of low abundance
peptides which often do not conform to property. The elevated
missing data for low-abundance species and thereby compro-
mised quantitative reproducibility are further manifested in
large-cohort analysis.

The other type of feature detection algorithms is Direct Ion
Current Extraction (DICE) (Sandin et al., 2014). Comparing
with PPB, DICE methods generate quantitative features by
directly extracting the peptide ion currents within a pre-defined
m/z-RT window after chromatographic alignment. Prominent
advantages of DICE includes straightforward extraction algo-
rithms and more importantly, highly sensitive, and comprehen-
sive generation of quantitative features because no match of
peak properties is required. Nonetheless, inclusion of low-
quality quantitative data by DICE is inevitable, which could
compromise quantitative quality. This problem can be effec-
tively minimized by two measures. First, MS1 measurement at
very high resolution allows reliable ion current extraction within
a very narrow m/z window, which permits high-quality procure-
ment of AUC data for low-abundance peptides. Second, a
stringent, effective post-feature-generation quality control is
essential to remove low-quality quantitative data, as described
below. Currently, DICE has been employed in MS1-based
quantitative packages such as Skyline (Schilling et al., 2012),
DeMix-Q (Zhang et al., 2016a; FeatureFinderIdentification
(FFId) plugin in OpenMS (Weisser & Choudhary, 2017), and
IonStar (Shen et al., 2018b). For example, IonStar uses a
combination of ChromAlign and a unique DICE method
optimized for very high-resolution MS (e.g., FWHM¼ 120 k or
higher) to achieve sensitive and reproducible generation of
quantitative feature sets termed as “frames.” Combined with a
series of stringent post-feature generation quality control
measures, IonStar showed more efficient and consistent feature
generation compared with a number of PPB-based quantitative
packages such as MaxQuant and OpenMS, as well as superior
quantitative performance in large sample cohorts (e.g., lower
missing data level, improved quantitative reproducibility, and
accuracy/precision, better sensitivity/specificity in detecting
protein changes) (Shen et al., 2018b). Some representative data
are shown in Figure 4.

C. Optimal Quantitative Data Integration and Quality
Control

1. Normalization

Due to the inevitable experimental variability among a large-
cohort analysis, an optimal normalization method to alleviate
biases and variations and improve quantitative accuracy/preci-
sion, is indispensable. The performance of several normalization
approaches for MS1-based quantification has been investigated
in the past decade. For example, Tu et al. evaluated the
performance of six normalization methods (i.e., LOESS,
quantile, upper-quantile, maximum intensity, median intensity,
and total intensity) for peptide-level normalization in one spike-
in BSA dataset and two rat brain digest datasets, and found that
the LOESS approach obtained the best results, followed by
quantile normalization by a small margin (Tu et al., 2014b).
Valikangas et al. (2018) compared eleven popular normalization
strategies using three spike-in datasets and one mouse experi-
mental dataset, and also examined the outcomes respectively by
global and segmental normalization. It was found that variance
stabilization normalization (Vsn) was the most effective mea-
sure to mitigate technical variability in all datasets involved.
Kultima et al. attempted ten types of normalization methods on
three sets of neuropeptidomics data and found that RegrRun
method achieved the best results by combining linear regression
and analysis order normalization (Kultima et al., 2009). This
agrees with finding by Callister et al., who also identified linear
regression as the best among four prevalent methods (i.e., central
tendency, linear regression, locally weighted regression, and
quantile techniques). The poor consensus from these aforemen-
tioned studies likely indicates that the performance of normali-
zation approaches is largely dependent on the experimental
setup and data analysis pipeline, and thus the selection of an
appropriate approach should be based on an extensive evalua-
tion. Besides normalization based on the quantitative data in
each run, an alternative is to normalize based on proteins of
constant levels, which can be either endogenous, “housekeep-
ing” proteins, or spiked-in proteins with known concentrations.
For example, Wisniewski and Mann (2016) reported the
ubiquitous and stable expression of deglycase DJ-1 in a diversity
of cell types and tissues, and therefore may serve as standard for
proteomics normalization.

