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Transcriptome analysis offers a comprehensive illustration of the genetic
background of pediatric acute myeloid leukemia
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Key Points

•Using RNA-seq in
pediatric AML patients,
5 gene rearrangements
were newly identified,
including NPM1 and
RUNX1 gene
rearrangements.

• RNA-seq unmasked the
complexity of gene
alterations in pediatric
AML by identifying
disease-causing
alterations in nearly all
patients.

Recent advances in the genetic understanding of acute myeloid leukemia (AML) have

improved clinical outcomes in pediatric patients. However,;40% of patients with pediatric

AML relapse, resulting in a relatively low overall survival rate of ;70%. The objective of

this study was to reveal the comprehensive genetic background of pediatric AML. We

performed transcriptome analysis (RNA sequencing [RNA-seq]) in 139 of the 369 patients

with de novo pediatric AML who were enrolled in the Japanese Pediatric Leukemia/

Lymphoma Study Group AML-05 trial and investigated correlations between genetic

aberrations and clinical information. Using RNA-seq, we identified 54 in-frame gene fusions

and 1 RUNX1 out-of-frame fusion in 53 of 139 patients. Moreover, we found at least 258

gene fusions in 369 patients (70%) through reverse transcription polymerase chain reaction

and RNA-seq. Five gene rearrangements were newly identified, namely, NPM1-CCDC28A,

TRIP12-NPM1, MLLT10-DNAJC1, TBL1XR1-RARB, and RUNX1-FNBP1. In addition, we

found rare gene rearrangements, namely, MYB-GATA1, NPM1-MLF1, ETV6-NCOA2, ETV6-

MECOM, ETV6-CTNNB1, RUNX1-PRDM16, RUNX1-CBFA2T2, and RUNX1-CBFA2T3. Among

the remaining 111 patients, KMT2A-PTD, biallelic CEBPA, and NPM1 gene mutations were

found in 11, 23, and 17 patients, respectively. These mutations were completely mutually

exclusive with any gene fusions. RNA-seq unmasked the complexity of gene rearrangements

and mutations in pediatric AML. We identified potentially disease-causing alterations in

nearly all patients with AML, including novel gene fusions. Our results indicated that a

subset of patients with pediatric AML represent a distinct entity that may be discriminated

from their adult counterparts. Based on these results, risk stratification should be

reconsidered.
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Introduction

Recent advances in the genetic understanding of cancer have
drastically improved clinical outcomes in pediatric patients. How-
ever, ;40% of patients with childhood acute myeloid leukemia
(AML) relapse, resulting in a relatively low overall survival (OS)
rate of ;70%. AML is caused by various chromosomal aberra-
tions, gene mutations/epigenetic modifications, and deregulated/
overregulated gene expression, leading to increased proliferation
and decreased differentiation of hematopoietic progenitor cells.1-4

Several clinically important molecular markers have been discov-
ered in patients with AML, which assisted in improving risk
stratification. However, the evaluation of risk remains challenging
even after incorporating these molecular markers in clinical practice.

Patients with biallelicCEBPAmutations,NPM1mutations, RUNX1-
RUNX1T1 fusions, or CBFB-MYH11 fusions have relatively good
outcomes in response to treatment with chemotherapy-based
consolidation regimens.5,6 However, the prognosis of patients with
FUS-ERG, NUP98-NSD1, CBFA2T3-GLIS2, NUP98-KDM5A, or
KMT2A-MLLT3 with high MDS1 and EVI1 complex locus protein
EVI1 (MECOM, synonyms EVI1 and PRDM3) expression was dis-
mal, because many of these patients could not be during the first
complete remission (CR), even with allogeneic transplantation.7-10

FMS-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) is
a major alteration in pediatric and adult AML that is significantly
associated with poor prognosis. However, the prognosis of patients
with this alteration is not necessarily dismal, depending on concom-
itant genetic alterations.11-13 In our previous studies, the over-
expression of PRD1-BF1-RIZ1 homologous domain containing 16
(PRDM16, also known as MEL1) was highly recurrent in patients
with both pediatric AML and adult AML with intermediate- and high-
risk cytogenetic profiles while being independently associated with
an adverse outcome.14,15

Recently, Bolouri et al reported the seminal comprehensive molec-
ular landscape and characteristics of pediatric AML in Children’s
Oncology Group AML trials.16 However, the biologic basis differs
among pediatric AML patients in the United States, Europe, and
Japan. The objective of this study was to reveal the genetic alter-
ations of all Japanese patients with pediatric AML and the differ-
ences in the genetic background between favorable and adverse
groups using RNA sequencing (RNA-seq) by identifying new
cytogenetic aberrations and comparing gene expression.

