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Summary

Amplicon sequencing of the 16S rRNA gene is the pre-
dominant method to quantify microbial compositions
and to discover novel lineages. However, traditional
short amplicons often do not contain enough informa-
tion to confidently resolve their phylogeny. Here we
present a cost-effective protocol that amplifies a large
part of the rRNA operon and sequences the amplicons
with PacBio technology. We tested our method on a
mock community and developed a read-curation pipe-
line that reduces the overall read error rate to 0.18%.
Applying our method on four environmental samples,
we captured near full-length rRNA operon amplicons
from a large diversity of prokaryotes. The method oper-
ated at moderately high-throughput (22286-37,850 raw
ccs reads) and generated a large amount of putative novel
archaeal 23S rRNA gene sequences compared to the
archaeal SILVA database. These long amplicons allowed
for higher resolution during taxonomic classification by
means of long (~1000 bp) 16S rRNA gene fragments and
for substantially more confident phylogenies by means of
combined near full-length 16S and 23S rRNA gene
sequences, compared to shorter traditional amplicons
(250 bp of the 16S rRNA gene). We recommend our
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method to those who wish to cost-effectively and confi-
dently estimate the phylogenetic diversity of prokary-
otes in environmental samples at high throughput.

Introduction

The 16S rRNA gene has been used for decades to phylo-
genetically classify bacteria and archaea (Woese and Fox,
1977). The gene excels in this respect because of its uni-
versal occurrence, resistance to horizontal gene transfer
and high degree of conservation (Woese, 1987; Green
and Noller, 1997). Highly conserved regions are inter-
spersed with highly variable regions, allowing for phyloge-
netic classification at species and higher taxonomic levels.
In addition, the gene has proven to be an excellent target
for studies aiming to quantify the taxonomic composition
of microbial communities via high-throughput PCR
amplicon sequencing (Doolittle, 1999). Primers are usually
designed such that they anneal to stretches of conserved
sites that flank a variable region, in effect of capturing the
informative variable region of a large fraction of the micro-
bial community. 16S rRNA gene amplicon surveys are
now a standard method in microbial ecology and have led
to important insights into the taxonomic makeup of many
different environments. Examples include oceanic waters
(Sogin et al., 2006), deep sea sediments (Jorgensen
et al., 2012), hot springs (Hou et al., 2013) and the human
gut (Tumbaugh et al., 2007).

Despite its many advantages, the 16S rRNA gene is lim-
ited in its number of phylogenetically informative sites. 16S
rRNA gene-based phylogenetic analyses are therefore
sensitive to stochastic error and exhibit limited resolution
(Brown et al., 2001; Delsuc et al., 2005). Studies aiming to
resolve deeper evolutionary relationships between taxa
often favour large data sets of conserved protein coding
genes over the 16S rRNA gene to overcome such error
and increase resolution (Brown et al., 2001; Wolf et al.,
2001; Brochier et al, 2002; Matte-Tailliez et al., 2002).
Another frequently used method is to concatenate the 16S
rRNA gene with the larger 23S rRNA gene (Williams et al.,
2012; Ferla et al, 2013; Zaremba-Niedzwiedzka et al.,
2017). However, both methods typically require that
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genome sequences are available for the taxa in question.
While it is now possible to obtain genomic data via meta-
genomic binning (Albertsen et al., 2013; Alneberg et al.,
2014), relatively expensive deep sequencing and computa-
tionally demanding metagenome assembly is required. In
addition, draft genomes acquired via metagenomic binning
approaches often lack rRNA genes (Hugenholtz et al.,
2016; Nelson and Mobberley, 2017), which obstructs
linking the obtained metagenomic bins to environmental lin-
eages observed in 16S rRNA amplicon surveys. One pos-
sible solution is to obtain 16S and 23S rRNA gene
sequences simultaneously via PCR amplicon sequencing.
This approach exploits that both rRNA genes are often
neighbouring (67% in known bacterial genomes, 74% in
known archaeal genomes—Supporting Information
Table S1). However, sequences generated by currently
available high-throughput sequencing methods are too
short to capture such long amplicons.

With the introduction of Pacific Bioscience’s single-
molecule real-time (SMRT) sequencing technology,
sequencing long amplicons at moderately high through-
put became realistic. Its relatively high sequencing error
rates (15%) are now substantially reduced via circular
consensus sequencing (ccs). A number of pioneering
studies have already used the technology to success-
fully obtain near full-length 16S rRNA gene sequences
with low error rates (Schloss et al., 2016; Singer et al.,
2016; Wagner et al., 2016). Here we go one step fur-
ther and obtain near full-length 16S and 23S rRNA
genes by sequencing a large part of the rRNA operon.
We develop a read curation pipeline that deals with
PacBio-specific issues and evaluate error rates with a
phylogenetically diverse mock community. We apply
our method to four diverse environmental samples and
compare our method with classic partial 16S rRNA
amplicon sequencing with respect to taxonomic classifi-
cation and resolving deeper phylogenetic relationships
of novel taxa.

Results and discussion
Reducing the mean error rates

Here we present a method for generating and sequencing
amplicons of approximately 4000 bp containing near full-
length 16S and 23S rRNA genes from environmental taxa.
Because the method uses PacBio sequencing technology,
which exhibits higher error rates compared to lllumina, we
developed a read curation pipeline (Fig. 1 and Supporting
Information Fig. S1) that attempts to reduce the mean
error rate. To evaluate the error rate, we applied the
method to a synthetic ‘mock community’ composed of the
genomic DNA of 38 phylogenetically diverse archaeal and
bacterial lineages for which complete genomes are
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Fig. 1. A. Read curation pipeline. ‘ccs’ = circular consensus sequence,
‘gtrim’ = quality trimmed. For a more detailed overview of the pipeline
see Supporting Information Fig. S1.

B. Observed mean error rates. ‘del’ = deletions, ‘ins’ = insertions,
‘sub’ = substitutions.

C. Number of (remaining) ccs reads of the mock community per stage
of the read curation pipeline.

available that encode at least one 16S-ITS-23S cluster. A
single SMRT cell RSIl run generated 22,286 ccs reads.
We observed a mean error rate of 2.45%. The large
majority of errors were deletions (77.7%), followed by
insertions (15.8%) and substitutions (6.5%) (Fig. 1). Of
these, 868 ccs reads (3.9%) had no errors.

