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1  | INTRODUC TION

Co‐infections, defined as the infection of a host with two or more dis‐
tinct pathogens, are common in both wild and cultured fish (Cox, 2001; 
Kotob, Menanteau‐Ledouble, Kumar, Abdelzaher, & El‐Matbouli, 2017). 
Co‐infections are classified as either synergistic in which one pathogen 
increases host susceptibility to another, or antagonistic in which the 

first pathogen hinders growth or survival of the second. Synergistic 
co‐infections can result in increased pathogen load, increased dis‐
ease severity and increased mortality, while antagonistic co‐infec‐
tions can result in lower pathogen load and decreased host mortality. 
The frequent occurrence of disease outbreaks during co‐infections in 
fish suggests that synergistic pathogen interactions are common. In 
addition, there is an interactive effect of multiple pathogens on host 
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Abstract
While co‐infections are common in both wild and cultured fish, knowledge of the in‐
teractive effects of multiple pathogens on host physiology, gene expression and im‐
mune response is limited. To evaluate the impact of co‐infection on host survival, 
physiology and gene expression, sockeye salmon Oncorhynchus nerka smolts were 
infected with the salmon louse Lepeophtheirus salmonis	 (V−/SL+),	 infectious	hemat‐
opoietic	necrosis	virus	(IHNV;	V+/SL−),	both	(V+/SL+),	or	neither	(V−/SL−).	Survival	in	
the	 V+/SL+	 group	 was	 significantly	 lower	 than	 the	 V−/SL−	 and	 V−/SL+	 groups	
(p = 0.024). Co‐infected salmon had elevated osmoregulatory indicators and lowered 
haematocrit values as compared to the uninfected control. Expression of 12 genes 
associated with the host immune response was analysed in anterior kidney and skin. 
The only evidence of L. salmonis‐induced modulation of the host antiviral response 
was down‐regulation of mhc I although the possibility of modulation cannot be ruled 
out for mx‐1 and rsad2. Co‐infection did not influence the expression of genes associ‐
ated with the host response to L. salmonis. Therefore, we conclude that the reduced 
survival in co‐infected sockeye salmon resulted from the osmoregulatory conse‐
quences of the sea lice infections which were amplified due to infection with IHNV.
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physiology, gene expression and immune response (Bandilla, Valtonen, 
Suomalainen, Aphalo, & Hakalahti, 2006; Barker et al., 2019).

In British Columbia (B.C.), infectious hematopoietic necrosis virus 
(IHNV) and Lepeophtheirus salmonis, the salmon louse, are enzootic 
pathogens of salmon and have overlapping host ranges. IHNV, a mem‐
ber of the genus Novirhabdovirus,	is	commonly	isolated	from	Pacific	
salmon Oncorhynchus spp. (Wolf, 1988), and infections cause disease 
and mortality most often in the fry and juvenile life stages of wild and 
cultured	salmonids	(Dixon,	Paley,	Alegria‐Moran,	&	Oidtmann,	2016).	
In B.C., IHNV is primarily associated with sockeye salmon O. nerka 
although outbreaks have occurred in Atlantic salmon Salmo salar in 
net‐pen aquaculture operations (Saksida, 2006). Infection with IHNV 
induces a strong innate interferon response associated with a Th1‐
type	immune	response	(Purcell,	Laing,	&	Winton,	2012).

Sockeye and Atlantic salmon are also highly susceptible to L. sal‐
monis (Braden,	Koop,	&	Jones,	2015;	Johnson,	Blaylock,	Elphick,	&	
Hyatt, 1996). Infections with L. salmonis can have a significant impact 
on the host osmotic equilibrium with the most severe effects occur‐
ring when the adult stages of the parasite are present (Bowers et 
al., 2000; Grimnes & Jakobsen, 1996; Long, Garver, & Jones, 2019). 
Changes in host gene expression resulting from L. salmonis infections 
include alterations in iron metabolism, carbohydrate metabolism and 
decreased	expression	of	several	antiviral	genes	(Braden	et	al.,	2015;	
Krasnov, Skugor, Todorcevic, Glover, & Nilsen, 2012; Sutherland 
et	al.,	2014).	Furthermore,	 initiation	of	a	Th2‐type regulatory path‐
way in response to L. salmonis infection has been reported in both 
Pacific	 and	Atlantic	 salmon	although	 the	 timing	and/or	magnitude	
of the response is modified in more susceptible species (Braden et 
al.,	 2015;	 Skugor,	Glover,	Nilsen,	&	Krasnov,	 2008).	 In	 addition	 to	
disruptions in osmoregulation and gene expression, infections with 
L. salmonis or Caligus rogercresseyi, another species of sea lice, can 
negatively impact the host's resistance to additional pathogens and 
facilitate entry of other pathogens into the host (Jakob, Barker, & 
Garver, 2011; Lhorente, Gallardo, Villanueva, Carabaño, & Neira, 
2014; Mustafa, Speare, Daley, Conboy, & Burka, 2000).