2. Missing Data Handling

Despite the high potential for reproducible protein measurement
in large sample cohorts, missing data remains a major concern
for the majority of MS1-based methods, where a substantially
large proportion (10–20%) of proteins bear missing data and this
scenario continues to exacerbate with expanded sample sizes
(Bruderer et al., 2015; Chen et al., 2013). Imputation of missing
data are frequently practiced in quantitative proteomics, which
can be generally classified into three types of methods: (i) single-
value replacement, which assigns constant or randomly generated
values to replace missing data, for example, half of the global
minimum (LOD1) (Polpitiya et al., 2008; Clough et al., 2012),
half of the peptide minimum (LOD2) (Clough et al., 2012;
Polpitiya et al., 2008), and random tail imputation (RTI) (Deeb
et al., 2012) and (ii) local similarity-based methods, which refers
to quantitative patterns of other peptides with similar intensity
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levels in the dataset to estimate missing data, example is, K
nearest neighbors (KNN) (Webb-Robertson et al., 2015), local
least-squares (LLS) (Kim et al., 2005), least-squares adaptive
(LSA) (Bo et al., 2004), regularized expectation maximization
(REM) (Schneider, 2001), and model-based imputation (MBI)
(Webb-Robertson et al., 2015); and (iii) global structure-based
methods, which utilizes PCA-based dimension reduction to break
down the data matrix and reconstruct missing data by iteration,
for example, probabilistic principal component analysis (PPCA)
(Tipping & Bishop, 1999), and Bayesian principal component
analysis (BPCA) (Nounou et al., 2002). Though imputation
facilitates downstream informatics analysis (Webb-Robertson
et al., 2015), researchers should use extreme cautions when
practicing imputation because there is not one imputation method
capable of addressing the numerous sources of missing data in
quantitative proteomics and that imputation of biological repli-
cates may result in substantial distortion of the conclusion (Lazar
et al., 2016).

The best strategy to tackle the miss data problem, of course,
is to improve reproducibility of measurement and thus minimiz-
ing miss data on experimental level. To this end, a number of
low-missing data quantitative approaches have been devised
(e.g., IonStar (Shen et al., 2018b), DeMix-Q (Zhang et al.,
2016a), and FFId (Weisser & Choudhary, 2017)). For example,
in IonStar, extremely low levels of missing data (e.g., typically
<0.5% proteins with missing data) can be achieved in large-
cohort analysis, which eliminates the need of imputation
(Figure 4) (Shen et al., 2018b; Wang et al., 2018).

3. Quantitative Data Quality Control and Peptide-to-
Protein Summarization

A proper strategy to summarize peptide quantitative data to
protein level is another crucial prerequisite for quantitative
proteomics. Peptide-to-protein summarization can be accom-
plished by simple approaches such as arithmetic mean or sum of

FIGURE 4. Comparison of representative MS1-based strategies on (a) levels of missing data, as showed by the
abundance heat maps of proteins with the lowest 10% abundances in the benchmark sample set (n¼ 20 in total).
White areas indicate missing data. (b) Comparison of valid quantitative feature numbers generated by IonStar vs.
a representative PPB method in the same sample set; (c) Reproducibility of the methods as examined by Pearson
correlation of two replicate runs from the same sample. The R2 values were separately calculated for proteins in
the upper 75% and lower 25% abundance percentiles. (Reprinted with permission from (Shen et al., 2018b),
copyright 2018, Proc Natl Acad Sci USA).
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intensities. The main concern for summing intensity is the
underrepresentation of peptides with lower digestion or ioniza-
tion efficiencies, where relative quantification is driven by the
most intensive peptides. To cope with this concern, more
sophisticated ones such as linear regression models and
identification of temporal patterns are developed (Suomi et al.,
2015). Using both simulated and experimental datasets, Carrillo
et al. (2010) evaluated several commonly used protein summari-
zation methods in terms of accuracy in estimating protein
abundance. The authors found that sum of intensities and total
least squares returned the best results, followed by average of
ratios. The performance of PCA turned out to be mediocre, and
surprisingly linear regression consistently gave the poorest
outcomes (Carrillo et al., 2010). Tu et al. (2014b) also evaluated
several prevalently used protein summarization methods, and
concluded that sum of intensities plus Grubbs’ test achieved the
superior outcomes over the variance-weighted method, average
ratio, TOP3, and linear regression.

