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Abstract. We developed a Hidden Markov mark–recapture model (R package marked) to
examine sex-specific demography in Magellanic Penguins (Spheniscus magellanicus). Our
model was based on 33 yr of resightings at Punta Tombo, Argentina, where we banded
~44,000 chicks from 1983 to 2010. Because we sexed only 57% of individuals over their lifetime,
we treated sex as an uncertain state in our model. Our goals were to provide insight into the
population dynamics of this declining colony, to inform conservation of this species, and to
highlight the importance of considering sex-specific vital rates in demographic seabird studies.
Like many other seabirds, Magellanic Penguins are long-lived, serially monogamous, and exhi-
bit obligate biparental care. We found that the non-breeding-season survival of females was
lower than that of males and that the magnitude of this bias was highest for juveniles. Biases in
survival accumulated as cohorts aged, leading to increasingly skewed sex ratios. The survival
bias was greatest in years when overall survival was low, that is, females fared disproportional-
ity worse when conditions were unfavorable. Our model-estimated survival patterns are consis-
tent with independent data on carcasses from the species’ non-breeding grounds, showing that
mortality is higher for juveniles than for adults and higher for females than for males. Juveniles
may be less efficient foragers than adults are and, because of their smaller size, females may
show less resilience to food scarcity than males. We used perturbation analysis of a population
matrix model to determine the impact of sex-biased survival on adult sex ratio and population
growth rate at Punta Tombo. We found that adult sex ratio and population growth rate have
the greatest proportional response, that is, elasticity, to female pre-breeder and adult survival.
Sex bias in juvenile survival (i.e., lower survival of females) made the greatest contribution to
population declines from 1990 to 2009. Because starvation is a leading cause of morality in
juveniles and adults, precautionary fisheries and spatial management in the region could help
to slow population decline. Our data add to growing evidence that knowledge of sex-specific
demography and sex ratios are necessary for accurate assessment of seabird population trends.
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INTRODUCTION

Although males and females of most seabirds are
monomorphic, they may vary in foraging behavior
(Bearhop et al. 2006, Weimerskirch et al. 2015), parental
care (Jacobs et al. 2013), site fidelity (Becker et al.
2008), or other ecological traits that influence their
demographic rates. Survival or apparent survival, which
is a combined estimate of true survival and permanent
emigration, is higher in males than females of many bird
taxa (Liker et al. 2005). Sex-biased survival leads to
skewed adult sex ratios (ASR; measured relative to the
proportion of breeding-aged males, see Eq. 3; Donald

2007, Veran and Beissinger 2009, Sz�ekely et al. 2014a, b,
Ancona et al. 2017). Male-skewed sex ratios can have
important consequences in both monogamous and
polygamous populations, as males become mate limited,
generating Allee effects and increasing population
extinction risk (Engen et al. 2003, Bessa-Gomes et al.
2004, Lee et al. 2011, Haridas et al. 2014, Berec et al.
2018, Kuparinen 2018).
In long-lived organisms like seabirds, sex biases in sur-

vival can accumulate with age and time, resulting in
increasingly skewed sex ratios. Furthermore, most sea-
birds are serially monogamous with obligate biparental
care and strong natal site fidelity. Therefore, deviation
from a balanced sex ratio causes a reduction in effective
population size, the number of chicks produced, and
ultimately, the number of breeders that recruit to the col-
ony (Bessa-Gomes et al. 2004, Jenouvrier et al. 2010,
Eberhart-Phillips et al. 2017).
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The causes and effects of skewed ASR are of growing
interest (Schacht et al. 2017, Eberhart-Phillips et al.
2018), but this issue was largely overlooked in three
recent reviews of seabird conservation (Croxall et al.
2012, Lewison et al. 2012, Paleczny et al. 2015). Even
though early long-term studies of seabirds reported
higher survival of males than females (e.g., in Yellow-
eyed Penguins, Megadyptes antipodes [Richdale 1957]; in
Ad�elie Penguins, Pygoscelis adeliae [Ainley and DeMas-
ter 1980]), only 20% of recent (2005–2015) seabird
mark–recapture studies test for sex-specific demography
(Appendix S1: Text S1). Developing reliable sexing tech-
niques based on genetics (Sabo et al. 1994, Faux et al.
2014), morphometrics (Boersma 1977, Hanners and Pat-
ton 1985, Boersma and Davies 1987, Cappello and
Boersma 2018), and/or behavioral traits has long been a
focus of study in the seabird community, but many indi-
viduals remain unsexed throughout even long-term sea-
bird studies (Ancona et al. 2017). Fortunately, there are
now statistical approaches to estimating sex-specific
demography when the sex of some individuals is
unknown (Nichols et al. 2004, Choquet et al. 2009, Pra-
del 2009, Genovart et al. 2012, Johnson et al. 2016).

Magellanic Penguin case study

We examine sex-specific demography in the Magellanic
Penguin (Spheniscus magellanicus) colony at Punta
Tombo, Argentina (Fig. 1). We sought to understand this
colony’s population dynamics, to inform conservation of

this species, and to highlight the importance of consider-
ing sex-specific vital rates in demographic studies. Magel-
lanic Penguins exhibit life history traits characteristic of
many seabirds. They are long-lived, serially monoga-
mous, and exhibit biparental care and high site fidelity.
We have studied the focal colony intensively since 1983
(Boersma 2008) and documented a population decline of
over 40% since 1987 (Boersma et al. 1990, Rebstock
et al. 2016).
We used Hidden Markov mark–recapture models

developed with the package marked (Laake 2013, Laake
et al. 2013, Johnson et al. 2016), 33 yr of banding data
for known-aged penguins, and perturbation of popula-
tion matrix models to examine sex-specific demography
in this species. Because mortality is highest, and our
knowledge of this species is lowest, during the non-
breeding season (Stokes et al. 2014), our analysis
focused on this period. We used our long-term and
detailed data set to examine sex-specific survival in Mag-
ellanic Penguins by addressing the following questions:
(1) Does non-breeding season survival vary significantly
with sex? (2) If so, to what extent does age, time (i.e.,
year), and breeding state influence sex-specific survival?
and (3) What is the contribution of sex-specific survival
to the known population decline and biased sex ratio at
the colony? In addressing these questions, we add to the
growing understanding of how sex-biased survival
impacts population growth in monogamous seabirds
(e.g., Jenouvrier et al. 2010), many of which are increas-
ingly threatened (Paleczny et al. 2015).

FIG. 1. The Magellanic Penguin colony at Punta Tombo was once the largest breeding colony of this species in the world.
Located in the Chubut Province of Argentina, the colony covers approximately 400 ha (boundaries of breeding colony). Although
we search the entire colony, most banding and resighting efforts are concentrated in a core area (main banding area). Approxi-
mately 44,000 chicks were banded at the colony from 1983 to 2010.
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MATERIALS AND METHODS

Study system

The Punta Tombo colony of Magellanic Penguins
(44°020 S, 65°020 S) was established in the 1920s and was
once the largest colony of this species, reaching its peak
size in the 1960s–1970s (Boersma et al. 1990). The col-
ony currently occupies 400 ha and consists of approxi-
mately 200,000 breeding pairs that nest in bushes,
burrows, or in the open (Rebstock et al. 2016). Male
Magellanic Penguins return to Punta Tombo from non-
breeding grounds in September, approximately one week
before females, to secure nest sites. Natal colony fidelity
(Boersma 2008) and nest site fidelity are high in this spe-
cies; males show a year-to-year nest site fidelity of 70%
(Boersma et al. 2013). Mate fidelity is also high but is
slightly lower for females (83%) than for males (86%)
and extra-pair copulations are uncommon (Boersma
et al. 2013). Starvation is the leading cause of chick mor-
tality, but reproductive success exhibits strong interan-
nual variability and is increasingly influenced by extreme
weather events (Boersma 2008, Boersma and Rebstock
2014). Females generally lay two eggs and very rarely re-
lay if they lose their eggs or chicks (Boersma et al.
2013). Males and females take turns foraging during
incubation and chick rearing.
During the non-breeding season (April–August),