We sought to reduce the error rate by removing reads
that are highly erroneous because of several reasons.
First, as was observed by (Schloss et al, 2016), error
rates were strongly correlated with the ‘read quality’ values
that are calculated by the SMRT analysis software
(Supporting Information Fig. S2). We removed 11,664
reads (52.3%) with an associated read quality value of
lower than 0.99. Second, we removed 106 high quality
reads (1.0%) containing local stretches (= 30 bp) of con-
secutive low-quality base-calls (Phred <18) with an
enriched number of errors (Supporting Information Fig. S3).
Third, we observed 1201 high quality ccs reads (11.3%)
that have been previously referred to as ‘siamaeras’
(Hackl et al., 2014). The first half of these reads consists
of the expected amplicon, while the second half consists
of the reverse complement of the first half, but missing a
primer at the breakpoint (Supporting Information Fig. S4).
Siamaeras most likely stem from damaged amplicons that
have a long overhang. The overhang forms a hairpin,
which anneals to the complementary strand. As a result,
the SMRTbell adapter is blocked from ligating there during
the library preparation, and the read processing software
will interpret the concatenation of both strands as a single
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insert (Supporting Information Fig. S4). Since siamaeras
are about twice the expected read length, they are easily
detected and removed by setting a length cutoff (here
5 kbp). However, this does not remove all siamaeras.
Some stem from partial rather than full amplicons and may
as a result be shorter than the length cutoff. Partial
amplicons (which start or end with a primer and cover
<3500 bp of the entire locus) account for a substantial
fraction (3727 ccs reads, 35.1%) of the high-quality ccs
reads. The cause for these type of ccs reads is unclear.
To detect partial siamaeras, we use another property of
siamaeras: that they start and end with the same primer.
Curiously, the large majority (1185 ccs reads, 98.7%) of
identified siamaeras start and end with the reverse primer,
implying that choice of primers affects siamaera formation.
Fourth, since our method is PCR based, we need to
detect and remove chimeras. Chimeras are formed when
incomplete extensions from one locus or amplicons from
that locus anneal to another locus or amplicons from that
locus, either within the same genome or on another
genome. A frequently used method to detect chimeras
uses a de novo approach (Edgar et al, 2011). A query
read is split into four equally sized ‘chunks’ and compared
against more abundant reads of the same dataset to find
two candidate parents. If an artificial sequence constructed
of fragments from the two parents is more similar to the
query than each original parent, and at least one of the
parent reads is at least two times more abundant than the
query, the read is deemed chimeric. The method thus
assumes that chimeric amplicons are less abundant than
non-chimeric amplicons. This assumption works well for
lllumina data, but needs to be adjusted for PacBio data.
The lower throughput, longer reads and higher error rate
mean that virtually all reads are unique (and thus have an
abundance of ‘one’). As a result, a chimera will have the
same abundance as a parent and will not be detected. In
addition, because by default only four chunks are used,
chimeras with breakpoints in the first or last ~1000 bp
may be missed. Thus, to account for the nature of the
PacBio data, we used an abundance ratio threshold of
one and increased the number of chunks to 16. Among
the remaining 5030 reads, 91 (1.8%) were identified as
chimeric. Finally, since some reads may stem from loci
other than 16S-ITS-23S, we removed 23 reads (0.5%) that
did not contain both genes. After these operations, the
error rate was reduced to 0.64% (Fig. 1). Deletions were
still the most prominent type of error (84.4%), followed by
insertions (8.3%) and substitutions (7.2%). Among these
‘gtrim ccs’ reads, only 1 was without error. The other
867 raw ccs reads without error were short (< 3 kbp,
median 1001 bp) and removed by the pipeline. Though a
substantially improved error rate, we recommend that
users do not submit rRNA genes predicted from gtrim ccs
reads to reference databases, as they may still contain a
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relatively large number of errors (~8 per 16S rRNA gene,
~15-18 per 23S rRNA gene).

We sought to reduce the error rate further. We argued
that if the remaining read errors are still randomly distrib-
uted over the reads, then reads originating from the same
locus or the same genome will have errors at different posi-
tions. As a result, true base-calls would outnumber errone-
ous base-calls per site and their consensus would have a
reduced error rate. We grouped reads putatively originating
from the same genome by clustering the reads at a 99%
identity threshold. This is similar to the preclustering
method used by Schloss and co-workers (Schloss et al.,
2016) that constructs a final set of high quality reads by
selecting the most abundant (and hence most accurate)
read per 99% precluster. Since there is virtually no abun-
dance information of longer PacBio reads (there are nearly
no identical reads), we preferred a consensus-based
method. When considering consensus-ccs reads gener-
ated from 110 preclusters with at least three reads, the
error rate dropped to 0.18%. Deletions were no longer as
prominent (44.9%), now more comparable to insertions
(17.5%) and substitutions (37.5%) (Fig. 1). Remaining dele-
tions were often found after long homopolymers (= 3 bp)
(unpublished observation), implying that deletion errors are
not randomly distributed (also observed by Tedersoo et al.,
(2017)). Of these, 30 consensus-ccs reads were without
error (27.2%). It should be noted that our consensus
method to reduce read error rate is appropriate for our
mock community because all taxa are phylogenetically dis-
tinct. For environmental samples that likely contain a
degree of strain microdiversity, 99% preclusters will most
likely contain reads originating from various strains in addi-
tion to from various loci of the same strain. The consensus-
ccs reads will thus represent not the 16S-ITS-23S
sequence of one strain or locus, but of multiple closely
related strains and/or loci. Thus, we recommend that users
only generate consensus-ccs reads from samples with no
microdiversity and do not submit rRNA genes derived from
consensus-ccs reads to reference databases.

Here, we made use of the PacBio RSIl sequencer.
During the execution of this study, PacBio has released
the Sequel sequencer, which has a substantially higher
throughput. We estimated that the Sequel is about 4x
more cost effective than the RSII with respect to the pro-
tocol presented here. Since the principal sequencing
chemistry remains unchanged, our protocol is perfectly
suitable for the Sequel, and we expect similarly accurate
reads but at a substantially higher throughput.