Methods

Study design and participants

In this study, we enrolled 485 patients with de novo AML who
registered in the Japanese Pediatric Leukemia/Lymphoma Study
Group (JPLSG) AML-05 trial between November 2006 and
December 2010. The trial was registered with the University
Hospital Medical Information Network Clinical Trials Registry
(#UMIN000000511; http://www.umin.ac.jp/ctr/index.htm), and de-
tails of the schedules and treatment regimens have been described
previously (supplemental Figure 2).17 Patients diagnosed with
acute promyelocytic leukemia or AML with Down syndrome were
excluded from this study. Among the 485 patients with AML who
were enrolled in the AML-05 trial, 116 were excluded because of
sample insufficiency for diagnosis (n 5 7), not meeting the criteria

(n 5 6), misdiagnosis (n 5 25), lack of RNA samples (n 5 74), or
other reasons (n 5 4). Therefore, a total of 369 patients were
genetically analyzed. In these 369 analyzed patients, the age and
initial white blood cell count were higher, whereas the proportion of
M7 patients was lower compared with the 74 nonanalyzed patients.
However, there were no significant differences observed between
these groups in terms of mortality (20% vs 24%, log-rank P 5 .84)
(supplemental Table 1). The present study was conducted in
accordance with the Declaration of Helsinki and approved by the
institutional review boards of Gunma Children’s Medical Center and
the participating institutes and the ethical review board of the
JPLSG AML-05 trial. Written informed consent was provided by all
patients or their parents/guardians.

Sample preparation

All leukemic samples were obtained from the bone marrow or
peripheral blood at the time of diagnosis. DNA and total RNA
samples were prepared using the AllPrep DNA/RNA Mini Kit
(Qiagen, Hilden, Germany) according to the manufacturer’s instruc-
tions. Complementary DNA was prepared using 0.8 to 1.0 mg of total
RNA and Ready-To-Go reverse transcription polymerase chain reaction
(RT-PCR) beads (GE Healthcare, Buckinghamshire, United Kingdom).

RNA-seq

We performed RNA-seq for 139 out of the 369 patients with
pediatric AML in order to obtain a complete registry of gene re-
arrangements, other genetic lesions, and gene expressions in
pediatric AML. The RNA-seq data were available at the European
Genome-Phenome Archive (EGAS00001003701). The cytoge-
netic characteristics of the analyzed patients are shown in supple-
mental Table 2. The study population mainly included patients with
a normal karyotype (60/70 patients), FLT3-ITD (33/47 patients),
KMT2A-PTD (12/13 patients), and high PRDM16 expression (65/
84 patients). All 137 patients with core binding factor AML (CBF-
AML) and many patients with KMT2A rearrangements were ex-
cluded from RNA-seq, because these fusions are already known
to affect leukemogenesis. The main reasons behind the inability
to perform analyses were assay failure, sample availability, and/or
sample quality. The quality of the extracted RNA was assessed
using TapeStation system (Agilent Technologies, Santa Clara, CA).
Sequencing libraries were prepared using an NEBNext Ultra RNA
Library Prep Kit for Illumina (New England Biolabs, Ipswich, MA),
and prepared libraries were run on a HiSeq 2500 high-throughput
sequencing system. Sequencing reads were aligned using bowtie
and blat, and fusion genes were analyzed using Genomon-fusion.18

Candidate gene fusions were validated by RT-PCR. Obtained reads
were also analyzed using an in-house pipeline, GenomonExpression
(https://github.com/Genomon-Project/GenomonExpression), to obtain
fragments per kilobase million (FPKM) values. We used Cluster 3.0
to perform hierarchical clustering.19 Briefly, genes that were not
expressed (FPKM 5 0) in .20% of samples and genes with a
standard deviation ,10 were excluded. For the remaining genes,
their FPKM values were log transformed. Finally, an average linkage
was calculated. Results were visualized using Java TreeView.20