Magellanic Penguins travel an average of 2,000 km
north of Punta Tombo, following the seasonal migration
of Argentina anchovy (Engraulis anchoita; Stokes et al.
2014). Their non-breeding season diet consists of
anchovy, Brazilian sardine (Sardinella brasiliensis), and
squid (Loligo spp. and Illex spp.; Silva et al. 2014, Mar-
ques et al. 2018). Trip distance varies among colonies
and interannually, possibly due to variation in oceano-
graphic conditions and food availability (Boersma and
Rebstock 2009a, Boersma et al. 2009, Garc�ıa-Borboro-
glu et al. 2010, Stokes et al. 2014, Rebstock and
Boersma 2018), and the species’ non-breeding range is
expanding northward (Dantas et al. 2014). Juveniles
leave the colony earlier and migrate further north than
adults do (Stokes et al. 2014).
Starvation, oiling, bycatch, and algal toxins are the

most common causes of Magellenic Penguin mortality,
which is highest during the non-breeding season (Gan-
dini et al. 1994, Shumway et al. 2003, Garc�ıa-Borboro-
glu et al. 2006, Cardoso et al. 2011, Trathan et al.
2015). Evidence from carcasses that wash up within the
non-breeding range suggest that juveniles have higher
mortality than adults and that females have higher mor-
tality than males (Vanstreels et al. 2011, 2013, Stokes
et al. 2014, Altr~ao et al. 2017). Like many other penguin
populations (e.g., Yellow-eyed Penguin [Richdale 1957],
Ad�elie Penguin [Ainley and DeMaster 1980]; King Pen-
guin, Aptenodytes patagonicus [Olsson and Van der
Jeugd 2002]; Gal�apagos Penguin, Spheniscus mendiculus
[Boersma et al. 2013]; Southern Rockhopper Penguin,

Eudyptes chrysocome [Morrison et al. 2015]; African
Penguin, Spheniscus demersus [Spelt and Pichegru
2017]), the sex ratio of Magellanic Penguins at Punta
Tombo is male biased (Boersma et al. 2013).
In most cases, the driver of biased ASR in penguin

populations has not been formally tested, that is, using
population matrix model perturbation analysis. Examples
of biased hatching sex ratios (African Penguin; Spelt and
Pichegru 2017) and of survival bias in juveniles (Southern
Rockhopper Penguin; Dehnhard et al. 2014) and in
breeding-aged individuals (Yellow-eyed Penguin [Rich-
dale 1957]; Ad�elie Penguin [Ainley and DeMaster 1980];
King Penguin [Olsson and Van der Jeugd 2002]) have all
been documented in penguins. However, highly skewed
hatching or fledging sex ratios are rare in wild bird popu-
lations (Donald 2007, Booksmythe et al. 2017) and there
is no evidence that sex ratios are skewed at hatching or
fledging in Magellanic Penguins (Koehn et al. 2016; P. D.
Boersma, unpublished data). We therefore assumed that
fledgling sex ratio was 0.5 in our population. It is impor-
tant to note that ASR shows low sensitivity to hatching
sex ratio in seabirds (Eberhart-Phillips et al. 2018) and
neither hatching nor fledging sex ratios predict ASR
among birds (Sz�ekely et al. 2014a, Komdeur et al. 2017).

Quantifying sex-specific survival

We banded between 197 and 3,941 chicks at Punta
Tombo (Fig. 1) annually from 1983 to 2010 (total of
44,374). We used stainless-steel bands marked with a
unique five-digit identification number, which we custom
fitted to the left flippers of penguins. We conducted daily
searches for banded individuals throughout each breeding
season, from settlement (September) through fledging
(February), and aggregated resightings by breeding sea-
son (i.e., no secondary occasions). Here and throughout,
we use the term “resighted” instead of “recaptured,”
because individuals were sometimes resighted in the col-
ony or on the beaches but not captured.
We developed a Hidden Markov mark–recapture

model using the mvmscjs function in the R package
marked (RVersion 3.5.1, marked Version 1.2.2; Johnson
et al. 2016) for the Punta Tombo population of Magel-
lanic Penguins based on the 44,374 recapture histories.
The statistical foundation of marked is detailed in Laake
(2013), Laake et al. (2013), and Johnson et al. (2016).
Our model included two states: sex and breeding state.
In addition to estimating survival (Φ or Phi), recapture
(p), and state transition (Ψ or Psi) parameters, marked
includes a parameter for the probability that an individ-
ual’s state is assessed with certainty (d or delta;
Appendix S1: Text S2). We assumed an equal number of
male and female chicks at fledging, all of which started
in the pre-breeding state.
Resighting and state assignment probabilities are

occasion parameters aggregated by breeding season,
which is when individuals are present at the colony and
resighted and/or assigned to a state. Therefore, when
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discussing these parameters, year refers to the breeding
season that started in that year (e.g., “1984” is the
September 1984–February 1985 breeding season and the
hatch year of the 1984 cohort). Survival is an interval
parameter, that is, it occurs between breeding periods, so
we discuss year in terms of the year during which that
non-breeding period took place (e.g., “1984” refers to
April 1984–August 1984 and to first year survival of the
1983 cohort). As true of most published mark–recapture
models, our survival estimates represent “apparent sur-
vival,” that is, we cannot separate true survival and per-
manent emigration (Lebreton et al. 1992). For brevity,
we refer to model estimated survival as “survival.”
We treated sex and breeding state as independent

states with assignment uncertainty. We only defined sex
and breeding state in years when we assessed them with
certainty because marked does not allow for misclassifi-
cation or for the use of prior knowledge. Although this
approach increases the complexity of the model, it pro-
vides information to estimate the uncertainty parameter
delta (Nichols et al. 2004, Johnson et al. 2016). We
sexed individuals using one of four methods, all of which
we assumed were certain: (1) genetic testing, (2) cloaca
size around egg laying (Boersma and Davies 1987), (3)
breeding behavior (copulation, arrival, nest defense,
etc.), or (4) bill size (male bill depth ≥ 2.24;
females < 2.24; Appendix S1: Text S2). Of the 3,296
individuals sighted after fledging, we sexed 1,893 with
certainty; 471 were female and 1,422 were male (sex
ratio = 0.75).
We considered transitions among five breeding states:

pre-breeder (individuals that have not yet bred), unob-
servable pre-breeder (pre-breeders not present at the col-
ony), breeder (individuals currently breeding), non-
breeder (individuals that have bred but are not currently
breeding), and unobservable non-breeder (individuals
that skipped breeding and are not present at the colony)
(Appendix S1: Text S2; Appendix S3: Fig. S1). Unob-
servable states were included to address temporary emi-
grants, which have a recapture rate of zero and therefore
violate the assumption that individuals do not vary in
their recapture rates (Lebreton et al. 1992, Cooch and
White 2013). Temporary emigration is a common fea-
ture in seabird populations (Fujiwara and Caswell
2002), and Magellanic Penguins may skip breeding sea-
sons if they are in too poor body condition to breed
(Rebstock et al. 2016). It is important to note that pre-
breeder always refers to individuals that have not bred,
but that this definition varies with age, that is, individu-
als <4 yr of age are always pre-breeders, whereas pre-
breeders ≥4 yr are of breeding age but have not bred.
We selected models in three phases (Appendix S1: Text

S3; Appendix S3: Fig. S2), with each phase starting with
the best-supported model from the previous phase. We
held the specification of Psi and delta constant; the tran-
sition parameter Psi varied only with breeding state, sex
assignment certainty varied with sex, and breeding state
assignment certainty varied with sex and breeding state

(Appendix S1: Text S3). We assessed goodness-of-fit for
a modified version of the most general model in the pro-
gram MARK (Version 6.2; Appendix S1: Text S3). Dur-
ing the first phase of model selection, we compared a
suite of models with additive variation in recapture with
sex, year, and/or breeding state and additive variation in
survival with sex, year, and/or age. Based on clear age-
specific trends in survival during the first phase, we
divided specification of Phi into age classes for the sec-
ond phase of model selection. These age classes included
juveniles (fledging through the first year at sea), adults
(age 2–18), and elder adults (age ≥ 19). In the final stage
of model selection, we tested for variation in survival
due to breeding state (Appendix S1: Text S3).