Taxonomic classification of environmental sample reads

We applied our method to four environmental samples:
‘TNS08’, a sediment sample of a shallow hydrothermal vent
field (5083 gtrim ccs reads), ‘SALA’, a black biofilm from an
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old silver mine, (4069 qtrim ccs reads), ‘PM3’, a marine
sediment sample (6950 gtrim ccs reads) and ‘P19, a hot
spring sediment sample (8634 gtrim ccs reads). Taxonomic
classification was done by comparing the qtrim ccs reads
to the SILVA SSU database. Note that percentages stated
next do not necessarily reflect biological relative abun-
dances; our method only captures taxa with 16S-ITS-23S
loci and is subject to primer biases (see also Supporting
Information). All samples are characterized by a relatively
high fraction of archaeal sequences (Fig. 2 and Supporting
Information Fig. S5). In particular, TNS08 appears to be
dominated by archaeal sequences: 33.6% THSCG
(Aigarchaeota), 11.8% ANME-1 (Euryarchaeota), 11.6%
Bathyarchaeota, 7.1% Thermoprotei (Crenarchaeota),
4.3% Group C3 (Thaumarchaeota) and 3.6% Candidate
division YNPFFA. In addition, 23.6% of the reads stemmed
from unclassified archaeal lineages. SALA on the other
hand has a larger bacterial representation, including
Nitrospirae (6.1%) and various lineages of Actinobacteria
(8.7%) and Proteobacteria (18.0%; of which 32.6%
Desulfurellaceae). Archaeal sequences are solely repre-
sented by Thaumarchaeota, including Marine Group |
(50.5% of which 40.0% Candidatus Nitrosoarchaeum) and
SAGMCG-1 (3.1%). PM3 sequences were rich in archaeal
lineages MBG-D/Izemarchaea (32.3%; Euryarchaeota),
Group C3 (19.1%; Thaumarchaeota) and Bathyarchaeota
(3.5%). Atribacteria (5.5%), OPB41 (20.6%; sole represen-
tative of the Actinobacteria) and Anaerolineaceae (2.5%)
constituted the most abundant bacterial sequences.
Finally, archaea in P19 were mostly represented by
Thaumarchaeota (unclassified Thaumarchaeota: 34.4%,
AK59: 5.8%, OPPDO003: 3.0%), Aigarchaeota (4.0%, solely
represented by Candidatus Caldiarchaeum) and unclassi-
fied Archaea (5.0%), while bacterial sequences are mostly
represented by 8.0% Venenivibrio (Aquificae), 7.6%
Ignavibacteria, 5.1% Thermodesulfovibrio (Nitrospirae),
7.0% Dictyoglomus (Dictyoglomi) and 6.9% unclassified
Bacteria.

Long-read information increases taxonomic resolution

We compared the taxonomic resolution obtained from near
full-length 16S rRNA genes encoded on the ccs reads
(~1000 bp) with that of shorter 16S rRNA gene fragments
(250 bp) that simulate more common contemporary
lllumina-like read lengths. The estimated taxonomic com-
positions using 250 bp fragments (Fig. 2 and Supporting
Information Fig. S5) generally resemble that of ~1000 bp
fragments. However, large differences are found at assign-
ments to the unclassified Archaea and unclassified bacte-
ria phyla: P19 (10.6% vs 5.0%) and TNS08 (73.7% vs
23.6%) see a large decrease in unclassified Archaea
assignments when using ~1000 bp fragments, while P19
(18.6% vs 6.9%), PM3 (20.4% vs 1.2%) and SALA (6.9%

vs 0.4%) see a large decrease in unclassified bacteria
assignments. Taxonomic assignments seem to transfer
particularly to AK59 Thaumarchaeota (0 vs 5.8%) and
Chlorobia (0 vs 3.3%) in P19, OPB41 (2.3 vs 20.6%) in
PM3 and THSCG (0 vs 33.6%) and Bathyarchaeota (0.1
vs 11.6%) in TNS08 when using ~1000 bp fragments.
The extra sequence information can thus aid with the iden-
tification of more specified lineages in particular samples
that would otherwise not be classified. This result is in-line
with (Schloss et al., 2016), which showed that the fraction
of reads classified at genus or species levels increased
with increasing read coverage of the 16S rRNA gene.

Phylogenetic diversity of captured clades in the
environmental samples

When investigating environmental samples with a large
degree of novel diversity, taxonomic classification can
yield a good general overview of present higher order tax-
onomic levels. However, their degree of phylogenetic
diversity and their respective placements in the tree of life
often remain unresolved. Here, we clustered the gtrim ccs
reads into 97% OTUs per sample and incorporated rRNA
genes predicted from the centroids into separate bacterial
and archaeal, concatenated ‘16S + 23S’ phylogenetics
data sets, which further comprised representative refer-
ence bacterial and archaeal 16S and 23S rRNA gene
sequences, and inferred maximum likelihood phylogenies
(Fig. 3 and Supporting Information Figs. S6, S7). TNS08
reads are characterized by a rich archaeal diversity of
Crenarchaeota (mainly Thermoprotei and Candidate divi-
sion YNPFFA), Aigarchaeota (mainly THSCG), some
diversity of Thaumarchaeota (mainly Group C3 and
unclassified Thaumarchaeota), Bathyarchaeota and
unclassified Archaea. SALA reads, despite being domi-
nated by Marine Group | archaea (Fig. 2), feature a rich
bacterial diversity of Proteobacteria, FCB group
(Bacteroidetes, Gemmatimonadetes), Actinobacteria,
PVC group (Planctomycetes, Omnitrophica), Chloroflexi,
Nitrospirae and Acidobacteria. PM3 reads are home to both
diverse archaea and bacteria. Among archaea, we
observed Bathyarchaeota and Asgard archaea, as well as
a diverse clade sister to Bathyarchaeota and a rich
microdiversity of Izemarchaea (Marine Benthic Group D;
part of ‘Thermoplasmata’ in Fig. 2). Among bacteria, we
observed several lineages with extensive (micro)diversity
closely related to, respectively, deltaproteobacterium
Desulfatiglans anilini, CPR bacterium ‘Aminicenantes bac-
terium SCGC AAA252-G21’, ‘Latescibacteria bacterium
SCGC AAA252-D10’, Candidate division JS1, Bacte-
roidetes, Spirochaetes, Actinobacteria and Chloroflexi. P19
reads display an overall lesser degree of diversity and most
notably include various diverse lineages related to
Thaumarchaeota and Aigarchaeota, a lineage branching

© 2019 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.,

Environmental Microbiology, 21, 2485-2498



rRNA operon amplicon sequencing with PacBio 2489

P19 PM3 SALA TNS08

Aigarchaeota; Terrestrial_Hot_Spring_Gp(THSCG) - GG Moo o as 36 om
Aigarchaeota; Aigarchaeota_Incertae_Sedis- 4 [N OGN ol ow 03 o
Bathyarchaeota; Bathyarchaeota_cl - -- 35 1.4 1.6 [
Crenarchaeota; Thermoprotei - NG 71 6.1
Euryarchaeota; Methanomicrobia - -- 53 53 Pomes 118 117
Euryarchaeota; Thermoplasmata - -- 323 317 --
Thaumarchaeota; AK59- 5.8 - - --
Thaumarchaeota; Group_C3- = 0.3 0.3 19.1 191 4.3
Thaumarchaeota; Marine_Group_| - -- o [ o
Thaumarchaeota; OPPD003- 3 o o |
Thaumarchaeota; South_African_Gold_Mine_Gp_1(SAGMCG-1) -- o [ o