Targeted gene mutation analysis

We performed targeted gene mutation analysis of KIT (exons 8
and 17),CEBPA (all coding regions),NPM1 (exon 12),WT1 (exons
7-10), RUNX1 (exons 2-6), NRAS (exons 1 and 2), KRAS (exons 1
and 2), ASXL1 (exon 11), ASXL2 (exons 11 and 12), and GATA2
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(exons 4-6). The allelic ratio (AR) of FLT3-ITD to wild-type alleles
was further examined using GeneScan (Applied Biosystems, Foster
City, CA), and a defined mutant/wild-type .0.40 was considered
as high AR according to previous studies.12,21-26 KMT2A-PTD
was analyzed using previously described multiplex ligation-
dependent probe amplification methods.27 Gene fusions, namely,
RUNX1-RUNX1T1, CBFB-MYH11, KMT2A rearrangements,
NUP98-NSD1, CBFA2T3-GLIS2, NUP98-KDM5A, FUS-ERG,
and DEK-NUP214, were also analyzed in all patients. In addi-
tion to these conventional gene fusions, we performed RT-PCR
using samples from all patients to detect the MYB-GATA1,
NPM1-CCDC28A,MLF1-NPM1,NPM1-TRIP12, TBL1XR1-RARB,
ETV6-CTNNB1, ETV6-NCOA2, ETV6-MECOM, RUNX1-FNBP1,
RUNX1-CBFA2T2, and RUNX1-CBFA2T3 alterations identified
through RNA-seq.

Quantification of PRDM16 and MECOM
gene expression

Quantitative RT-PCR analysis of the PRDM16 and MECOM
genes was performed using the 7900HT Fast Real Time PCR
System, TaqMan Gene Expression Master Mix, and TaqMan Gene
Expression Assay (Applied Biosystems), which have been pre-
viously described.28

Data collection

A standardized form was used to record clinical variables, includ-
ing patient demographic information. Every 6 months, data forms
were forwarded to the JPLSG AML-05 trial data coordination
center at the National Center for Child Health and Development
(Tokyo, Japan), reviewed for internal consistency and face validity,
and transferred into an Excel database (Microsoft Corporation,
Redmond, WA). The clinical data of patients in each risk group
were followed up until December 2013 (censored for 3 years from
the date of final registration). The JPLSG conducted a central
review of morphological classification and karyotyping based on the
World Health Organization’s classification, French-American-
British (FAB) classification and cytogenetic analysis using conven-
tional G-banding. OS was defined as the time from AML diagnosis
to death or censorship at the last follow-up. Event-free survival
(EFS) was defined as the time from AML diagnosis to treatment
failure, relapse, death, or last follow-up.

Statistical analysis

Univariate and multivariate Cox regression analyses were calculated
using EZR (version 1.37; Saitama Medical Center, Jichi Medical
University, Saitama, Japan), which is a graphical user interface for
R (version 3.4.1; The R Foundation, Vienna, Austria)29 to extract
the adverse and favorable risk factors related to OS. We defined
the risk factors with a hazard ratio (HR) of ,0.20 as favorable and
those with a ratio of .2.0 as adverse. Continuous variables are
presented as means 6 standard deviations and/or medians with
ranges. Categorical variables are represented by frequencies
and percentages. For all analyses, the P values were 2 tailed, and
P , .05 was considered statistically significant. A multivar-
iate Cox regression analysis was used to identify independent
genetic factors related to OS. Initially, we included all genetic
variables in the first model and then sequentially removed the
nonsignificant variables (P $ .05). To test the probability of co-
occurrence and mutual exclusivity of 2 parameters, we performed

a Monte Carlo simulation using the total number of patients and the
number of patients who were positive for each parameter.30

Results

Overview of RNA-seq

We performed RNA-seq in 139 patients with pediatric AML and
identified a total of 54 in-frame fusions and 1 RUNX1 out-of-frame
gene fusion in 53 patients. Many of the recurrent gene fusions
identified in this study have been previously reported as targets in
AML (Figure 1). Among these 54 gene fusions, 5 gene rearrange-
ments were newly identified, namely, NPM1-CCDC28A, TRIP12-
NPM1, MLLT10-DNAJC1, TBL1XR1-RARB, and RUNX1-FNBP1.
We also identified 17 rare gene rearrangements, including
MYB-GATA1, NPM1-MLF1, ETV6-NCOA2, ETV6-MECOM, ETV6-
CTNNB1, RUNX1-PRDM16, RUNX1-CBFA2T2, and RUNX1-
CBFA2T3 (Figures 1 and 2). The characteristics of the patients
with these fusions are shown in Table 1. We identified 5 RUNX1
rearrangements other than RUNX1-RUNX1T1, 4 NPM1 rearrange-
ments, 3 ETV6 fusions, and 1 TBL1XR1-RARB fusion in FAB-M3
patients without the PML-RARA fusion.