The impact of sex-specific survival

We developed a two-sex, nonlinear, age-based, matrix
model that was parameterized using vital rates from the
best-supported mark–recapture model and from previ-
ous publications on the population dynamics of Punta
Tombo (Appendix S1: Text S4; Appendix S2: Table S3).
The matrix model was age structured, but we used aver-
aged survival rates within the following groups: female
juveniles, male juveniles, female pre-breeders (1–5 yr of
age), male pre-breeders (1–6 yr of age), female breeders
<19 yr of age, male breeders <19 yr of age, female breed-
ers ≥19 yr of age, and male breeders ≥19 yr of age
(Appendix S2: Table S3). We developed two population
matrix models: (1) a year-specific model (Mφt) used to
back-simulate population trends from 1990 to 2009 and
(2) a year-averaged model (Mφ) used to estimate the
stable stage distribution and to conduct perturbation
analyses. We constrained the simulation to 1990–2009 to
allow for the use of unbiased estimates for the juvenile
and adult age classes (see Results). In both cases, we
defined the projection matrix as

ntþ1 ¼ Mnt (1)

where n is a vector of population sizes distributed across
age classes and the two sexes and M is a matrix contain-
ing sex-specific fecundity and year-specific (Mφt) or
year-averaged (Mφ) survival rates (Appendix S3:
Fig. S3).
Data from daily nest check areas at Punta Tombo sug-

gest that nearly all reproductively mature females that
return to the colony breed (P. D. Boersma, unpublished
data), as also seen in long-term studies of Yellow-eyed
Penguin (Richdale 1957) and Ad�elie Penguin (Ainley
et al. 1983) colonies with skewed sex ratios. The domi-
nance mating function assumes that 100% of reproduc-
tively mature individuals of the less abundant sex breed,
defined here based on the sex-specific average first
breeding age (Veran and Beissinger 2009, Jenouvrier
et al. 2010, Ballerini et al. 2015). This function was
therefore appropriate for modeling the mating process of
this monogamous population
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FD$ ¼ uc
min½NB$ ;NB#�

NB$

� �
FD# ¼ uc

min½NB$ ;NB#�
NB#

� �

(2)

where NB# are the number of breeding-age males and
NB$ are the number of breeding-age females and uc is
reproductive success. Because we were not able to esti-
mate year- or age-specific breeding state transitions
using our mark–recapture model, we assumed all breed-
ing-aged individuals were available to mate
(Appendix S2: Table S3). We defined ASR as the propor-
tion of breeding-aged males present at any given period

ASR ¼ NB#

NB# þ NB$
(3)

where NB# are the number of breeding-aged males and
NB$ are the number of breeding-aged females.
For Mφt, we used year- and sex-specific survival rates

for juveniles and year- and sex-specific, age-averaged rates
for the three remaining groups. We developed a comple-
mentary matrix model (Mxt) to examine how assuming
equal male and female survival would influence the pro-
jected population change over 20 yr (1990–2009). This
matrix assumed equal-weighted, sex-averaged survival
that was year and age class specific. If a mark–recapture
model of a population with a skewed sex ratio ignores
sex, apparent survival estimates are biased toward the
more abundant sex (i.e., there are more recapture histories
for the more abundant sex). Because the average would
be skewed toward the male survival rate, the difference
between average and female survival would be greater in
this scenario than a scenario using a rate halfway between
males and females, as done in our study.
We compared trends in the projected number of breed-

ing pairs 1990–2009 to temporal trends in the number of
active nests during that period. During annual October
surveys (settlement/incubation period), we counted the
number of nests and their contents (females, males, and/
or eggs) within 100-m2 permanently staked plots spaced
100 m apart throughout the colony (Rebstock et al.
2016). We defined an active nest as any nest with an egg
or penguin present, so active nests serve as an upper esti-
mate of the number of breeding pairs, that is, the actual
decline in breeding pairs may exceed that of active nests.
Our model may overestimate juvenile mortality

because we did not separately estimate permanent emi-
gration. We know that some penguins from Punta
Tombo emigrate to other colonies (Bouzat et al. 2009,
Pozzi et al. 2015; P. D. Boersma, unpublished data) and
that emigration rates are generally highest in juveniles
(e.g., as seen for related African Penguins; Sherley et al.
2014, Weller et al. 2014) and may be sex specific (e.g., in
Willow Warbler, Phylloscopus trochilus; Morrison et al.
2016). We addressed this issue with a fitness landscape
analysis (e.g., Ballerini et al. 2015) of sex-specific and
sex-averaged projections. For this analysis, we increased

male and/or female juvenile survival sequentially by 0.1
(increased by up to 0.5). We used model-estimated juve-
nile survival rates (i.e., instead of adjusted juvenile sur-
vival rates) for all perturbation analyses.
We conducted retrospective and prospective analyses

using population metrics calculated at the stable stage
distribution, that is, after 100 yr of simulation
(Appendix S1: Text S4). Retrospective analyses, or life
table response experiments (LTREs), showed how past
variation in demographic parameters influenced popula-
tion metrics. Retrospective analyses depend on historical
conditions, so cannot inform future population dynamics
(Caswell 2000, 2001). We used prospective analyses, that
is, perturbed the matrix model across a wide range of vital
rates irrespective of past variation, to explore the impacts
of hypothetical changes in demographic parameters.
The prospective analyses we used included calculations

of sensitivity and elasticity. We relied on the spline-based
perturbation methods presented in Veran and Beissinger
(2009) and Eberhart-Phillips et al. (2017, 2018). Sensitiv-
ity was rescaled to elasticity using a ratio of the parame-
ter to the stable stage population metric, allowing for
comparison across parameters. The formula we used to
test the elasticity of lambda to demographic change was

eðhÞ ¼ h
k

� �
ok
oh

� �
(4)

where e(h) is the elasticity of the population metric to
the demographic parameter of interest, based on the sen-
sitivity ok=oh. We estimated the sensitivity of the equilib-
rium values of the population metrics lambda and ASR
to the following parameters: male survival of each age
class and breeding state, female survival of each age class
and breeding state, hatching sex ratio, and reproductive
success. We used the sensitivity of each population met-
ric to conduct an LTRE, defining the contribution of
each parameter C(h) as

CðhÞ ¼ ðh# � h$Þ ok
oh

� �
(5)