Thaumarchaeota; Thaumarchaeota_unclassified - | 34.3 -

pMC2A209; pMC2A209_cl- 1.1 [0
Candidate_division_YNPFFA; Candidate_division_YNPFFA_cl- 1.6 0.7
Archaea_unclassified; Archaea_unclassified - 5 10.6

Actinobacteria; Acidimicrobiia - |G NG

Actinobacteria; Actinobacteria - [ NG

Actinobacteria; MB-A2-108 - |G G

Actinobacteria; OPB41 - NG NG

Actinobacteria; Thermoleophilia - |G INGIN

Actinobacteria; Actinobacteria_unclassified - [N NG

Aminicenantes; Aminicenantes_cl - --
Aquificae; Aquificae - 8

Atribacteria; Atribacteria_cl - --

Bacteroidetes; Cytophagia - [0 IO

Bacteroidetes; Bacteroidetes_unclassified - [0 0T

Chlorobi; Chiorobia- 3.3 [JONN

Chloroflexi; Anaerolineae - NG NG

Chloroflexi; Chloroflexi_unclassified - --

Deferribacteres; Deferribacteres_Incertae_Sedis - [ GHN G
Dictyoglomi; Dictyoglomia - 7 3.9
Elusimicrobia; Elusimicrobia- =~ 0.5 0.5
Fervidibacteria; Fervidibacteria_cl - [0 NG
Gemmatimonadetes; Gemmatimonadetes - [ GHI NG

Gemmatimonadetes; Gemmatimonadetes_unclassified - [ NGHN G
Gracilibacteria; Gracilibacteria_cl - 1 1
Ignavibacteriae; Ignavibacteria- 7.6 6
Latescibacteria; Latescibacteria_Incertae_Sedis - --
Nitrospirae; Nitrospira- 5.1

Planctomycetes; OM190 - --

Planctomycetes; Planctomycetes_unclassified - || GHI NG
Proteobacteria; Alphaproteobacteria - [N NG
Proteobacteria; Betaproteobacteria - [ GHIE NG
Proteobacteria; Gammaproteobacteria - [N NG
Proteobacteria; Deltaproteobacteria- 1.5 -
Proteobacteria; Proteobacteria_unclassified - [0 [0
Spirochaetae; Spirochaetes - [0 NG
RBG-1_(Zixibacteria); RBG-1_(Zixibacteria)_c! - || BN
ws2;ws2_cl- 21 [N

Bacteria_unclassified; Bacteria_unclassified- 6.9 18 6 1.2 20.4 d 2.9
R Q R R R R
& & & & & ®
&P R S P

Fig. 2. Relative abundance (%) estimates of environmental samples based on gtrim ccs reads. Top 50 most abundant lineages (phylum; class)
across the four samples are shown. Colours in a blue-to-red gradient reflect low-to-high relative abundances. Unobserved lineages are indicated
with grey.
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deep relative to MSBL1 archaea and moderately diverse
bacterial lineages related to ‘Nitrospirae bacterium JdFR-
88’ and Dictyoglomus thermophilum.

Phylogenetic signal of 16S-ITS-23S reads

Combining the 16S and the 23S rRNA gene sequences
in phylogenetic analyses should in theory increase the
phylogenetic signal compared to using only the sequence
of the 16S rRNA gene because the number of informative
sites increases (Williams et al., 2012; Ferla et al., 2013;
Zaremba-Niedzwiedzka et al., 2017). To assess the
degree of increase in phylogenetic signal of ‘16S-ITS-23S’
qtrim ccs reads compared to that of common ‘partial 16S’
reads with regards to phylogenetic placement, we incorpo-
rated rRNA genes predicted from the centroids in two addi-
tional phylogenetic data sets: ‘16S’, containing full-length
reference 16S rBRNA genes, supplemented with near full-
length read predicted 16S rRNA genes, and ‘16S_250bp’,
containing full-length reference 16S rRNA genes, sup-
plemented with read predicted 16S rRNA genes shortened
to 250 bp (spanning the V4 region) to simulate lllumina-like
reads. Separate bacterial and archaeal data sets were con-
structed. We then inferred maximum likelihood phylogenies
for all data sets and compared the overall topology and sta-
tistical support of the obtained trees between 16S + 23S,
16S and 16S_250bp data sets. For both archaea and

bacteria, the 16S + 23S phylogeny featured, when com-
pared to 16S and 16S_250bp phylogenies, (i) a general
substantial increase in statistical support at both deep and
shallow levels of the tree (Fig. 3, 4, Supporting Information
Figs. S6, S7), (i) a higher degree of monophyly of
established clades and (jii) a clearer identification of clades
not affiliated with any reference taxa (Supporting Informa-
tion Figs. S6, S7). In addition, our analysis illustrates that
the “16S + 23S’ phylogeny allows for the recognition of envi-
ronmental lineages affiliated with clades of interests that in
‘16S_250bp’ and ‘16S’ phylogenies remain unresolved. For
example, the position of OTUs 165, 189 and 287 of the
PM3 sample were unresolved in the 16S_250bp’ (placed
next to Euryarchaeota and DPANN archaea with weak sup-
port) and ‘16S’ phylogenies (placed within Asgard with neg-
ligible support) but were firmly identified as a member of the
Asgard archaea in the ‘16S + 23S’ phylogeny (Supporting
Information Fig. S6). Similarly, the position of OTUs
26, 92, 331, 457 and 484 of the SALA sample were unre-
solved in the “16S_250bp’ (placed among Delta- and
Epsilonproteobacteria without support) and ‘16S’ phyloge-
nies (placed within Alphaproteobacteria and Deltaproteo-
bacteria with negligible support) but were firmly identified
as the members of the Alphaproteobacteria in the
‘16S + 23S’ phylogeny (Supporting Information Fig. S7).
This suggests that these lineages, which are potentially
important for understanding the origins of eukaryotes and
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Methods - Phylogenetic analyses). Separate comparisons for Archaea and bacteria data sets are shown.

mitochondria, respectively, would not have been identified
with standard 16S rRNA gene amplicon assays.