As mentioned above, post-feature-generation quality con-
trol is essential to attain high-quality quantification, especially
for DICE-type methods. This step excludes peptides with
aberrant quantitative behaviors to ensure accuracy, precision,
and robustness of quantification, and is often performed along
with quantitative data summarization process from peptide- to
protein-level. Rejection of “outlier” peptides is a straightforward
albeit effective method in this regard. When one protein is
quantified by multiple, unique peptides, in an ideal situation,
each of these peptides would give the same quantitative results
(i.e., inter-group ratio, variance, etc.) because they derive from
the same protein. Nonetheless in reality, peptides from the same
protein frequently show incoherent quantitative data, owing to a
number of factors such as inclusion of low-quality data,
biotransformation, and incorrect peptide/protein identification.
Modulation of inter-group ratio and variance among multiple
peptides from the same protein can be employed to identify and
eliminate “outliers” carrying false or low-quality quantitative
information and thus achieving reliable quantification.

Traditional outlier detection methods, such as Grubbs’ test,
have been frequently applied in quantitative proteomics and
incorporated in several software packages (Polpitiya et al.,
2008; Park & Yates, 2010). Yet Grubbs’ test only works well for
the simplest two-group case-control comparison and can be
overwhelmed by high-dimension proteomics data obtained from
large-cohort studies (Shen et al., 2018b). To address this issue, a
handful of more advanced outlier detection methods have been
adapted for quantitative proteomics. For example, Cho et al.
reported an R-based package, OutlierD, to pinpoint outlier
peptides by linear, non-linear, and non-parametric quantile
regression (Cho et al., 2008). Forshed (2013) described Protein
Quantification by Peptide Quality control (PQPQ), which
performs clustering analysis for peptides inferred to the same
protein. Peptides contained in the largest cluster will be retained
for calculation of protein intensities, while others will be
deemed as outliers and removed. Webb-Robertson et al. (2014)
devised a Bayesian model (BP-Quant) to delineate the statistical
signature of peptides inferred to a protein by hypothesis testing,
and then exclude peptides outside of the dominant patterns from
quantification. Zhang et al. proposed a factor analysis-based
approach termed as Diffacto, which utilizes the covariation of
peptide intensities in individual samples for outlier peptide
detection and weighted peptide-to-protein summarization. It

was demonstrated that Diffacto provided sensitive and specific
recognition of peptides with uninformative or contradictory
intensity profiles, as well as reliable summarization of protein
intensities (Zhang et al., 2017). Shen et al. employed PCOut, a
PCA-based multivariate mean-variation modeling algorithm, in
the IonStar quantitative package to interrogate inter-group ratios
of peptides assigned to the same proteins (Shen et al., 2018b). It
was found PCOut offered excellent performance on removing
peptides with poor data quality from high-dimensional proteo-
mics data set and afforded high quantitative accuracy and
precision for large-cohort quantification.

4. Discovery of Altered Proteins

One of the ultimate goals of quantitative proteomics is to
detect proteins with differential abundances between case
and control groups. In most cases, significantly altered
proteins (alternatively known as differentially-expressed
proteins, dysregulated proteins, or biomarker candidates) are
determined using experience-based cutoff thresholds for
protein fold changes (FC) and/or significance score (e.g., P-
value) from hypothesis testing (e.g., Student’s t-test, one-
way ANOVA) (Ting et al., 2009). However, there is an
increasing awareness that such conventional schemes are
often plagued by surprisingly high false-positive rates (Gillet
et al., 2012). False-positive discovery of altered proteins
may arise from different sources: (i) the FC-based cutoff
method assumes uniform variance levels of all variables,
which may not apply to all proteins or experimental settings
(Ting et al., 2009; Gillet et al., 2012); (ii) the hypothesis
testing procedure on the large number of quantified proteins
could easily result in multiple testing problem (Diz et al.,
2011), which can be further confounded by peptides shared
among different proteins (Serang et al., 2013); (iii) the use
of an inadequate number of biological replicates in any
group renders the quantification liable to bias and variation
due to biological variability, which is especially problematic
for clinical and pharmaceutical applications where inter-
individual variability is often substantial. In general, there
are three types of methods introduced to improve the
reliability in discovery of significantly altered proteins,
including multiple testing correction, moderated testing
statistics, and experimental-based methods. Multiple testing
correction addresses random errors during the testing
procedure by either readjusting significance score threshold
or predicting the FDR of the discovered “significant”
proteins. A few classical examples are Bonferroni correction
(Noble, 2009), Benjamini-Hochberg method (Benjamini
et al., 2001), and Storey-Tibshirani method (Storey &
Tibshirani, 2003). Nevertheless, the application of multiple
testing correction in quantitative proteomics is quite limited
owing to several unique natures of proteomics data (Pasco-
vici et al., 2016). The second class of methods is moderated
testing statistics. Permutation is one prominent example
which requires no assumption of data normality or indepen-
dence of the data (as normal hypothesis testing approaches
do), which has been proved to offer robust and sensitive
detection of protein changes (Nguyen et al., 2017). Signifi-
cance Analysis of Microarray (SAM) determines whether a
protein is significantly changed by calculating a score
contrasting the measured level of changes via repeated
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measurement of the given protein (Tusher et al., 2001),
which proves to perform better than FC or conventional t-
test methods (Roxas & Li, 2008). Linear Models for Micro-
array Data (LIMMA) adopts an empirical Bayes principle to
reduce sample variance and establish a linear model for
individual proteins quantified (Smyth, 2005), which works
best for proteomics data with low replicate number or high
missing data rate (Smyth, 2005; Kammers et al., 2015).
Other testing statistics used for proteomics data encompass
rank product (RP) method (Schwammle et al., 2013),
Mixture Model Method (MMM) (Booth et al., 2011), Power
Law Global Error Model (PLGEM) (Pavelka et al., 2008),
and Reproducibility Optimized Test Statistics (ROTS) (Elo
et al., 2009). It should be emphasized that the selection of
testing statistics and optimization of parameters based on
the characteristics of the data set is of utmost importance.