For the LTRE, we compared the projection based on
the sex-specific survival matrix Mφt (the “treatment
matrix”) with a matrix (the “control matrix”) where
female survival was assumed to equal male survival. In
both the treatment and control matrices, hatching sex
ratio was assumed to equal 0.5 and reproductive success
was based on year-specific estimates (Appendix S1: Text
S4; Appendix S2: Table S3). To conduct the LTRE, we
calculated sensitives for a prime matrix (M0), a matrix
populated with demographic values averaged between
the treatment and control matrices (Veran and Beis-
singer 2009, Eberhart-Phillips et al. 2017). We also used
Eqs. 4 and 5 to calculate the elasticity of ASR and the
contribution to ASR for each demographic parameter
by replacing lambda with ASR in each equation.
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RESULTS

Quantifying sex-specific survival

In the best-supported model resulting from the final
phase (Phase 3) of model development, the probability
of being resighted depended on additive variation in sex,
year, and breeding state (Appendix S2: Tables S1, S2).
Sex was included as an additive variable in the best-sup-
ported specification of Phi, which also included variables
specific to each age class. The survival rate of juveniles
varied with year. Adult survival (ages 2–18) varied with
breeding state, year, and age and elder adult survival
(ages ≥ 19) varied with breeding state and as a linear,
decreasing function of age (Appendix S2: Table S2). It
should be noted that all models were additive on the
logit scale (i.e., logit parallelism) due to concerns of
parameter identifiability, but this does not necessitate
linear parallelism (i.e., interaction may still occur on the
real scale; Cooch and White 2013).
Resighting rates increased gradually until 2005 and

then stabilized. Increased resighting rates over time
reflect the fact that we found and marked nests of
banded penguins each year of the study. We had a high
chance of resighting birds in marked nests in ensuring
years because site fidelity is high in Magellanic Penguins
(Boersma et al. 2013).
Resighting rates (P) were high for male (P = 0.97 � 0.02

[mean � SD]) and female breeders (P = 0.89 � 0.08).
Non-breeding males (P = 0.77 � 0.16) had lower resight-
ing rates than breeding males and, because non-breeding
males often remain at the colony to secure nest sites for
subsequent breeding seasons, they had higher resighting
rates than did female non-breeders (P = 0.47 � 0.21). Pre-
breeders have less frequent colony attendance than breed-
ers and, when they do attend the colony, are often on the
beach (Pozzi 2015) where resighting efforts are lower and
bands are harder to read. Accordingly, pre-breeders had
the lowest resighting rates (females, P = 0.12 � 0.11;
males, P = 0.35 � 0.20). The probability of sexing a
resighted female with certainty was greater than the proba-
bility of sexing a resighted male with certainty (Table 1).
Breeding state assignment rates were state-specific and

sex-specific and were higher for breeders than for non-
breeders (Table 1). Pre-breeders had a 0.10 probability

of becoming breeders each year and, once breeding, had
a 0.81 probability of remaining a breeder (Appendix S3:
Fig. S5). Similarly, non-breeders were most likely to
remain non-breeders the following year (0.68). Individu-
als had a low probability of entering unobservable states
(i.e., skipping breeding), particularly once they became
breeders (Appendix S3: Fig. S4).
Annual juvenile survival rates showed high variability,

ranging from 0.007 to 0.32 for females and from 0.01 to
0.44 for males (Fig. 2). Survival rates of adults were
higher and less variable than juvenile survival rates and
were lower for pre-breeders than for breeders and non-
breeders. Adult survival showed substantial interannual
variability, ranging from 0.61 to 0.99 for females and
from 0.71 to 0.99 for males. Although male survival was
higher than female survival, the confidence intervals of
adult males and adult females overlapped in all years
(Fig. 3). Survival rate decreased linearly with age by
0.05 a year for both male and female elder breeders
(aged ≥ 19 yr).
The magnitude of the sex bias varied with age, year,

and breeding state (Fig. 4). Juveniles showed the great-
est average sex bias, with average survival rates 33.3%
higher in males than in females (Fig. 4). As compared to
females of the same age class and breeding state, the
average survival sex bias favoring males was 5.5% in pre-
breeders aged <19, 13.5% in pre-breeders aged ≥ 19,
4.7% in breeders aged <19, and 11.3% in breeders
aged ≥ 19. The sex bias toward adult males was greatest
in years when overall survival was lowest (Appendix S3:
Fig. S4).
Sex ratio increased, that is, became more male biased,

as each cohort aged. Here, we use the 1989 cohort as an
example of the accumulation in age-specific sex bias,
because it is the earliest cohort with fully estimable age-
specific parameters (Fig. 5). We assume age-specific pre-
breeder survival rates to calculate the sex ratio of imma-
ture individuals and age-specific breeder survival rates
to calculate ASR. For the 1989 cohort, the sex ratio
increased from 0.61 at age one to 0.84 at age 25, the last
age of this cohort we studied. The sex ratio deviated sig-
nificantly from parity from ages one (v2 = 4.27; df = 1;
P = 0.04) to 24 (v2 = 4.41; df = 1; P = 0.04); at age 25,
the v2 test resulted in a P value of 0.05 due to low sam-
ple size (14 individuals remaining).
Across all 19 cohorts studied (hatch years 1989–2008),

an average of 136 individuals survived to age 1, with a
maximum of 423 individuals surviving to age 1 in the
1992 cohort (out of 1,725 banded chicks). All cohorts
showed a similar trend of increasing male bias from fledg-
ing to reproductive age, but the exact patterns varied,
with sex ratios ranging from 0.61 to 0.70 by the age of
male maturation (age 7; Boersma et al. 2013; Fig. 5). The
sex ratio deviated significantly from parity (i.e., equal
numbers of males and females) by age 1 in 8 of 19 cohorts
and by age 6 in 12 of 19 cohorts (v2 test; df = 1;
P < 0.05). In 7 of 19 cohorts, sex ratio never significantly
deviated from parity, probably because of low sample

TABLE 1. The probability of assessing an individual’s sex or
breeding state with certainty.

Sex Breeding state dsex†,‡ dstatus†

Female breeder 0.30 (0.29–0.30) 0.52 (0.49–0.55)
Female non-breeder 0.30 (0.29–0.30) 0.14 (0.12–0.17)
Male breeder 0.25 (0.25–0.25) 0.46 (0.43–0.49)
Male non-breeder 0.25 (0.25–0.25) 0.11 (0.10–0.12)

†The 95% confidence interval for each estimate is shown in
parentheses.
‡Approximately 57% of the banded population has been

sexed with certainty at some point during their lifetime.
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sizes. All seven of these cohorts had fewer than 50 indi-
viduals surviving to age one, because a small number of
individuals were banded and/or juvenile survival was low
that year.

The impact of sex-specific survival

The number of active nests at Punta Tombo declined
linearly from 1990 to 2009 (r2 = 0.52, P < 0.001), with a
trend-estimated population decline of 23%. Simulated
trends based on population matrix projections using
year-variant, sex-specific survival did not match survey-
estimated trends and indicated that the number of breed-
ing females declined by 85% from 1990 to 2009. Because
we defined active nests as any nest with an egg or pen-
guin present, they serve as an upper estimate of the num-
ber of breeding pairs. Therefore, the actual decline in

breeding pairs would exceed that of active nests if, as the
model outputs and data from the colony suggest, ASR
became increasingly skewed from 1990 to 2009. The mis-
match between survey-estimated trends and matrix
model-estimated trends also indicates that immigration
to the colony is likely occurring.
For population matrix model projections to match

survey trends, we had to increase female juvenile survival
by at least 0.40 and male juvenile survival by at least
0.20 (Appendix S2: Table S4). Projections based on sex-
averaged survival rates always led to a larger effective
population than projections based on sex-specific sur-
vival rates. For example, when we increased male and
female juvenile survival rates by 0.40, the projection
based on sex-specific survival rates predicted a 24%
decline in the number of breeding pairs while the projec-
tion based on sex-averaged survival rates predicted a

FIG. 2. Apparent non-breeding-season survival of Magellanic Penguin juveniles (fledging to age 1) is highly variable among
years but generally low. On average, juvenile survival is 33% higher for males than for females. The 95% confidence intervals (semi-
transparent ribbons) of the sexes overlap in some years. Juvenile survival for the 1983 cohort (1984 non-breeding season) was not
included in this figure because it had confidence intervals spanning [0,1].