High throughput capture of 23S rRNA gene sequences

The 16S rRNA gene has long been a key tool in phyloge-
netic and ecological analyses (Lane et al., 1985;
Weisburg et al., 1991). Previous studies have used PCR
primers targeting the 16S rRNA gene to assess microbial
diversity from various environments (Turnbaugh et al.,
2007; Hou et al., 2013), and a large amount of (full or
partial) 16S rRNA gene sequences in public databases
has been collected. Although amplicon studies targeting
the 23S rRNA gene have been performed in the past
(Zimmermann et al., 2005; Hunt et al., 2006), the retrieval
of 23S rRNA gene sequences relies mostly on genome
sequencing projects. This is especially visible for the
archaeal domain, for which only 1271 reference 23S
rRNA sequences (distributed over 412 97% OTUs, calcu-
lated with the same clustering algorithm used for environ-
mental reads) are available in the SILVA database
[LSURef release 128; (Pruesse et al., 2012)]. This study
generated archaeal 23S rRNA gene sequences from
16,069 qtrim ccs reads (generally between 2400 and
2800 bp long, and expected error rates of ~0.6% - Fig. 1),
distributed over 263 97% OTUs. Bacterial LSURef is
more extensive, with 130,923 entries distributed over 8707
97% OTUs. This work generated bacterial 23S rRNA gene
sequences from 8635 qtrim ccs reads, distributed over
883 97% OTUs. Based on these comparisons, we con-
clude that our method has the potential to capture a large
amount of novel 23S rRNA gene diversity, especially for
archaea. We envision that the increased availability of near
full-length 23S rRNA gene sequences, in combination with
linked near full-length 16S rRNA gene sequences, could

aid in resolving the phylogenies of particular bacterial and
archaeal lineages of interest.

Internal transcribed spacer

In addition to the 16S and 23S rRNA genes, our method
also captures the internal transcribed spacer (ITS). The
ITS region occasionally harbours additional genes, often
tRNA genes (Acinas et al., 2004). In case longer genes
situated here are of interest, the length cutoff in the pipe-
line (here: 5000 bp) would have to be appropriately
adjusted. In addition, the ITS region is typically subject to
higher evolutionary rates and it is tempting to use the ITS
to differentiate 16S and 23S rRNA genes stemming from
different loci from the same strain or from different strains.
However, there is a large variation in degree of ITS
sequence divergence: on the one hand, different ITS cop-
ies between closely related genomes may be a 100% iden-
tical (Supporting Information Fig. S8). On the other hand,
different ITS copies within the same genome may be <50%
identical (Supporting Information Fig. S8). It is therefore not
possible to distinguish with certainty whether ccs reads with
identical or highly different ITS sequences stem from the
same locus, same strain, or from different strains. Identical
ccs reads may thus stem from different strains, while dis-
similar ccs reads could stem from the same strain. We
therefore caution to make any firm conclusions about levels
of strain diversity based on this assay alone.

Conclusions

The method presented here allows users to generate good
quality, near full-length 16S and 23S rRNA gene
sequences from environmental taxa and to use these to
more confidently determine their taxonomic classification
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and phylogenetic context compared to standard, lllumina-
based 16S rRNA gene sequencing assays. Quality
trimmed ccs reads are relatively low in sequencing error
and could serve as reference sequences in future phyloge-
netic analyses. We envision that our method represents a
cost-effective approach for generation of novel near full-
length rRNA gene sequences and for a relatively straight-
forward, PCR-based exploration of phylogenetic diversity
of environmental samples. Combining 16S and 23S rRNA
sequence information increases the phylogenetic resolu-
tion for both deeper branches (allowing one to more confi-
dently identify novel deeply diverging lineages) and
shallower branches (allowing one to study the phylogenetic
relationships of closely related rRNA gene sequences) of
the tree. Moreover, our method also captures the ITS
region, which may contain additional genes of interest.

In addition to the benefits outlined above, our method
can be used in complement with present-day meta-
genomics approaches aiming to investigate the microbial
diversity of environmental samples using high throughput
sequencing techniques. While these methods have
proven their use in the recent past, e.g. in their ability to
reconstruct high-quality draft genomes from metagenomic
datasets using various binning strategies, they typically per-
form poorly with respect to assembling full length rRNA
gene sequences. The underlying reason for this resides in
the repetitive nature of rRNA gene sequences along with
alternate sequence composition and coverage that confuse
assembly and binning algorithms (Ghurye et al., 2016;
Hugenholtz et al, 2016; Nelson and Mobberley, 2017).
Near full-length 16S and 23S rRNA sequence data gener-
ated by our method can be used to complement genome
bins that are lacking these genes completely or partially.

Our method is restricted to taxa with neighbouring 16S
and 23S rRNA genes. However, this limitation can be over-
come by using primer sets that specifically target the 16S
or the 23S rRNA gene. Such amplicons are expected to
capture more diversity and exhibit lower mean error rates,
but at the expense of 16S-23S rRNA gene linkage informa-
tion. In particular assays specifically targeting archaeal 23S
rRNA genes could be valuable as current archaeal 23S
rRNA gene databases are severely underrepresented.
One can alternatively specifically sequence full-length 16S
rRNA genes with the recently developed method of (Karst
et al.,, 2018). Their method is based on unique molecular
sequence tagging, is high throughput, free of primer bias
and operates at a low error rate (~0.17%). However, their
current protocol is more labor intensive and is based on
lllumina synthetic long read sequencing which is limited to
~2000 bp. It is thus unable to capture full-length 23S rRNA
genes or entire 16S-ITS-23S loci.

In the current study we have used PacBio long-read
sequencing technology to sequence long (~4 kb) amplicons.
However, other long-read sequencing technologies such

as Oxford Nanopore could be appropriate as well. Indeed,
one study (Kerkhof et al., 2017) has already attempted to
sequence 16S-ITS-23S loci with the MinlON. However,
their raw sequence data suffered from high error rates
(81 £ 5% average similarity to references) and though a
consensus method was proposed to reduce error rates, it
was based on the assumption that reads with the same
best BLAST hit stem from the same strain/locus. lts useful-
ness to obtain high quality 16S-ITS-23S sequences from
novel lineages is thus questionable. In contrast, protocols
such as the recently developed NanoAmpli-Seq (Calus
et al,, 2018) present a promising way to obtain long and
yet good quality sequences. NanoAmpli-Seq entails a sim-
ilar consensus sequence generating step as presented
here which can reduce read error rates from ~2.0% to
~0.5%. However, as discussed above, when applied to
complex natural communities there is a risk of generating
multispecies or multiloci consensus sequences. Reads
stemming from the exact same 16S-ITS-23S locus could
potentially be recognized through a unique molecular
sequence tag method in combination with Oxford
Nanopore sequencing, as was briefly investigated by
(Karst et al., 2018). However, current throughput with
the MinlON appears to be too low to retrieve sufficient
number of reads per molecular tag, and error rates did
not drop below ~1%.