Complete genetic landscape of the JPLSG

AML-05 trial

We showed the demographic characteristics and genetic land-
scape of 369 patients with AML enrolled in the JPLSG AML-05 trial
(Figure 1). RUNX1-RUNX1T1 and KIT mutations were more
frequently observed and CBFB-MYH11, trisomy 8, and NPM1
were less frequently observed as a molecular characteristic in the
Japanese cohort compared with the Children’s Oncology Group
(supplemental Figure 1). We also showed the result of univariate
and multivariate Cox regression analysis in Table 2. In the univariate
analysis, factors significantly associated with OS included CBFB-
MYH11 (HR, 0.11, 95% confidence interval [CI], 0.02-0.80),
biallelicCEBPA (HR, 0.16; 95% CI, 0.02-1.13), RUNX1-RUNX1T1
(HR, 0.19; 95% CI, 0.09-0.39), NPM1 (HR, 0.19; 95% CI, 0.03-
1.35), FLT3-ITD (HR, 2.92; 95% CI, 1.83-4.65), CBFA2T3-GLIS2
(HR, 3.00; 95% CI, 2.54-6.48), PRDM16 overexpression (HR,
3.09; 95% CI, 2.06-4.65), and NUP98-NSD1 (HR, 5.07; 95% CI,
2.54-10.1). The multivariate analysis revealed that CBFB-MYH11
(HR, 0.08; 95% CI, 0.01-0.58), biallelic CEBPA (HR, 0.10; 95%
CI, 0.01-0.69), RUNX1-RUNX1T1 (HR, 0.17; 95% CI, 0.08-0.35),
NPM1 (HR, 0.09; 95% CI, 0.01-0.64), FLT3-ITD (HR, 2.53; 95%
CI, 1.57-4.08), FUS-ERG (HR, 4.54; 95% CI, 1.81-11.4), and
RPN1-MECOM (HR, 5.44; 95% CI, 1.32-22.4) were independent
prognostic factors associated with OS. Concerning CBF-AML, 9 of
137 patients died of primary disease or other causes (4 and 5
patients, respectively) (Table 3). Although CBF-AML patients with
the KIT mutation exhibited a higher relapse rate than those without
the KIT mutation, most of these patients were rescued by hemato-
poietic stem cell transplantation.31 No fusion genes were identified
in patients with the NPM1 or biallelic CEBPA mutation, and their
prognosis was absolutely favorable irrespective of the presence
of FLT3-ITD. Among the 41 patients with the biallelic CEBPA or
NPM1 mutation, only 2 patients died, and the causes of death were
acute respiratory disorder syndrome (ARDS) and primary disease
(Table 3). On the other hand, the prognosis of patients with adverse
gene fusions (eg, FUS-ERG, NUP98-NSD1, RPN1-MECOM,
KMT2A-AFDN, DEK-NUP214, CBFA2T3-GLIS2, and NUP98-
KDM5A) and adverse mutations (eg, FLT3-ITD, RUNX1, and
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KMT2A-PTD) was dismal (5-year OS, 31%; EFS, 9%). The charac-
teristics of patients with unfavorable gene fusions are shown in
supplemental Table 3. Although all of patients with FUS-ERG,
RPN1-MECOM, KMT2A-AFDN, and DEK-NUP214 were predicted
by chromosomal G-banding, NUP98-NSD1, NUP98-KDM5A, and
CBFA2T3-GLIS2 were cryptic. No disease-causing genetic alter-
ations were identified in 45 patients out of 369 patients with AML
(29 patients with FAB non-M7 and 16 patients with FAB-M7)
(supplemental Table 4). Ten patients were cytogenetically normal,
whereas the remaining 35 patients had structural alterations in
chromosomes, including complex karyotype (n 5 23), monosomy
7 (n 5 4), and trisomy 8 (n 5 3). The prognosis of these patients
tended to be dismal (3-year OS, 67%; 3-year EFS, 42%); thus,
they should be treated as high-risk patients. Further research is
warranted to confirm these observations.

Characteristics of patients with pediatric AML with

normal karyotype

Sixty out of 70 patients with a normal karyotype were analyzed
using RNA-seq. Although some cryptic gene fusions were identified
(eg, NUP98-NSD1 and CBFA2T3-GLIS2), fewer gene fusions
were identified in this subset of patients. In particular, gene fusions
were not identified in patients with normal karyotype with biallelic
CEBPA, NPM1, and KMT2A-PTD aberrations, which are frequently
observed in the normal karyotype (supplemental Figure 3).