FIG. 3. When averaged across ages, apparent non-breeding-season survival rates of breeding adult Magellanic Penguins (ages
4–18) are comparable to previous studies on this and other seabird species. On average, survival was 5% higher for males than for
females, and the 95% confidence intervals of the two sexes (semi-transparent ribbons) overlapped in all years. Non-breeding adults
showed the same survival rates as breeding adults. Due to the sparseness of data on breeding adults prior to 1991, survival estimates
had confidence intervals spanning [0,1] and are not included in this figure.
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16% increase in the number of breeding pairs
(Appendix S2: Table S4).
The asymptotic population growth rate has a greater

elasticity to the survival of females, the less abundant
sex, than to that of males (Fig. 6). Specifically, popula-
tion growth shows the greatest elasticity to survival of
female pre-breeders (e = 0.36) and female adult breeders
(e = 0.46). Population growth rate showed a low and
similar response to hatching sex ratio, reproductive suc-
cess, and juvenile survival (all e = 0.07).
Although population growth rate showed a low elas-

ticity to juvenile survival, this demographic parameter
showed the greatest sex bias. As a result, the model
showed that the sex bias in juvenile survival made the
greatest contribution (C) to population declines from
1990 to 2009 (C = 0.027). The contribution of sex bias
in juvenile survival was 2 times greater than that in pre-
breeders (C = 0.013), 1.4 times greater than that in adult
breeders (C = 0.019), and 9 times greater than that in
female elder breeders (C = 0.003).
The asymptotic ASR showed similar-magnitude elas-

ticity to both sexes, but an increase in female survival
reduces ASR because it results in a greater number of

females and therefore a larger denominator in the ASR
calculation (Fig. 6). Like the population growth rate,
ASR showed higher elasticity to pre-breeder (e = �1.70
for females; e = 1.73 for males) and adult age classes
(e = �2.21 for females; e = 2.07 for males) than to juve-
nile (e = �0.34) and elder age classes (e = �0.20) and
low elasticity to hatching sex ratio and reproductive suc-
cess (both e = �0.05; Fig. 6).
Because population growth rate and ASR are sensitive

to the same demographic parameters, these population
metrics may covary. However, ASR has a greater elastic-
ity, so it shows a greater proportional response to demo-
graphic change. Though the contribution is based on the
sensitivity of ASR to female survival, and is thus nega-
tive, we report positive values for clarity (i.e., the increase
in ASR caused by female-biased mortality). As seen for
population growth rate, sex bias in juvenile survival made
the greatest contribution (C) to increased ASR from
1990 to 2009 at the Punta Tombo colony (C = 0.094).
This contribution was 2.1 times greater than it was for
pre-breeders (C = 0.044), 1.4 times greater than it was
for breeding adults (C = 0.065), and 9.1 times greater
than it was for elder breeders (C = 0.01).

FIG. 4. In the Magellanic Penguin population studied, survival rates were higher for males than for females of the same age
class and breeding state. The survival sex bias is the percent difference between female and male survival and is relative to male sur-
vival. This bias was highest in juveniles and in elder adults. Among adults and elder adults, pre-breeders (individuals that had not
yet bred) had a higher survival bias than did breeders and non-breeders (individuals that had bred at least once but were not breed-
ing that year). The first letter of the x-axis category refers to breeding state (P, pre-breeder; B, breeder or non-breeder) while the sec-
ond letter refers to age class (J, juvenile [fledging to age 1]; A, adult [age 1 to 18]; E, elder [age ≥ 19]). Frequency was measured as
unique age by time combinations, so sample size is smallest for juveniles (1 age, 27 yr) and largest for adults (18 ages, 27 yr).
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DISCUSSION

Reports of skewed sex ratios at penguin colonies started
with the earliest long-term studies of these species, though
these studies did not link skewed sex ratios to population
decline (Richdale 1957, Ainley et al. 1983). In his study of
a Yellow-eyed Penguin population from 1936 to 1954,
Richdale (1957) estimated that sex ratio reaches 0.67 (two
males per female) in adults of this species and that, conse-
quently, males spend one-third of their lives unmated.
Using resightings of chicks banded from 1962 to 1970,
Ainley and DeMaster (1980) found that sex ratio
increased even more rapidly with age in Ad�elie Penguins
than in Yellow-eyed Penguins. In the population studied
by Ainley and DeMaster (1980), less than 8% of birds
sighted aged 10 or older were females. Male-skewed sex
ratios have since been documented at colonies of several
other penguin species, including King Penguins (Olsson
and Van der Jeugd 2002), Gal�apagos Penguins (Boersma
et al. 2013), Southern Rockhopper Penguins (Morrison
et al. 2015), and African Penguins (Spelt and Pichegru
2017). Regardless, sex is often ignored in contemporary
research on penguin demographic rates (e.g., Sherley et al.
[2014] on African Penguins), and the extent that sex-
biased survival influences ASR and population growth
rate in these populations remains poorly understood.
We found that males have higher survival rates than

females at Punta Tombo, Argentina, a declining colony
of Magellanic Penguins known to have a skewed ASR.
Our findings suggest that lower female survival is a dri-
ver of population decline and an increasingly skewed

ASR at Punta Tombo. In Magellanic Penguins and other
seabirds, sex-biased survival creates a bottleneck that
limits effective population size (Jenouvrier et al. 2005,
2010; this study). Accounting for sex-specific demogra-
phy therefore provides valuable insight into the conser-
vation of Magellanic Penguins and species with similar
life history traits.

Quantifying sex-specific survival

Survival of Magellanic Penguins varied with sex, age
class, breeding state, and year. When averaged across
ages and years, we found average annual survival rates
of breeding adults (females, 0.85 � 0.13; males,
0.89 � 0.11) similar to those estimated by Boersma and
Rebstock (2010) for individuals banded as adults at
Punta Tombo (0.87 for both sexes). Our average adult
survival rates were also within the range of the 10 pen-
guin species (0.62–0.94; average 0.83 � 0.09) reported in
Schreiber and Burger (2001). They were, however, con-
siderably lower than that found by Pozzi (2015) for Mag-
ellanic Penguins greater than two years of age (0.96).

FIG. 5. Survival sex bias accumulates with age in Magel-
lanic Penguins, leading to increasingly skewed sex ratios. (a)
The 1989 cohort; (b) trends in sex ratio for the 1989–2009
cohorts. All cohorts studied showed a similar pattern of an
increase in sex ratio with age, but the rate of this increase varied.
By the time cohorts reached average male maturity (age 7;
Boersma et al. 2013), the sex ratio ranged from 0.61 (2004
cohort) to 0.70 (2005 cohort), with an average of 0.60.