Experimental procedures

Fraction of reference genomes with neighbouring 16S
and 23S rRNA genes

We estimated the fraction of the natural diversity of bac-
teria and archaea with neighbouring 16S and 23S rRNA
genes by using all reference genomes available in NCBI
RefSeq (May 2017; 12,596 bacteria and 364 archaea,
one representative per species). We required that the
16S rRNA gene was situated upstream of the 23S rRNA
gene, and that the total length of the ‘16S-ITS-23S’ part
of the rRNA operon was less than 6500 bp.

Primer design

For the forward primer, we used the A519F (5-CAGCM
GCCGCGGTAA-3, derived from https://academic.oup.
com/nar/article/41/1/e1/1164457) primer. It covers a large
fraction of the known bacterial and archaeal diversity and
has shown robust performance in previous 16S rRNA gene
amplicon studies (Spang et al., 2015; Baker et al., 2016).
For our reverse primer, we designed one in such a man-
ner that it would anneal to the 3’ end of the 23S rRNA
gene and would cover as large a diversity of bacteria and
archaea as possible. First, we took the full, 150,000 nt
long SILVA LSURef (release 119) alignment (SILVA
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_119_LSURef_tax_silva_full_align_trunc.fasta, available
at the SILVA archive) and removed all sequences that cor-
responded to eukaryotes or were shorter than 2200 bp
(not counting gaps). We removed all sites with more than
10% gaps (trimAl v1.4 -gt 0.90 (Capella-Gutiérrez et al.,
2009)). The archaea are heavily underrepresented in
the LSURef 119 database (43,822 bacterial entries vs
629 archaeal entries), and any primer based on the cur-
rent alignment may have a strong bias towards bacteria.
To prevent this and further prevent a bias towards species
that have entries for a disproportionate number of strains,
we clustered all bacterial entries into 90% OTUs with
UCLUST (Edgar, 2010) and rebuilt the alignment with one
representative sequence (the centroid) per OTU and sup-
plemented it with all archaeal entries.

We fed this alignment to WEBLOGOV3 (http://weblogo.
threeplusone.com/) and ran it in both ‘bit” and ‘probability’
modes with otherwise default settings. The bit mode visu-
alizes highly conserved sites, while the probability mode
visualizes the relative occurrence of each base per site.
We then used both logos to design candidate primers.
They were required to (i) anneal to a highly conserved
region on the 3’ region of the 23S rRNA gene, (ii) lack
degenerate bases in the 3’ end and generally contain as
few degeneracies as possible, (iii) have a predicted melt-
ing temperature (Ty) within 5°C of the predicted Ty of
the forward primer, (iv) have a 3’ terminal G or C to facili-
tate primer extension and (v) have a low probability of for-
ming homodimers or cross-dimers with the forward
primer under PCR conditions. Expected Ty, and probabil-
ity of primer-dimers were evaluated with Thermo Fisher
Scientific’s online MULTI PRIMER ANALYSER.

Taxonomic coverage of all candidate primers was then
evaluated with SILVA’s TestProbe. In the end, primer
‘U2428R’ (5-CCRAMCTGTCTCACGACG-3') was selected.
It covers 98.9% of all bacterial, and 89.5% of all archaeal
23S rRNA gene entries in the SILVA 128 LSUREef release.

Mock community

We constructed a synthetic ‘mock community’ sample
composed of genomic DNA from 38 phylogenetically dis-
tinct and diverse bacteria and archaea. To be included,
taxa were required to have a complete genome available
and have at least one 16S-ITS-23S locus (a neighbouring
16S and 23S rRNA gene with an ITS <1 kbp). For a com-
plete list, see Table S2. Genomic DNA for these taxa
was ordered from DSMZ (Brunswick, Germany) and
quantified with the Quant-IT PicoGreen dsDNA Assay kit
(ThermoFisher) using the FLUOstar Omega microplate
reader (BMG Labtech). The genomic DNAs of all
selected taxa were pooled in such a manner that the
gDNA of each taxon contributed an estimated equal num-
ber of 16S-ITS-23S loci to the final mock community. For
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example, the mock would have ten times more Des-
ulfovibrio gDNA than Bacillus gDNA, because Des-
ulfovibrio encodes a single 16S-ITS-23S locus, whereas
Bacillus encodes 10 such loci. To calculate for each spe-
cies the volume fraction in the mock, we first converted
the measured concentrations in ng/ul to concentrations in
‘operonmol’/ul (Table S2). An operonmol here is defined
as the number of 16S-ITS-23S loci present in a genome
multiplied with the molecular weight of the genome. The
volume fraction is then calculated by dividing the inverse,
ul/operonmol with the sum of pl/operonmol of all taxa.

Environmental samples

Four environmental samples were used in this study:
‘P19’, ‘PM3, TNSO08 and ‘SALA’. P19 is a sediment
sample obtained from hot spring Radiata Pool,
Ngatamariki, New Zealand. PM3 is a sediment sample
taken from 1.25 m below the sea floor using a gravity
core at Aarhus Bay, Denmark. TNSO08 is a sediment sam-
ple taken from a shallow submarine hydrothermal vent
field near Taketomi Island, Japan. SALA is a sample of a
black biofilm that was taken at 60 m depth in an old silver
mine near Sala, Sweden. Detailed descriptions of DNA
extractions and further DNA sample cleaning of the sam-
ples P19 (or ‘P1.0019’), PM3 and TNSO08 (or ‘617-1-3)
can be found in (Zaremba-Niedzwiedzka et al., 2017).
DNA extraction of SALA was done with the FastDNA
50 ml spin kit for soil (MP Biomedicals).

PCR

We used primers A519F and U2428R to amplify the rRNA
operon between position ~520 of the 16S rRNA gene and
position ~2430 of the 23S rRNA gene in the mock com-
munity and the extracted DNA from the four environmental
samples. All PCR reactions were set up with the Q5 High-
Fidelity DNA Polymerase kit (New England Biolabs)
according to manufacturer's recommended reaction mix
except for a final Q5 concentration of 0.04 U/ul instead of
0.02 U/ul. Each reaction included the Q5 High GC
Enhancer and was done with 2 ng of template DNA,
unless otherwise specified. Cycling conditions were as fol-
lows: denaturation at 98°C for 30 s, followed by 30 cycles
of amplification (denaturation at 98°C for 10 s, annealing
at 64°C for 30 s, extension at 72°C for 3 min and 30 s)
and a final extension at 72°C for 10 min. By default, each
sample was amplified in three parallel 50 pul reactions.
Deviations from the default reaction: the mock community
amplifications were done in 25 pl reactions with 1 ng of
template DNA, the TNS08 sample was amplified in two,
34 cycle parallel reactions with 0.2 ng of template, the
PM3 sample was amplified in five parallel reactions, and
the P19 sample was amplified in nine parallel reactions, of
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which three were done with 34 cycles. Note that TNS08
and P19 read error rates will be higher compared to the
mock, as they were done with 4 additional PCR cycles.
PCR products were cleaned with AMPure XP beads
(Beckman Coulter) according to lllumina’s Nextera DNA
Library Prep, Clean Up Library protocol (page 15-16). We
used a 2:1 PCR product:beads volume ratio, and eluted in
ddH0. In addition to removing PCR reagents, bead purifi-
cation also removes short DNA fragments such as
primers, primer-dimers and potential small unspecific
PCR products. All purified PCR products were then
pooled by sample and quantified with the Qubit dsDNA
HS (High-Sensitivity) Assay kit (ThermoFisher Scientific).