Characteristics of patients with pediatric AML with

KMT2A rearrangements

Sixty-one KMT2A rearrangements were identified in 369 patients
with AML (16%). Among them, 7 KMT2A fusions not identified
through conventional chromosomal G-banding were detected
through RNA-seq. KMT2A-MLLT3 was the most commonly ob-
served alteration (30/61 patients). Intriguingly, the prognosis of
these patients was highly dependent on the expression of the
MECOM gene. Seven of 11 patients with high MECOM expres-
sion died compared with only 1 of 19 patients with low MECOM

expression (P , .001). KMT2A-ELL and KMT2A-MLLT1 were the
second most commonly observed alterations in patients with
pediatric AML (supplemental Table 5).

Characteristics of patients with pediatric AML

with FAB-M7

In this study, we performed RNA-seq in only 9 of 34 patients with
acute megakaryoblastic leukemia. Among them, we confirmed
3 types of recurrent gene fusions identified through RT-PCR,
including 2 RBM15-MKL1, 3 CBFA2T3-GLIS2, and 1 NUP98-
KDM5A. In the remaining 3 patients with acute megakaryoblastic
leukemia, there were no gene fusions identified. Among 34 patients
registered and treated in the JPLSG AML-05 trial, 19 of 34 patients
showed high expression of the MECOM gene. Although high
MECOM gene expression was associated with poor prognosis in
other FAB patients, this association was not observed in patients
with FAB-M7 (Figure 1). Interestingly, patients with the CBFA2T3-
GLIS2 and NUP98-KDM5A alterations, which were associated
with poor prognosis, showed low MECOM gene expression, indi-
cating the presence of a different pathogenesis mechanism.

Gene expression profiling

The RNA-seq expression profiles of 139 patients were subjected
to all-gene–based unsupervised hierarchical clustering, and 3
clusters were generated (blue, orange, and green) (Figure 3A).
Thirteen out of 14 patients with KMT2A rearrangement were
classified into the blue cluster, and all patients with FLT3-ITD with
high AR were classified into the orange or green cluster. On the
contrary, 6 of 7 patients with NUP98-NSD1 and 2 patients with
DEK-NUP214 were classified into the green cluster. The gene
expression pattern of NUP98-KDM5A was different from the other
NUP fusions in this study (Figure 3A). Furthermore, HOXA7,
HOXB3, HOXB6, HOXB7, RUNX1, FLT3, PRDM16, HIST1H1C,
and HIST1H2BD were overexpressed in patients with FLT3-ITD
(Figure 3B-C), and HOX genes were underexpressed in pa-
tients with biallelic CEBPA. Intriguingly, FLT3 and HOXAs were
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Figure 2. Novel/rare fusion genes identified in patients with

de novo pediatric AML. (A-D) The structure of the detected

fusion proteins. (A) Five RUNX1 rearrangements. (B) Three ETV6

rearrangements. (C) Three NPM1 rearrangements. (D) Other novel

gene fusions. R1, R2, and R3 are 51 6 52 amino acid tandem

repeats that comprise the DNA-binding domain Ext–leukemia-

associated protein (LAP). 14-3-3 BD, 14-3-3 binding domain;

AD, acidic domains; AT-hook, adenine-thymine hook; CCD, coiled-coil

domain; CDC15, CDC15 homology region; CID, CBP interaction

domain; CtBP, C-terminal binding protein; ETS, ETS domain;

FCHD, FER-CIP1 homology domain; HLH, helix-loop-helix;

ID, transcription inhibition domain; LiSH, Lis homology domain;

MBD, metal-binding domain; MBR, moderately basic region;

MTG16, myeloid translocation gene 16; NES, nuclear export signal;

NHR2, nervy homology region 2; NLS, nuclear localization signal;

PRBR, putative r-binding region; RD, runt domain; RHD, runt

homolog domain; SH3D, Src homology 3 domain; TAD, transcription

activation domain; TAFH, TAF homology; ZF, zinc finger;

ZFD, zinc-finger domain; Znf-MYND, MYND zinc-finger domain.
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overexpressed in patients with KMT2A-rearrangements. Herein, we
showed the detail of gene expression pattern focused on HOXAs,
HOXBs, PRDM16, FLT3, RUNX1, and HIST1s in Figure 3B.