FIG. 6. (a) The population growth rate of Magellanic Pen-
guins showed the greatest elasticity to variation in female pre-
breeder and adult survival. Elasticity of lambda to male survival
of all age classes was close to zero because of the colony’s
skewed sex ratio and the use of a dominance mating function.
The first letter of the x-axis category refers to sex (F, female; M,
male) while the second letter refers to the age and breeding class
(J, juvenile [fledging to age 1]; P, pre-breeder [age 1–6 for
females, age 1–7 for males]; A, adult breeder/non-breeder [age
7–18 for females, age 8–18 for males]; E, elder breeder/non-bree-
der [age ≥ 19]). (b) Like lambda, adult sex ratio (ASR)
responded most strongly to changes in apparent survival of the
pre-breeder and adult age classes. However, because the juvenile
age class showed the greatest sex bias, this age class made the
greatest contribution to population declines and skewed adult
sex ratio at the colony from 1990 to 2009.
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Pozzi’s (2015) mark–recapture model used the same data
set as ours (i.e., Punta Tombo individuals banded as
chicks) but did not consider sex or breeding state. The
interannual variability we found in adult survival was
unexpected, as adult survival rates are generally high
and relatively constant in long-lived species (Sæther and
Bakke 2000, Jenouvrier et al. 2005).
Juvenile survival also showed high interannual variabil-

ity, suggesting high variability in cohort recruitment
(Φ♀J = 0.12 � 0.11 SD; Φ♂J = 0.17 � 0.14 [mean � SD]).
Because juvenile seabirds may prospect at other colonies
and have lower colony attendance than do mature individ-
uals, robust estimates of juvenile survival are rare (avail-
able for <2% of seabird species; Lewison et al. 2012).
Juvenile survival for this population was considerably
lower than an average across 32 diverse seabird species
(e.g., eiders, gulls, albatrosses, penguins), based on data
collated by Horswill and Robinson (2015) and Sæther and
Bakke (2000) (0.47 � 0.27 SD), though Horswill and
Robinson (2015) noted that many of the estimates they
included were of poor quality. Juvenile survival rates for
this population are, however, comparable to those seen
for highly perturbed populations of African Penguins
(e.g., <0.25 at the Robben Island colony, South Africa in
2004–2010 [Sherley et al. 2014], average 0.19 � 0.12
across years/colonies [Sherley et al. 2018]).
Males had higher survival rates than females, but con-

fidence intervals overlapped for adults in all years and
the magnitude of the sex bias in survival varied with age
class and year (Fig. 4). Male survival ranged from 1% to
38% higher than females of the same age and breeding
state; the bias was greatest in the juvenile age class.
Because Magellanic Penguins are long lived, even small
sex biases in survival accumulate and sex ratio becomes
increasingly skewed as a cohort ages (Fig. 5). Similarly,
in long-term studies of Yellow-eyed and Ad�elie Penguins
(Ainley and DeMaster 1980), ASR steadily increased
with age. In contrast to these studies, however, we found
that the largest increase in sex ratio occurred prior to
breeding age in Magellanic Penguins, suggesting that
sex-specific survival did not result from high reproduc-
tion costs to females.
In Ad�elie Penguins, breeding individuals have lower

survival rates than do non-breeding individuals, and the
sex bias in survival is higher among breeders than non-
breeders (Ainley and DeMaster 1980). The greater
breeding cost in Ad�elie Penguins compared to Magel-
lanic Penguins may in part be due to higher predation
rates by seals in the former, as Ainley and DeMaster
(1980) estimated that breeders pass by seals 10 times
more often than non-breeders in a season. In our study,
the most parsimonious model grouped breeders and
non-breeders, suggesting that their survival rates do not
significantly differ. Interestingly, as for Yellow-eyed and
Ad�elie Penguins (Richdale 1957, Ainley et al. 1983), the
sex with lower survival rates (female) starts to breed at a
younger average age than the sex with higher survival
(male) in Magellanic Penguins (Boersma et al. 2013).

The survival patterns we estimated coincide with data
on beached carcasses within the species’ non-breeding
habitat. Beached carcasses are biased toward juveniles and
females of all age classes, and thus suggest that true sur-
vival is age and sex biased. In the most extreme example,
M€ader et al. (2010) found that 97.5% of carcasses along a
stretch of the Southern Brazil shoreline were juveniles.
Several of the years for which juvenile carcass counts were
anomalously high were also low juvenile survival years in
our study (1990, 1998, 2008; M€ader et al. 2010).
Vanstreels et al. (2013) examined 119 beached car-

casses from southern Brazil from 2005 to 2007 and
found a sex ratio of 0.26 in juveniles (455 individuals)
and adults (73 individuals). This sex bias was not evident
in stranded oiled penguins, indicating that it did not
result from sex-specific non-breeding habitat use (Van-
streels et al. 2013). Two recent studies with more limited
sample sizes also found female-biased mortality: Nunes
et al. (2015) found a sex ratio of 0.35 among 43 car-
casses washed up in southern Brazil, most of which were
juveniles. Altr~ao et al. (2017) examined parasitic nema-
todes from 36 carcasses washed up along the coast of
southern Brazil, which had a sex ratio of 0.38 among
juveniles and of 0.29 among adults. Carcasses therefore
suggest that sex-biased mortality results in sex ratios
ranging from 0.62 to 0.74 among surviving individuals,
comparable to those we found by age 7 in our popula-
tion (0.61–0.70 depending on cohort).

Intraspecific variation in foraging and survival

Adult and juvenile survival rates were significantly cor-
related across years, suggesting similar drivers of mortal-
ity during the non-breeding season. Food availability is a
known determinant of seabird survival (Cairns 1988),
and demography and foraging ecology are tightly linked
in seabirds (Weimerskirch 2018). Furthermore, starvation
is a documented major cause of non-breeding-season
mortality in Magellanic Penguins of all age classes (Gan-
dini et al. 1994, Garc�ıa-Borboroglu et al. 2006, Boersma
2008, Vanstreels et al. 2013). During years of low food
availability, individuals must forage over greater dis-
tances, increasing starvation risk and reducing survival
(Garc�ıa-Borboroglu et al. 2010, Stokes et al. 2014). The
sex bias in Magellanic Penguin survival was greatest in
low survival years (Appendix S3: Fig. S4) and age classes
(i.e., juveniles or elder birds; Fig. 4). Among seabirds,
vulnerable subsets of the population often fair dispropor-
tionally worse during poor environmental conditions
(King Penguin [Olsson and Van der Jeugd 2002];
Gal�apagos Penguin [Boersma 1977, 1998], Emperor Pen-
guin, Aptenodytes forsteri [Barbraud and Weimerskirch
2001, Jenouvrier et al. 2005]; Snow Petrel, Pagodroma
nivea [Jenouvrier et al. 2005]).
Intraspecific variation in foraging behavior and energet-

ics determine how individuals respond to changes in food
availability. Juvenile seabirds often forage less efficiently
than do older, more experienced conspecifics (e.g., Brown
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Pelican, Pelecanus occidentalis [Orians 1969]; African Pen-
guins [Wilson 1985]; Wandering Albatross, Diomedea exu-
lans [Riotte-Lambert and Weimerskirch 2013]; Northern
Gannet, Morus bassanus [Votier et al. 2017]), decreasing
their probability of surviving the non-breeding season.
Survival rates increase dramatically between fledglings
and 1-yr-olds in Magellanic Penguins (this study). In
Wandering Albatross, the foraging skills of fledglings
improve rapidly over the first few months at sea, after
which they are comparable to those of adults (Weimer-
skirch 2018). We found that survival decreased again for
individuals ≥19 yr of age, potentially because of senes-
cence-related reductions in foraging efficiency (e.g., Zim-
mer et al. 2011) or to increased investment in
reproduction with age (Cerchiara et al. 2017). Interest-
ingly, Rebstock and Boersma (2018) found that egg size
increased with female Magellanic Penguin age until age 18
and then began to decline, another indication that senes-
cence begins around age 19 in females of this species.
Sex-specific energetics and foraging behavior provide a