Finally, experimental strategies for estimation/control of
false-positives in discovering protein changes have been
gaining popularity. Such strategies measure null distribution
in a project by experimentally comparing groups of samples
without biological difference (e.g., control vs. control or
case vs. case groups) using the same experimental design
and sample size per group as the case-vs.-control study.
Such methods can accurately assess false-positive discover-
ies by accounting for the collective effects of technical
variability (e.g., variation and bias in sample preparation,
LC/MS analysis and data processing), biological variability
and project-specific issues on false-positive discovery (Shen
et al., 2015a). Experimental-based methods have been
initially employed in microarray quantification (Tusher
et al., 2001) and gel-based proteomics (Karp et al., 2007) as
a validation approach, yet its application in MS1-based
quantitative proteomics studies has not been explored until
recently. Shen et al. devised an Experimental Null (EN)
method measuring null distribution of a given proteomics
project, by random interspacing of additional control-group
samples in the same LC-MS sequence for case-vs.-control
analysis (Shen et al., 2015a). Null distribution of protein
ratios and P-values can then be constructed by comparing
the two sets of control-group data (i.e., the EN dataset), and
false-positive rate for discovering changed proteins can be
estimated by dividing the number of significantly changed
proteins in the EN dataset (i.e., false-positives) to that in the
case-control dataset. Cutoff thresholds for detecting signifi-
cantly changed proteins could also be adjusted accordingly
to achieve an optimal balance of discovery sensitivity versus
false positives. As demonstrated by an extensive evaluation
in large-cohort sample sets, this EN method appears to be
markedly more accurate in estimating false-positives in
discovery of changed proteins, compared with a number of
statistical approaches including Student’s t-test, LIMMA,
and Fisher’s exact test plus Benjamini-Hochberg method.

Overall, confident detection of changed proteins is one
cardinal component of quality control for quantitative proteo-
mics but remains challenging and underrepresented. If the false-
positive discovery issue was not well addressed, it could
severely undermine the credibility of proteomics quantification
in large-cohort. The existing statistical and experimental meth-
ods offer a range of tools in this regard, yet we would have to
give serious consideration to choose the right method owing to
their varying performance and characteristics.

APPLICATIONS OF MS1-BASED QUANTIFICATION
IN RELATIVELY LARGE-COHORT ANALYSIS

With the rapidly improving experimental and data processing
strategies in the last decades, MS1-based quantitative proteo-
mics has been applied in a number of preclinical, clinical, and
pharmaceutical studies where excellent quantitative quality and
analysis of relatively large biological cohorts are often prereq-
uisites, such as molecular mechanism investigation of human
diseases, biomarker discovery, and investigation of the mecha-
nism of actions by therapeutic agents.