Discussion

Using RNA-seq, we identified 54 in-frame gene fusions and 1 out-of-
frame fusion in 53 of 139 patients with pediatric AML. Moreover, we
found $258 gene fusions in 369 patients (70%) through RT-PCR
and RNA-seq. Only a few fusion genes were detected in patients
with AML with a normal karyotype. Only 2 patients had 2 in-frame
gene fusions, which resulted from 3-way translocations (PICALM-
MLLT10 and MLLT10-DNAJC1; NPM1-CCDC28A and TRIP12-
NPM1). This finding suggested that most of the in-frame gene
fusions are able to facilitate AML. In the remaining 111 patients,
KMT2A-PTD, biallelic CEBPA, and NPM1 mutations were found in
11, 23, and 17 patients, respectively. Thesemutations were completely
mutually exclusive with any gene fusions. The FLT3-ITD alteration
was more frequently observed in patients with adverse risk factors
than in those with favorable risk factors, such as co-occurring
mutations, and was considered to amplify the malignant potential.

In this study, we identified 5 novel gene rearrangements, namely,
NPM1-CCDC28A, TRIP12-NPM1, NPM1-DNAJC1, TBL1XR1-
RARB, and RUNX1-FNBP1, and 17 rare fusions. Concerning pa-
tients with NPM1 rearrangements, TRIP12 encodes E3 ligase,

which ubiquitinates CDKN2A. NPM1 is a major component of
the nucleolus, with important functions in regulating cell growth,
proliferation, and transformation. Intriguingly, as an additional im-
portant effect, NPM1 stabilizes the protein levels of CDKN2A.32

CDKN2A is known to suppress aberrant cell growth by activat-
ing the p53 response.33 The function of CDKN2A may be inhibited
by fusing NPM1 and TRIP12. NPM1-MLF1 has been associated
with therapy-related AML and myelodysplastic syndrome with
good prognosis.34,35 Our patient was diagnosed as RAEB-T and
maintained CR for .3 years (Table 1). Regarding the roles of
NPM1-MLF1 and NPM1-CCDC28A, the fusion resulted in the loss
of DNA/RNA-binding domains. This may deregulate the function
of NPM1 and facilitate leukemogenesis because the mutational
hotspot is located within the DNA/RNA binding domain at exon
12. Interestingly,CCDC28A has been reported as the partner gene
of NUP98 in T-ALL.36 Regarding the RUNX1-CBFA2T2 gene
fusion, the expression of the CBFA2T2 gene was high in AML
cells following the activation of theRUNX1 promoter compared with
that observed in normal bone marrow. Thus, the RUNX1-CBFA2T2
gene fusion may be associated with leukemogenesis.37 In addition,
RUNX1-CBFA2T3 showed a gene expression pattern similar to
that of RUNX1-RUNX1T1.38 Moreover, we identified novel out-of-
fusion of RUNX1-FNBP1 (Figure 2). The affected RUNX1 is
truncated at the end of the runt homolog domain, forming a stop
codon within the FNBP1 gene, 88 to 90 bp downstream of the

Table 2. Univariate and multivariate Cox regression analysis of OS in AML-05 trial