potential explanation for the lower survival rates of
female Magellanic Penguins. Studies have shown that
male Magellanic Penguin chicks are fed at a higher
trophic level (i.e., higher d15N) than female chicks (Forero
et al. 2002). The proportion of fish in the diet influences
size at fledging in Ad�elie Penguins (Whitehead et al.
2015), and males of several species of penguin fledge at a
larger size or in better body condition than do females
(King Penguins in some years [Bordier et al. 2014];
Ad�elie Penguins [Jennings et al. 2016]; African Penguin
[Spelt and Pichegru 2017]). Because of their smaller size
and less favorable surface area to volume ratio, female
Magellanic Penguins may fledge at an energetic disadvan-
tage to males, lowering their juvenile survival rates.
On average, adult male Magellanic Penguins are 17%

heavier than adult females and have bills that are 8%
longer and 15% deeper (Boersma et al. 2013). Relative
to males, female Magellanic Penguins may experience
(1) shallower or less frequent diving due to a lower oxy-
gen storage capacity (Walker and Boersma 2003), (2)
higher drag due to a greater surface area to volume ratio,
(3) less resilience to periods of food scarcity due to a
lower food storage capacity (Colchero et al. 2017), and
(4) less prey size flexibility due to smaller bills (e.g., Van-
streels et al. 2013, Silva et al. 2014, Ciancio et al. 2018).
Evidence from non-breeding areas suggests that female
Magellanic Penguins are more susceptible to starvation.
Females are less likely than males to survive rehabilita-
tion (Vanstreels et al. 2013) and, unlike males, their
body condition when returning to Punta Tombo is sig-
nificantly correlated with non-breeding-season oceano-
graphic conditions (Rebstock and Boersma 2018).
Studies into sex-specific foraging behavior and diet of

adult Magellanic Penguins are inconclusive and suggest
that variation in foraging behavior is context dependent.
Boersma and Rebstock (2009a) found no difference in
female and male foraging distance during the breeding
season (205 penguins, 1996–2006), while Scioscia et al.

(2016; 126 penguins, 2006–2008) and Raya Rey et al.
(2012; 56 penguins, 2003–2005) found that females had a
larger foraging range than males during incubation. P€utz
et al. (2007) found that females and males used similar
non-breeding habitat and Silva et al. (2014) and Marques
et al. (2018) found that females and males had similar
isotope signatures for the period representing the non-
breeding season. Silva et al. (2014) did find that males
had larger isotopic niches than did females, suggesting
greater foraging diversity among individuals of this sex.
Males’ larger size allows them to dive deeper (Walker and
Boersma 2003, Raya Rey et al. 2012) and take a larger
size range of prey (Forero et al. 2002), giving them
greater diet flexibility. Even if females and males have
similar diets, females may have to work harder to main-
tain body condition. For example, recent studies suggest
that males provision more food to Magellanic Penguin
chicks than do females (Ciancio et al. 2018), despite simi-
lar duration foraging trips during the breeding season.

Banding considerations

The impact of flipper bands is an ongoing debate in the
seabird community, and the studies suggest that their
impacts are highly dependent on the type of band used,
how the band is fitted, and the species of interest (Jackson
and Wilson 2002). For example, in a double banding
study, Boersma and Rebstock (2010) sighted Magellanic
Penguins injured or killed by aluminum bands but not by
stainless-steel bands. Carrying two stainless-steel bands
for 15 yr did not reduce average male survival (0.87) as
compared to males with two web tags, but did reduce
average female survival (0.79 banded vs. 0.87 unbanded;
Boersma and Rebstock 2010). Boersma and Rebstock
(2010) did not determine the impact of single bands on
female survival, but a study of single-banded Magellanic
Penguins found no impact of bands on the foraging trip
duration of males or females during chick rearing
(Boersma and Rebstock 2009b).
In their review of banding impacts on penguins, Jack-

son and Wilson (2002) noted that the effects of bands are
generally greatest in the initial year of banding. For exam-
ple, Ainley et al. (1983) found that aluminum bands had
the largest impact on Ad�elie Penguin survival the first
year after they were banded and estimated a higher sur-
vival rate for unbanded than for banded fledged chicks
(0.51 vs. 0.37). In contrast, Boersma and Rebstock (2010)
found females with two bands laid eggs of similar size to
the eggs they laid the year before they were banded.
We cannot discount the possibility that there are sex-

specific banding effects in Magellanic Penguins that are
exacerbated during the first year at sea, reducing juvenile
female survival more than that of males. However, car-
casses of unbanded individuals found in non-breeding
areas also suggest female-biased mortality. Furthermore,
annual surveys conducted at Punta Tombo during the
late chick-rearing period, when both males and females
are intermittently present and take long foraging trips,
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suggest increasing ASR throughout the colony (ASR of
0.59 � 0.05 from 1986 to 1989; ASR of 0.70 � 0.04
from 2013 to 2016; P. D. Boersma, unpublished data).
Only a small portion of the Punta Tombo population is
banded, so sex-specific banding effects cannot explain
the increasing ASR.

Conservation implications for Magellanic Penguins

The growth rate and ASR of the Magellanic Penguin
population at Punta Tombo are highly sensitive to
female survival rates, particularly those of pre-breeders
and adults. Other long-lived species also show this pat-
tern (adult survival [Sæther and Bakke 2000], pre-bree-
der survival/recruitment [Jenouvrier et al. 2015]).
However, because juvenile survival rates had the greatest
sex bias, juveniles made the greatest contribution to pop-
ulation declines and increases in ASR at the colony from
1990 to 2009. Studies of shorebirds (Eberhart-Phillips
et al. 2018) and parrots (Veran and Beissinger 2009)
likewise found that sex-biased juvenile survival made the
largest contributions to ASR.
Studies on closely related African Penguins are rele-

vant to the conservation of Magellanic Penguins because
African Penguins show female-biased mortality, a skewed
sex ratio (Pichegru and Parsons 2014), and male-biased
sexual size dimorphism (males are 15% heavier; Pichegru
et al. 2013). Starvation is the most common cause of
mortality in this endangered species (Pichegru and Par-
sons 2014), which shows high overlap with fisheries in
terms of foraging area and size of fish selected (Pichegru
et al. 2009). Climate change and fisheries have altered
fish availability in once-productive African Penguin for-
aging habitat, creating ecological traps and reducing
juvenile survival (Sherley et al. 2017). Female African
Penguins show higher foraging effort than do males and
the overlap between male and female foraging habitat is
lower in years of low food availability (Pichegru et al.
2013). Unlike at Punta Tombo, juvenile and adult sur-
vival have shown temporal declines at African Penguin
colonies (Sherley et al. 2014). Sex-specific survival rates
have not yet been estimated for African Penguins.
Due to the rapid decline of African Penguin popula-

tions over the 20th century, there have been several
efforts to increase food availability in the region using
fisheries closures. These closures have focused on pro-
tecting foraging habitat near breeding colonies of the
species. Their effectiveness remains uncertain, however,
due in part to the small area protected and potential lag
times of protected area benefits in long-lived species
(Sherley et al. 2018). Pichegru et al. (2012) found that
fisheries closures near the St. Croix colony temporarily
reduced foraging effort of African Penguins and that
juvenile survival increased with an increase in fish bio-
mass. Fisheries closures also had positive impacts on
reproductive success (18% increase in chick survival) at
the Robben Island colony, but the population continued
to decline due to high adult mortality (Sherley et al.