A. Molecular Mechanism Investigation of Diseases

The survey of protein changes in human diseases resulting from
genetic and environmental factors is highly valuable in elucidat-
ing the underlying molecular mechanisms. One of the most
important examples is cancer, the second leading cause of death
worldwide (Siegel et al., 2018). The complexity of cancer is
reflected by the signaling network alterations accumulating at
each stage of the multiple-step carcinogenesis. To understand
the complicated molecular mechanisms of carcinogenesis, it is
essential to analyze the corresponding protein changes, and to
procure reliable information of individual proteins in a cellular
context so as to determine their roles in signaling networks and
disease stages. However, protein profiling of cancer samples
(e.g., cells, tissues, body fluids) has always been a prominent
challenge because of the biological complexity and the difficul-
ties in reliable analysis of a large number of individuals, which
is indispensable owing to high inter-individual variability.
During last decade, MS1-based proteomic analyses have
contributed to molecular studies of cancer biology. Recently, the
proteomics and metabolomics analysis of primary human B cell
chronic lymphocytic leukemia (B-CLL) cells and healthy B
cells (from younger and elderly donors) (n¼ 32) was performed
to investigate the role of aging in CLL development (Mayer
et al., 2018). With MaxQuant, 6954 proteins in total were
quantified, and it was found the proteome signature for immune
senescence (e.g., ROS formation, DNA damage repair, inflam-
matory response, mitochondrial dysfunction) in elderly B cells
could be related to tumorigenesis. Similarly, a large-cohort
proteomic study of cancerous (CEC) and normal (NEC) cells
isolated from five different tumor and normal locations in
resected colon tissue from each of the 12 patients has been
reported (N¼ 120) (Tu et al., 2017b). With an Ion current-based
quantitative pipeline, much better run-to-run reproducibility
(�0.98%) and lower intra-group CV (9.2%) compared to other
quantitative methods (e.g., MS2-TIC, emPAI, and NASF) were
attained. A total of 458 altered proteins were found to be
involved in deregulation of mitochondrial function, RNA post-
transcriptional modification and infection by RNA viruses in
CEC, which fostered an improved understanding of CRC
development and provides potential biomarkers for CRC
diagnosis or therapeutic targets. A study with ovarian cancer cell
lines (n¼ 30), high-grade serous ovarian cancer (HGSOC)
tissues (n¼ 8) and primary fallopian tube epithelia cells (n¼ 3)
was able to quantify>10,000 proteins (<1% protein and peptide
FDR) totally using MaxQuant iBAQ and 77%were reproducibly
quantified. A 67-protein signature was identified to separate the
entire proteomic data set into epithelia and mesenchymal
HGSOC tumor cluster, which provides proteomics-based
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epithelial/mesenchymal stratification of cell lines and human
tumors (Coscia et al., 2016). Similarly, a colorectal cancer study
using 32 samples (paraffin embedded normal (N), adenoma (A),
and cancer tissue (C)) quantified a combined collection of
10,900 proteins (1% FDR) with label free module of MaxQuant
software. A total of 8237 proteins were quantified in at least
75% of samples. Between N and A, 23% of all proteins changed
significantly, 17.8% from A to C and 21.6% from N to C. This
study further allowed the evaluations in basic biological
processes including the energy metabolism, plasma membrane
transport, DNA replication, and transcription (Wisniewski et al.,
2015).

MS1-based quantitative proteomics has also been applied
to extend our knowledge on the molecular mechanisms of
several other diseases. To investigate how the mitochondria-
associated ER membrane (MAM) is affected under diabetic
condition, Ma et al. (2017) performed a comprehensive prote-
ome profiling of the isolated brain MAM from long-term type 2
diabetic mice with non-diabetic controls and totally quantified
1,313 MAM proteins (0.19% peptide FDR) using MS1 inten-
sity-based quantification (IonStar), and confident quantification
of �95% of total proteins (1,239 out of 1,313) was achieved
across all samples (i.e., no missing data). The in-depth analysis
of altered proteins uncovered the reduced MAM tethering
protein, GRP75, and activated unfolded protein response
molecules in diabetes. To elucidate the mechanism of HIV virus
control in the long-term-nonprogressors (LTNP), a comparative
proteome analysis of peripheral blood mononuclear cells
(PBMC) from LTNP (n¼ 10) and normal-progressors (NP)
(n¼ 10) was performed using an ion-current-based quantitative
strategy. A total of 87 altered proteins between are implicated in
key processes such as cytoskeleton organization, defense
response, and apoptosis regulation (Shen et al., 2015b). With a
similar quantification strategy, a study of rat striatal proteomic
profiling with short- (WD1) and long-term (WD22) cocaine
withdrawal (n¼ 40) identifies several key biological processes
of drug-induced neuroplasticity by altered proteins (Shen et al.,
2016). Another example is the ion-current-based proteomics
investigation of bronchoalveolar lavage fluid in chronic obstruc-
tive pulmonary disease (COPD) patients (n¼ 20) observes
gluconeogenesis/glycolysis, inflammatory response, proteolysis
as well as a novel alcohol metabolic process through 76 altered
proteins (Tu et al., 2014c).