PacBio sequencing

Libraries were prepared by ligating SMRTbell adapters
onto the PCR products as described in the ‘Procedures &
Checklist - 5 kb Template Preparation and Sequencing’
protocol (without the fragmentation step). Each library
was loaded onto the SMRT cells with MagBead loading
(one library per SMRT cell) and sequenced on a Pacific
Bioscience (PacBio) RSII SMRT DNA Sequencing Sys-
tem with the P6-C4 chemistry and a movie length of
240 min. Circular consensus (ccs) reads were generated
from the movies with ‘ReadsOfinsert’ protocol,
implemented in the SMRT Analysis v2.3.0 (Patch 5).

Read curation pipeline

For a graphical overview of the curation pipeline that
includes explanations on each curation operation, see
Fig. 1 and Supporting Information Fig. S1). We started by
discarding ccs reads that had an associated predicted read
quality (the ‘rq’ tag in the ccs.bam file) of less than 0.99.
We further discarded any high quality read that had an
internal window of at least 30 bp with an average phred
score of lower than 18 (stretch of low quality, see (Fichot
and Norman, 2013)) with an in-house script (see Data
availability statement). All non-ambiguous base calls
among the remaining ccs reads with phred score of O were
changed to ‘N’ with the mothur v.1.37.4 (Schloss et al.,
2009) fastq.info function (pacbio = T). The mothur trim.
segs() function was then used to discard all reads with
10 or more consecutive identical base calls (maxhomop =
10), reads shorter than 3000 bp (minlength = 3000) or lon-
ger than 5000 bp (maxlength = 5000), reads with more than
two mismatches to primers (pdiffs = 2) and simultaneously
trim recognized primer sequences from the starts and ends
of reads (keepforward = F). We further used the
demultiplexing capacity of trim.seqs() to recognize and
consecutively remove reads (siamaeras - see github.com/
Biolnf-Wuerzburg/proovread (Hackl et al, 2014)) that
started and ended with the same primer. Up to this point

each ccs read still represents the positive or negative
strand, depending on which strand the polymerase initiated
the sequencing. In the next step we ‘polarized’ the reads,
meaning that after polarization all reads are in the same
direction and represent the same strand. To recognize
reads derived from opposite strands, we used the
--adjustdirection function of MAFFT v7.050b (Katoh and
Standley, 2013). We detected chimeras de novo and sub-
sequently removed them with mothur's chimera.uchime
(reference = self, chunks = 16, abskew = 1) and remove.
segs(), respectively. On all reads that passed we predicted
the partial 16S and 23S rRNA genes and their associated
ITS with RNAmmer v1.2 (Lagesen et al., 2007). RNAmmer
was run in bacterial and archaeal modes. Per read, we
chose the gene predictions (bacterial or archaeal) with the
highest score. All reads that have both 16S and 23S rRNA
genes predicted are referred to as ‘quality trimmed ccs
reads’.

Consensus calling

We preclustered all quality trimmed ccs reads with
VSEARCH v2.4.3 at 99% identity level (Rognes et al.,
2016) (—-cluster_fast, —-id 0.99, —-sizeout). Next, we gen-
erated majority rule consensus reads for each precluster
of size 3 or larger. Such preclusters were aligned with
MAFFT Q-INS-i (—-kimura 1) and each alignment was
consequently used as input for mothur's consensus.seqs
(cutoff = 51). Gaps were removed in the resulting consen-
sus, yielding final precluster consensus sequences.

Error rate evaluation

The degree of erroneous base calls was evaluated by
comparing the ccs reads derived from the mock commu-
nity with the reference loci that comprises the 16S rRNA
gene, the 23S rRNA gene and ITS (henceforth referred
to as ‘16S-ITS-23S’) sequences at different points in the
read curation pipeline (Fig. 1). We extracted reference
16S-ITS-23S sequences from the mock community taxa
genomes and only included instances smaller than
6000 bp. The reference was further supplemented with
16S-ITS-23S sequences from taxa that were found to
contaminate the mock community (Veillonella parvula
DSM 2008, Moellerella wisconsensis ATCC 35017,
Staphylococcus epidermidis ATCC 12228 and Strepto-
coccus pneumoniae R6). For Moellerella, the 16S and
23S rRNA genes were encoded on different contigs
(derived from a metagenome assembly of the mock com-
munity, data not shown) thus do not necessarily form a
16S-ITS-23S locus. However, since we identified ccs
reads with Moellerella 16S and 23S rRNA genes, we
conclude that they do. We patched the reference 16S
and 23S rRNA gene sequences with the ITS sequence
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from the highest quality Moellerella ccs read and
included it in our reference. Ccs reads were compared
with the reference by mapping them onto the reference
with BLASR v3.1 (-minMatch 15, —maxMatch 20, —bestn
1) (Chaisson and Tesler, 2012). Number of substitutions,
insertions and deletions were extracted from the CIGAR
string and the NM tag in the output SAM file and used to
calculate the overall error rate (sum of substitutions,
insertions and deletions divided by the alignment length).

OTU clustering

Operational taxonomic unit (OTU) clustering of quality-
trimmed ccs reads was done per environmental sample
with VSEARCH (—-cluster_size, —-strand both, —-id 0.97,
—-sizeout). Read names were appended with
size = <read_quality>‘prior to clustering. This ensured
that the --cluster_size algorithm ranked reads from
highest to lowest read quality prior to clustering and that

the highest quality read became the centroid of the OTU.