OS

Univariate analysis Multivariate analysis

No. of deaths/patients 95% CI 95% CI

Negative Positive HR P Lower Upper HR P Lower Upper

CBFB-MYH11 93/338 1/31 0.11 .03 0.02 0.80 0.08 .01 0.01 0.58

Biallelic CEBPA 93/346 1/23 0.16 .07 0.02 1.13 0.10 .02 0.01 0.69

RUNX1-RUNX1T1 86/263 8/106 0.19 ,.001 0.09 0.39 0.17 ,.001 0.08 0.35

NPM1 93/351 1/18 0.19 .10 0.03 1.35 0.09 .02 0.01 0.64

KIT 80/283 14/86 0.43 .02 0.21 0.85

KMT2A rearrangement 75/308 19/61 1.10 .73 0.64 1.88

PICALM-MLLT10 93/366 1/3 1.22 .84 0.17 8.78

WT1 86/345 8/24 1.33 .44 0.64 2.74

KAT6A-CREBBP 93/366 1/3 1.40 .74 0.19 10.1

RBM15-MKL1 93/367 1/2 1.76 0.57 0.24 12.7

MECOM overexpression 71/312 23/57 1.91 .007 1.20 3.07

KMT2A-PTD 89/356 5/13 2.28 .04 1.06 4.94

FLT3-ITD 70/322 24/47 2.92 ,.001 1.83 4.65 2.53 ,.001 1.57 4.08

CBFA2T3-GLIS2 87/358 7/11 3.00 .005 2.54 6.48

PRDM16 overexpression 52/285 42/84 3.09 ,.001 2.06 4.65

KMT2A-AFDN 91/365 3/4 3.15 .051 1.00 9.97

NUP98-KDM5A 91/363 3/6 3.20 .049 1.01 10.2

RUNX1 89/361 5/8 3.80 .004 1.54 9.38

DEK-NUP214 91/365 3/4 4.91 .007 1.39 15.6

NUP98-NSD1 85/358 9/11 5.07 ,.01 2.54 10.1

FUS-ERG 89/364 5/5 6.80 ,.001 2.75 16.8 4.54 ,.001 1.81 11.4

RPN1-MECOM 92/367 2/2 7.84 .04 1.92 32.0 5.44 .02 1.32 22.4

GVHD, graft-versus-host disease; TMA, thrombotic microangiopathy.
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break point (Figure 2A). In this study, patients with RUNX1-
CBFA2T3, RUNX1-CBFA2T2, and RUNX1-FNBP1 maintained
CR without relapse for .3 years. On the other hand, the patient
with RUNX1-PRDM16 did not achieve CR and eventually expired
owing to primary disease following hematopoietic stem cell trans-
plantation in non-CR. This patient showed the highest PRDM16
gene expression among the 369 patients with AML, whereas other
patients with RUNX1 fusions showed low PRDM16 expressions.
This finding indicates that the RUNX1-PRDM16 fusion gene has a
function distinct from those of other RUNX1 fusions (eg, RUNX1-
RUNX1T1) in terms of pathogenesis. RUNX1-PRDM16 has already
been reported in myelodysplastic syndrome, de novo AML, therapy-
related AML, and chronic myelogenous leukemia and is associ-
ated with high PRDM16 gene expression and dismal outcomes.39-43

We showed the genetic landscape of patients with AML with high
levels of PRDM16 expression (supplemental Figure 4). Many
adverse risk factors were observed in patients with high PRDM16
gene expression, and numerous patients died, indicating that high
PRDM16 expression is associated with high-risk factors and dismal
outcomes.4

Previous studies suggested MYB-GATA1 as the cause of acute
basophilic leukemia.44 This fusion gene commits myeloid cells to
the granulocyte lineage, blocking their differentiation.44 This fusion
gene has been reported to be a cause of infant AML FAB-M5 as a
result of reducing the expression of the GATA1 gene.45 Recently,
this fusion was also reported in a pediatric patient with acute
erythroid leukemia.46 The break point was quite the same as in our
patient, and the characteristics were very similar, including age,
FAB-M5, and favorable outcomes. Thus, the phenotype may
depend on the co-occurrence of genomic alterations.

It has been reported that ETV6-NCOA2 in acute leukemia is
associated with the coexpression of T-lymphoid and myeloid markers.
Our patient was diagnosed with peroxidase-negative acute leukemia
including minimally differentiated FAB-M0. As blast cells were
positive for CD7, CD13, CD33, CD34, CD56, CD117, and HLA-
DR by surface marker analysis, myeloid-natural killer cell acute
leukemia should be considered. Consistent with the results of
previous studies, this finding suggests that this fusion gene may
be specific for a common myeloid-lymphoid progenitor cell.47,48

Intriguingly, similar to ETV6-NCOA2, ETV6-CTNNB1 has been
previously reported in patients with T-cell acute lymphoblastic
leukemia.49 ETV6-MECOM was previously reported in patients
with chronic myelogenous leukemia or therapy-related leukemia.50

Our patient with this fusion showed the eighth highest MECOM
expression among the 369 patients. ETV6 may promote the expres-
sion of theMECOM gene and turn on the critical role in progression
to the blast crisis of AML. Interestingly, all 3 patients with MECOM
rearrangements and 1 patient with PRDM16 rearrangement harbored
monosomy 7, suggesting that PRDM alterations may be associ-
ated with monosomy 7, and showed dismal outcomes (supple-
mental Table 3).