B. Biomarker Discovery

Biomarker, which usually refers to a measurable molecule found
in cells, tissues, or body fluids that can serve as an indicator of a
physiological condition or disease state, plays a critical role in
prediction of disease aggressiveness, early diagnosis, accurate
assessment of prognosis, and response evaluation to therapies.
With recent advances in genomics and proteomics techniques, a
mass of candidate DNA, RNA and protein biomarkers have been
identified. Compared to nucleic acid biomarkers, protein
biomarkers are believed to be more associated with functional
information and more precisely reflecting physiopathological
states (Wang et al., 2016). Discovering protein biomarker
candidates is urgently needed but remains challenging because
most protein biomarkers are likely present at low abundances,
which are difficult to measure owing to the high sensitivity
needed and the wide range of protein abundances in typical

clinical samples (Wang et al., 2016). LC-MS has greatly
accelerated the identification of protein biomarker candidates
through combining high-resolution LC separations with sensi-
tive MS detection. Minimization of false-positives is a critical
factor for successful LC-MS-based biomarker discovery. MS1-
based quantification strategies, when strictly controlled, have
shown the ability to uncover biomarker candidates with good
reliability and low missing data in large-cohort biological
samples.

To date the most popular biomarker studies are directed
toward cardiac diseases or cancer, the top two most lethal
diseases worldwide. Investigations in these categories have been
on the rise. For example, protein biomarkers of invasive breast
cancer is valuable for the early diagnosis and progression
monitoring. Beretov et al. (2015) performed an unbiased
proteomic analysis in urine from breast cancer patients (n¼ 20)
and healthy women (n¼ 20) by ion current relative quantifica-
tion using Progensis QI. Among 59 urinary proteins with
significant difference in breast cancer patients, novel stage-
specific markers respectively associated with pre-, early, and
metastatic breast cancer, were identified. Lung cancer represents
one of the deadliest types of cancer. As some conventional early
screening methods (e.g., exhaled breath condensate analysis,
low-dose computed tomography) lead to an increased burden on
bronchoscopy units, new diagnostic approaches are essential. A
proteome analysis of acellular bronchoalveolar lavage (BAL)
fluid samples from 90 suspected lung cancer cases was reported
(Carvalho et al., 2017). MaxQuant and VEMS iBAQ are used to
compare lung cancer versus non-cancer controls, which identi-
fied 130 potential “biomarkers.” These candidates showed a
large overlap with biomarkers detected in tissue samples. Using
LC-MS using MaxQuant, Liu et al. analyzed 126 triple-negative
breast cancer samples and quantified>3,500 proteins. The work
identified a signature pattern encompassing 11 proteins with
potential prognostic value (Liu et al., 2014).

A number of studies were performed to seek protein
biomarker candidates for cardiovascular diseases. For instance,
Addona et al. developed a proteomic pipeline to identify early
plasma biomarkers of cardiac injury before, during, and after
controlled myocardial injury (N¼ 24). The MS1 peak areas
were calculated by Spectrum Mill, and �100 altered proteins
were identified from 1,105 totally quantified proteins (FDR
<1.5%) (Addona et al., 2011).

Using MS1-based method, biomarkers discovery for other
diseases in sizable cohorts are reported as well. For one
example, proteomics study of schistosomiasis, which is found in
tropical regions and associated with the risk of bladder cancer,
was conducted using MaxQuant. The authors found a total of
1,306 proteins in 49 human urine samples from Eggua region
and were screened for the presence of Schistosoma haema-
tobium infection. Out of these proteins, 54 human proteins and
36 schistosoma proteins were found to be potential biomarker
candidates for this disease (Onile et al., 2017).