Phylogenetic analyses

Two separate reference phylogenetics datasets were con-
structed, one for Bacteria and one for Archaea: All 16S (=
900 bp) and 23S (= 1500 bp) rRNA gene sequences avail-
able in SILVA (release 128) https://academic.oup.com/nar/
article/35/21/7188/2376260, JGI and NCBI (April 2017)
were included. The genetic redundancy of the datasets was
reduced by clustering the 16S rRNA gene sequences with
VSEARCH at 85% identity for Bacteria, and 95% identity
for Archaea (—-cluster_fast) and keeping only the centroid
sequences and their corresponding 23S rRNA gene
sequences. A lower identity threshold was used for Bacteria
to keep the phylogenetics dataset computationally tractable.
The 16S and 23S rRNA gene sequences were aligned sep-
arately using MAFFT L-INS-i 7.309 (—maxiterate 0, —-
adjustdirection), timmed using trimAl (—gt 0.5), and a maxi-
mum likelihood phylogenetic tree was inferred from the
concatenated 16S and 23S rRNA gene alignment using 1Q-
TREE 1.6.beta4 (Nguyen et al., 2015) under the GTR + R10
model (Bacteria) or the GTR + R8 model (Archaea) as cho-
sen by the IQTREE’s ModelFinder (Kalyaanamoorthy et al.,
2017). Misclassified taxa (Bacteria classified as Archaea
and vice versa) were removed from the dataset. The final
reference datasets contained 588 bacterial and 227
archaeal taxa.

To assess general phylogenetic diversity of the sam-
ples and the increased phylogenetic signal of ‘16S-ITS-
23S’ quality trimmed ccs reads relative to ‘partial 16S’
lllumina reads, we built two ‘16S + 23S’, two ‘16S’ and
two “16S_250bp’ phylogenetic datasets (one for Bacteria
and one for Archaea per dataset): ‘16S + 23S’ consisted
of the reference 16S and 23S rRNA gene sets plus all
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16S and 23S rRNA gene sequences predicted from the
97% OTU centroid quality timmed ccs reads of all 4 sam-
ples. The ‘16S’ dataset is the 16S rRNA gene only equiv-
alent of ‘16S + 23S’. The ‘16S_250bp’ dataset is equal to
‘16S’, except that all predicted 16S rRNA gene
sequences were shortened to the first 250 bp (spanning
the V4 region) with the fastx_trimmer algorithm (FastX
Toolkit; after removing all ambiguous characters). All ref-
erence sequences of archaeal and bacterial ‘16S + 23S,
‘16S’ and ‘16S_250bp’ datasets were aligned with
MAFFT L-INS-i (—-maxiterate 1000, —-adjustdirection).
Sample rRNA gene sequences were then aligned against
these reference alignments with MAFFT L-INS-i
(—-addfragments, —-maxiterate 1000). All alignments
were trimmed with trimAl (gap threshold of 30% for
‘16S + 23S’ and ‘16S’, and of 20% for ‘16S_250bp’). After
checking that the trimmed 16S and 23S rRNA gene align-
ments of the ‘16S + 23S’ dataset represented the same
strand, they were concatenated into a supermatrix align-
ment. Maximum likelihood phylogenies were then inferred
for all alignments, using IQTREE v1.5.3 with ModelFinder
(—mset GTR -m TESTNEW) and a 100 non-parametric
bootstraps (—b 100).

Estimations of taxonomic compositions

Relative abundances of bacterial and archaeal phyla in
environmental samples and the mock community cap-
tured by the quality-trimmed ccs reads were estimated
with mothur’s classify.seqgs(), using the SILVA database
as a reference (see “rRNA gene prediction”). The process
was repeated for quality-trimmed ccs reads shortened to
the first 250 bp (as described in ‘Phylogenetic analyses’).
Taxonomic composition bar charts were constructed for
phyla with =0.5% estimated abundance with ggplot2
(Wickham, 2016) and taxonomic heatmap was con-
structed for the top 50 most abundant lineages using
AmpVis2 (tax_show = 50, tax_aggregrate = ‘Class’,
tax_add = ‘Phylum’) (Andersen et al., 2018).

ITS sequence divergence

All ITS sequences were extracted from all mock community
reference genomes and their closely related strains for which
complete genome data were available. Pairwise identities
were calculated with VSEARCH (—-allpairs_global,
—-acceptall, —blast6out), separated in between-strain com-
parisons and within-strain comparisons, and plotted with
ggplot2 (Wickham, 2016).
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Fig. S1. Read curation pipeline and mothur function settings.
See ‘Read curation pipeline’ in Methods for a detailed
description of the pipeline. See mothur.org/wiki/Sequence_
processing for more detailed descriptions and explanations
of the mothur functions.

Fig. S2. Relationship between ccs read quality and observed
error rate

Fig. S3. Example of a ccs read with a local stretch of low qual-
ity base calls that are enriched in sequencing errors. Bars rep-
resent Phred scores, red base calls correspond to errors. Red
bars indicate local stretch of low quality base calls
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Fig. S4. Hypothetical mechanism leading to a siamaeric
read. In the bottom two examples of siamaeric reads, recog-
nized by BLASTN dot plots

Fig. S5. Bar charts reflecting estimated relative abundances
of bacterial and archaeal phyla with =0.5% abundance.
*_1000bp: relative abundances estimated from ~1000 bp
16S rRNA gene sequence. *_250bp: relative abundances
estimated from 250 bp 16S rRNA gene sequence fragments
spanning the V4 region.

Fig. S6. Unrooted maximum likelihood phylogenies inferred
from archaeal ‘16s_250bp’, ‘16S’ and ‘16S + 23S’ datasets.
‘size=" indicates the number of gtrim ccs reads in the respec-
tive 97% OTUs. Taxa of major taxonomic groups are
coloured. Branch values indicate non-parametric bootstrap
support. Indicates taxa that are discussed in the main text.
Fig. S7. Unrooted maximum likelihood phylogenies inferred
from bacterial ‘16s_250bp’, ‘16S’ and ‘16S + 23S’ datasets.

‘size=" indicates the number of gtrim ccs reads in the respec-
tive 97% OTUs. Taxa of major taxonomic groups are
coloured. Branch values indicate non-parametric bootstrap
support. Indicates taxa discussed in the main text

Fig. S8. Sequence similarities of internal transcribed spacer
(ITS) copies either between different strains of the same
species (left) or between different ITS copies within the
same strain (right). Bacterial and archaeal species used are
those that are present in the mock community and their
close relatives with complete genomes available.

Fig. S9. Bar chart reflecting the estimated relative abun-
dances of genomes that are part of the mock community.
Fig. S10. Relationships between the %GC (left) or length
(right) of the 16S-ITS-23S loci of the mock community
genomes and their quality-trimmed ccs read counts.

Table S1. 16S-ITS-23S loci in Archaea and Bacteria

Table S2. Composition of the mock community.
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