2015). A system dynamics model of the Dyer Island col-
ony suggests little population benefit of fisheries closures
(~1% gain for a 20-year closure) where other pressures,
in this case seal predation and juvenile emigration, are
high enough (Weller et al. 2016).
Several insights relevant to Magellanic Penguins can be

gained from recent efforts to conserve African Penguins.
First, although it is easiest to focus conservation efforts
on relatively well-defined breeding areas, reversing Magel-
lanic Penguin population decline is likely to require
improvements to adult survival during the non-breeding
season. Our finding that the population growth rate of
Magellanic Penguins at Punta Tombo shows low elastic-
ity to reproductive success supports this assertion. A sec-
ond and related conclusion is that small-scale fisheries
closures that focus on breeding season foraging habitat
are likely to have little conservation benefit for this spe-
cies. Effective conservation of Magellanic Penguins would
require spatial management at a much larger scale than
current marine protected areas (Boersma et al. 2015)
and/or than is complemented by other conservation mea-
sures, such as bycatch reduction or lower catch limits for
forage fish (Sherley et al. 2015, 2018, Weller et al. 2016).
Forage fish make up the bulk of the Magellanic Pen-

guin diet during the species long non-breeding migration
(Silva et al. 2014, Marques et al. 2018), and research has
suggested forage fish biomass thresholds under which
adult survival begins to decline rapidly (e.g., in African
Penguins; Weller et al. 2016). The size of anchovy selected
by Magellanic Penguins (mean = 15.8 cm; Marques et al.
2018) overlaps with the size selected with anchovy fish-
eries in South Africa (6–12 cm; Pichegru et al. 2009), sug-
gesting likely competition between growing commercial
fisheries for anchovy in Brazil and migrating Magellanic
Penguins. High spatial overlap between Magellanic Pen-
guin non-breeding habitat and fisheries has been noted
elsewhere in their range (Skewgar et al. 2014). If, as our
study suggests, juvenile and female Magellanic Penguins
are particularly sensitive to food shortage, boosting food
availability during the species non-breeding season would
help to balance ASR and slow population decline. Given
the importance of anchovy to the region’s marine food
web, a precautionary approach to their management
should be taken (Skewgar et al. 2007).
The last key insight provided by studies on African

Penguins is the importance of emigration as a driver of
local population change (Weller et al. 2016). Emigration
and true survival are confounded in our analysis and
sex-specific dispersal patterns may have influenced our
results. Variation in seabird movement patterns can drive
local population dynamics more than adult survival
rates or recruitment (Szostek et al. 2014) and rates of
dispersal can vary with environmental conditions (Dug-
ger et al. 2010). Furthermore, female birds may be more
likely to emigrate than males, particularly in declining
populations (Morrison et al. 2016), and sex-biased dis-
persal can lead to skewed ASRs (Becker et al. 2008,
Pipoly et al. 2015, Komdeur et al. 2017).
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The panmictic genetic structure and metapopulation
dynamics of Magellanic Penguins in the South Atlantic
indicates inter-colony movement (Boersma 2008, Bouzat
et al. 2009, Pozzi et al. 2015, Dantas et al. 2018). Pozzi
et al.’s (2015) analysis suggested that internal dynamics
could describe Punta Tombo’s population trajectory,
but this required assuming a high juvenile survival rate
of 0.65 and the use of a one-sex matrix model. Across all
years studied, the highest juvenile survival rates we esti-
mated were 0.32 for females and 0.44 for males (2003
cohort, 2004 non-breeding season), and the average
across cohorts was only 0.12 for females and 0.17 for
males.
It is likely that there is emigration from and immigra-

tion to Punta Tombo that we could not account for with
our model. Growth rates of increasing colonies of this
species are too high to be explained by internal dynam-
ics, so emigrants from Punta Tombo may be acting as a
source for these populations (Pozzi et al. 2015). How-
ever, to match recorded population trends from 1990 to
2009, we had to increase juvenile survival at Punta
Tombo, so there may be immigration to the colony as
well. It is important to note that Punta Tombo’s effec-
tive population size is probably declining faster than
suggested by our survey data. We counted any nest with
a penguin present as active, and an increasing propor-
tion of those nests are likely to represent unmated
males.
A better understanding of the metapopulation dynam-

ics of Magellanic Penguins is a key conservation priority.
Genetic analysis highlights the importance of the
metapopulation dynamics to this species (Bouzat et al.
2009, Dantas et al. 2018). Several northern colonies in
the South Atlantic are growing rapidly (Boersma et al.
2013, Pozzi et al. 2015), but the status of the overall pop-
ulation is unknown. Furthermore, there is no published
information on the sex ratio of growing colonies of Mag-
ellanic Penguins. It is possible that juvenile females are
emigrating from Punta Tombo to growing colonies at
higher rates than are males.

Sex-biased survival and seabird conservation

Considerations of sex-specific survival are likely to
be important to the monitoring and conservation of
many seabird colonies. If sexual size dimorphism is a
driver, sex-biased survival may be more prominent
among seabirds than currently recognized, as males of
most seabird species are larger than females (true of
74% of 96 seabirds reviewed by Schreiber and Burger
[2001]). Donald (2007) showed that populations of
threatened species tended to have more skewed ASRs
than non-threatened populations, suggesting that ASR
and population health covary. For Magellanic Pen-
guins at Punta Tombo, ASR is sensitive to the same
demographic parameters (i.e., female pre-breeder and
adult survival) as the population growth rate, but its
response to these parameters is more dramatic. Colony

sex ratio trends may therefore act as an early warning
system for deteriorating foraging conditions in this
species and other seabirds. Reproductive success is the
most commonly used indicator of changing environ-
mental conditions in seabirds because it responds
rapidly and dramatically to environmental fluctuations
(Boersma 1978, Oro 2014), but it has low impact on
population growth in Magellanic Penguins (this study)
and other long-lived species (Sæther and Bakke 2000).
Accounting for ASR also provides a more accurate

assessment of population trends. We estimated trends in
Punta Tombo’s Magellanic Penguin population using
the number of nests with adults or eggs present and,
because a decreasing proportion of these nests repre-
sented breeding pairs, we systematically underestimated
the populations’ decline. Likewise, in migratory terres-
trial birds, singing males are more detectible than
females and many unmated males sing throughout the
breeding season, making population declines easy to
miss (Morrison et al. 2016).
Considering sex in demographic studies will become

increasingly important in the face of climate change,
which will result in reductions and shifts in global pri-
mary productivity and prey availability (Behrenfeld
et al. 2006, Sherley et al. 2017). Seabirds show some
flexibility in response to fishing or climate-induced shifts
in prey availability, but there are physiological limits to
this flexibility (Gr�emillet and Boulinier 2009). For sea-
birds in which females are already close to these physio-
logical limits (e.g., foraging distances approach those
that result in no energetic gain), small shifts in prey
availability may have greater impacts on female than
male survival, resulting in a skewed ASRs and declines
in effective population size.

CONCLUSIONS

Magellanic Penguins at Punta Tombo, Argentina
declined by over 40% since 1987. We found that appar-
ent survival rates during the non-breeding season were
lower for females than for males, in agreement with data
collected on carcasses from the species’ non-breeding
range. The long lifespan of Magellanic Penguins means
that even small sex biases in survival accumulate with
age and time to result in increasingly male-biased sex
ratios. Sex-biased survival, particularly among juveniles,
has reduced the effective population size at Punta
Tombo. Our findings are relevant to other species with
life history traits similar to Magellanic Penguins, that is,
that are long-lived and show serial monogamy and
biparental care. Effective conservation of Magellanic
Penguins will require improved knowledge of the spe-
cies’ metapopulation dynamics and a precautionary
approach to fisheries management in the region. Knowl-
edge of sex-biased demography and ASRs may provide
an early warning system for population decline, as ASR
is sensitive to the same demographic parameters as pop-
ulation growth rate.
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