C. Pharmaceutical Investigations

As proteins are the primary effectors responsible for drug
efficacy and safety, quantitative proteomics represent a powerful
tool in pharmaceutical investigations, such as target identifica-
tion, candidate selection, toxicological characterization, valida-
tion of drug candidates, and clinical evaluation of products. To
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this end, a number of studies has been conducted on identifica-
tion of potential drug targets, investigation of the mechanistic
basis of drug action, toxicity, and drug resistance. Identification
of therapeutic targets is of the utmost importance for drug
discovery, which can be greatly facilitated by global protein
profiling of diseased versus normal or treated versus non-treated
samples in a high-throughput manner. Beside the need to profile
a large biological cohort, one major challenge is that a large
portion of drug targets are of low-abundance and membrane-
associated, such as membrane receptors and ion channels (Savas
et al., 2011). To address these challenges, sample preparation
strategies (e.g., using strong surfactants) have been developed to
increase the recovery of membrane proteins (An et al., 2015; Ma
et al., 2018; Shen et al., 2018a), and advanced MS1-based
quantitative LC-MS approaches have been explored for target
discovery in large cohorts. For example, a proteomic profiling of
detached versus attached cancer cells with drug treatment using
MS1 intensity-based quantification strategy (MaxQuant) quanti-
fied 4,885 proteins in 90 cell samples. Despite high missing data
level (only 1,950 commonly quantified in all samples), the study
found six proteins consistently altered in the detached versus
attached cells regardless of the drug treatment status and cell
type, which highlighted the importance of detached cells for
investigation of anticancer drugs (Saei et al., 2018).

Molecular mechanisms underlying drug resistance is an-
other critical issue to be addressed. For instance, most cancer
cells utilize multiple redundant intracellular signaling pathways
to maintain functions critical to their survival, especially in cells
with drug-resistance (Bermudez-Crespo & Lopez, 2007). The
signaling pathways that are necessary to cancer cell survival,
proliferation, and receptor expression could be potential targets
for therapeutic intervention. Moreover, the proteomics profile
associated with drug actions of an individual could be highly
valuable to inform therapy (Schirle et al., 2012; Shruthi et al.,
2016). For example, overcoming the resistance to trastuzumab,
an antibody drug targeting HER2-overexpressing tumor, is
crucial for the development of a proper therapeutic strategy. The
comparison of trastuzumab-sensitive versus resistant gastric
cancer cells using MS1 intensity-based absolute quantification
(iBAQ) strategy has been described (n¼ 12) (Liu et al., 2017).
The activated mTOR signaling uncovered in this study could
mediate the resistance of trastuzumab, which provided new
candidate targets for treating trastuzumab-resistant tumors. A
similar study was performed using MaxQuant on 112 tumors
from breast cancer patients who manifested either good or poor
outcomes to tamoxifen treatment upon recurrence. Totally
>3000 proteins were quantified by LFQ and 1,960 proteins were
without missing data. They found a four-protein signature
capable of predicting tamoxifen treatment outcome in recurrent
breast cancer, and two proteins (ANXA1, CALD1) were
associated with tamoxifen resistance (De Marchi et al., 2016).
Using a MS1-based method (IonStar), our recent study of
molecular mechanisms underlying the synergism of combined
birinapant/paclitaxel in treating pancreatic cancer cells quanti-
fied 4,069 proteins (99.8% without missing data, >2 unique
peptides/protein) across 48 samples, and 541 proteins were
significantly altered in treatment groups. Most of these proteins
were altered only by combined birinapant/paclitaxel, which
indicated suppressed Warburg effect, enhanced cell apoptotic
regulation and cell cycle arrest were associated with drug
combination but not any single drug alone (Wang et al., 2018).

This temporal and large-scale proteomic study provides novel
insights contributing to the synergistic inhibitory effect of drug
combination on cancer cell growth. A similar time-series
proteome analysis of pancreatic cancer cells treated with the
combination of gemcitabine/birinapant was performed to char-
acterize the synergistic mechanisms of this combined therapy
(Zhu et al., 2018a).