Of the 61 patients (16%) with KMT2A rearrangements, 16 patients
did not show 11q23 breakage through conventional chromosomal
G-banding. This suggested that fluorescence in situ hybridization
analysis of KMT2A may be useful for the detection of rare KMT2A
rearrangements, because .100 partner genes are already known
(supplemental Table 5). KMT2A-MLLT3 was the most common
KMT2A rearrangement. Moreover, MECOM gene expression wasT
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Figure 3. Unsupervised hierarchical clustering analysis of the 139 patients with pediatric AML. (A) Two-dimensional hierarchical clustering analysis of the 139 patients

was performed using 3106 probe sets that were differentially expressed in 139 patients. (B) We showed the detail of gene expression pattern focused on the FLT3, RUNX1,

HOXAs, HOXBs, and HIST1s in 139 patients. Each column represents a patient and each row represents a probe set. FAB classification, biallelic CEBPA, NPM1, WT1, RUNX1,

KMT2A-PTD, KMT2A rearrangements, adverse gene fusions, PRDM16 and MECOM gene expression status, and outcome of each patient are indicated. Relative expression

levels normalized to the average for each probe set are indicated by color, where red and green represent high and low expression, respectively. (C) Messenger RNA expression

levels of FLT3, RUNX1, PRDM16, HOXA7, HOXB3, HOXB6, HIST1H2BD, and HIST1H1C in 139 AML patients. KMT2A-R, KMT2A rearrangement.
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useful in stratifying the prognosis of patients with KMT2A-MLLT3
(low expression [3-year OS, 92%; 3-year EFS, 86%] vs high
expression [3-year OS, 39%; 3-year EFS, 9%]). However, the ex-
pression of the MECOM gene was not correlated with poor
prognosis in patients with FAB-M7. One of the reasons for this may
be that MECOM expression is also associated with the differen-
tiation of megakaryocytes, despite the association of high MECOM
expression with stem cell maintenance through the expression
of the GATA2 gene in other FAB subtypes.51 KMT2A-MLLT10,
ELL, and MLLT1 were common partner genes found in 9, 7, and
5 patients with de novo pediatric AML, respectively (supplemental
Table 5). Of the 7 patients with KMT2A-ELL, 3 patients expired.
Intriguingly, these 3 patients were ,1 year old, and 2 of them died
due to ARDS. On the other hand, the prognosis of patients with
KMT2A-MLLT10 tended to be worse than that of patients with
other KMT2A gene fusions (ie, 3 of 9 patients died due to primary
disease) (supplemental Table 5). Consistent with the findings of
previous studies,52 the prognosis of patients with KMT2A-AFDN
was extremely dismal, indicating a different pathogenesis from other
KMT2A rearrangements.

The co-occurrence and mutual exclusivity test identified that various
clinical biomarkers may reflect different aspects of the same poor

prognostic subgroup of patients with AML (Figure 4). RUNX1-
RUNX1T1 and CBFB-MYH11 formed a unique entity that was
mutually exclusive of any fusions and mutations other than KIT
mutation. High MECOM expression was significantly associated
with KMT2A-R and monosomy 7, whereas high PRDM16 gene
expression was significantly associated with FLT3-ITD, KMT2A-
PTD, and trisomy 8. These could potentially be used as surrogate
biomarkers for this distinct subgroup, which shares several molec-
ular signatures and predict the prognosis.

In view of the gene expression results, HOX genes were
upregulated in patients with FLT3-ITD or KMT2A-rearrangements.
Moreover, overexpression of some HOX is known to enhance the
self-renewal of hematopoietic stem and progenitor cells and perturb
differentiation.53 Additionally, FLT3, RUNX1, and some HIST1s
were upregulated in these patients, suggesting that the aberrant
expression of these genes plays a crucial role in leukemogenesis
and indicates poor prognosis. Tiberi et al reported that the expres-
sion of HIST1 was significantly higher in patients with AML with low
levels of H3K27me3 than in those with high levels of H3K27me3.54

Repressing H3K27me3 levels affects the transcriptional repression
in patients with AML harboring aberrant expression of HOX, FLT3,
RUNX1, and HIST1.
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Figure 3. (Continued).
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In the present study, it was shown that RNA-seq unmasked the
complexity of gene alterations in pediatric AML. We identified
potentially disease-causing alterations in nearly all patients with
AML, including novel gene fusions. Our results indicated that
a subset of patients with pediatric AML represent a distinct
entity that may be discriminated from their adult counterparts
through an investigation of the spectrum of gene rearrange-
ments and mutations. Furthermore, we found that a complex
interplay of genetic events contributes to the pathogenesis of
AML in individual patients. These findings suggest that gene
rearrangements in conjunction with mutations play essential
roles in pediatric AML. Based on the results of the RNA-seq, the
prognostic factors currently used for risk stratification in pediatric
AML may be reconsidered, particularly for intermediate/high-risk
patients.
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