Studies for non-cancer-related therapeutics emerged as
well. Germany et al. recently studied the mechanism of
ineffectiveness of Acamprosate, an FDA-approved agent for
alcoholism treatment (Germany et al., 2018). Using MS1
intensity-based quantification method, a total of 3,634 proteins
were quantified in 16 patient samples. The 1,040 proteins with
expression changes indicated the neuroimmune restoration
could be a potential efficacy mechanism in the Acamprosate
treatment of certain sub-populations of alcohol-dependent
subjects. Another example is the temporal proteomic profiling
for drug-responsive proteins after treatment with a corticosteroid
drug, which enabled the first-ever pharmacodynamics measure-
ment on proteome level. With IonStar quantification pipeline,
the time-series study quantified 323 drug-responsive proteins
induced by methylprednisolone administration on 60 rats, and
revealed diverse temporal changes of biological processes
associated with hepatic metabolism, response to hormone
stimuli, gluconeogenesis, and inflammatory responses. The
high-quality time course data provided by IonStar greatly
facilitated pharmacodynamics modeling (Nouri-Nigjeh et al.,
2014).

Even though drug side effects are quite common problem,
the mechanisms of drug toxicity in human organs (e.g., kidney,
liver, heart) are often poorly understood. In recent years,
proteomics has been used in the evaluation of drug toxicity,
termed as toxicoproteomics (Le & Wang, 2014; Titz et al.,
2014). Toxicity-related proteins from such studies are valuable
in drug screening and understanding the mechanism of toxic
effects. Collins et al. developed a panel of potential pharmaceu-
tical hepatotoxicity biomarkers for hepatotoxic compound EMD
335823 in a rat model (Collins et al., 2012). Totally 48 putative
toxicity biomarkers were discovered and confirmed with the
selected reaction monitoring assay. A recent work demonstrated
the use of IonStar on a large-scale investigation of 100 rat brains
with traumatic brain injuries (TBI) and pharmaceutical treat-
ments. In total >7,000 unique proteins were quantified with �2
peptides/protein, and >99.8% of proteins without missing data
in any of the 100 samples. Low false-positive rates (<5%) in
identifying altered proteins were achieved across all groups.
This study provides unprecedented high-quality, reproducible
proteomics analysis of large cohorts, and sets a new paradigm
for reliable large-cohort analysis (Shen et al., 2018b).

CONCLUSION AND FUTURE PERSPECTIVES

Quantitative proteomics capable of reliable large-cohort analy-
sis is highly valuable for pharmaceutical/clinical investigations
but remains challenging. MS1 ion current-based strategies show
high potential owing to the following features: (i) reproducible
protein measurement with low missing data since MS1-based
quantification are data-independent; (ii) highly sensitive quanti-
fication with excellent selectivity when a high-resolution MS is
used; and (iii) high potential for accurate and precise quantifica-
tion in complex matrices. In the past decade, a number of MS1-
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based proteomics studies emerged including technical develop-
ment in experimental and data processing approaches, as well as
applications in fields such as disease mechanism study, bio-
marker discovery, and pharmaceutical investigations.

Despite the tremendous technical advances of MS1-based
proteomics in recent years, there is still much room for
improvement. First, it is important to achieve highly reproduc-
ible and robust experimental procedures but this critical need
has long been overlooked by most. Second, currently MS1
strategies rely on DDAMS2 fragmentation to assign peptide IDs
to quantitative features, which considerably limits the depth of
proteomics coverage. For example, in our studies (unpublished
data), generally >60% quantified features were lacking peptide
ID owing to the limited sensitivity of the accompanying MS2
DDA identification. Third, development of new data processing
pipelines is desirable to take full advantage of the very-high-
resolution MS (e.g.,>250k FWHM). Finally, while the field has
put in strenuous efforts to maximize the number of identifiable
proteins (i.e., depth of analysis), the importance of achieving
high-quality quantitative data are often neglected.

Consequently, we anticipate that new techniques emerging
in near future will be directed toward unleashing the full
potential of MS1-based quantification. These may include but
not limited to: (i) streamlined, efficient and robust sample
preparation and LC-MS procedures that are standardized for
large-cohort quantification; (ii) methods to markedly improve
proteomics coverage of MS1-based strategies, for example,
extensive peptide identification via spectral library matching;
and (iii) new algorithms optimized for very-high-resolution MS
to greatly improve sensitivity and selectivity for low-abundance
proteins, as well as informatics approaches enabling more
accurate and precise quantification with lower false discovery
rate of altered proteins.
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