Co‐infection studies involving L. salmonis and IHNV have not 
been conducted although differences in immune responses elicited 
by these pathogens as well as down‐regulation of host antiviral genes 
upon infection with L. salmonis	(Braden	et	al.,	2015;	Sutherland	et	al.,	
2014) suggests the interaction between the two will be synergistic. 
In the current study, we explore the hypothesis that primary infec‐
tion with L. salmonis will increase host susceptibility to a second‐
ary infection with IHNV in sockeye salmon. Using an adult female 
L. salmonis infection model previously validated in our laboratory, 
we evaluated the impact of co‐infection on survival, physiology and 
gene expression in sockeye salmon smolts.

2  | MATERIAL S AND METHODS

2.1 | Fish care

All procedures involving fish were carried out in accordance with 
the recommendations in the Canadian Council on Animal Care Guide 

to the Care and Use of Experimental Animals and approved by the 
Pacific	 Region	 Animal	 Care	 Committee,	 AUP	 14‐029.	 All	 experi‐
mentations	were	 conducted	at	 the	Pacific	Biological	 Station	 (PBS;	
Nanaimo, B.C.).

Sockeye	salmon	 (average	body	weight	152.2	g)	 from	Pitt	River	
stock were reared in brackish water and transferred to full sea water 
10	days	prior	to	initiation	of	the	experiment.	Fish	were	maintained	
at	9.06°C	(±0.03°C)	in	225‐L	tanks	(stock	density	15.4	kg/m3) with 
UV‐treated	 flow‐through	 sea	 water	 (flow	 rate	 3.5	L/min;	 salinity	
28.0	±	0.1	ppt),	and	kept	under	a	natural	photoperiod.	Fish	were	fed	
a	commercial	diet	(EWOS	Canada)	at	a	rate	of	0.5%	total	biomass/
day	during	the	first	7	days	of	the	trial	and	a	rate	of	1%	total	biomass/
day for the remainder of the trial.

2.2 | Experimental design

The experiment consisted of four treatment groups: uninfected con‐
trol	 (V−/SL−);	 sea	 lice	 infection	 only	 (V−/SL+);	 virus	 infection	 only	
(V+/SL−);	and	co‐infection	(V+/SL+).	All	treatments	were	conducted	
in duplicate tanks each containing 20 fish.

2.3 | Sea lice collection and infection

Adult female L. salmonis were collected during harvest at an Atlantic 
salmon aquaculture site near mainland B.C. north of the Queen 
Charlotte Strait. Lice were rinsed in sea water and transported to 
PBS	 in	 chilled,	 aerated	 sea	 water.	 Upon	 arrival	 at	 PBS,	 lice	 were	
transferred to 10°C aerated static seawater baths and held up to 
48 hr prior to experimentation.

Sockeye salmon were exposed to 6 sea lice/fish as previously de‐
scribed	in	Long	et	al.	(2019).	Fish	in	the	V−/SL−	and	V+/SL−	groups	
received the same handling treatment but were held in a mock 20‐L 
exposure	 tank	 without	 sea	 lice	 for	 15	min	 before	 transfer	 to	 the	
holding tank.

2.4 | Virus strain and infection

Infectious	hematopoietic	necrosis	virus	 isolate	BC93‐057	was	 iso‐
lated from a net‐pen reared Atlantic salmon during an epizootic 
in	 B.C.	 in	 1993	 (Garver	 et	 al.,	 2013).	 BC93‐057	 was	 amplified	 in	
Epithelioma papulosum cyprini	(EPC;	ATCC	CRL‐2872)	cells	and	quan‐
tified using plaque assay as described previously (Batts & Winton, 
1989).	 Plaques	were	 enumerated	 and	 reported	 as	 plaque	 forming	
units per ml (pfu/ml).

Fish	 were	 exposed	 to	 IHNV	 by	 waterborne	 immersion	 chal‐
lenge at 2 days post‐lice infection (dpl). Water flow to the tanks 
was stopped, and a volume of virus stock (108 pfu/ml) sufficient 
to produce a final virus concentration of 105 pfu/ml was added to 
the	V+/SL−	and	V+/SL+	tanks.	The	same	volume	of	sterile	Hank's	
Balanced Salt Solution (Gibco) was added to the non‐virus expo‐
sure tanks. Immediately after addition of the virus to the tank, 
water was briefly stirred and a 1 ml water sample collected to 
quantify the virus load in each tank. After 1 hr with supplemental 
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aeration and prior to resuming water flow to the tanks, a 1 ml 
water sample was collected to quantify the residual virus load in 
each	tank.	Fish	were	monitored	daily	for	30	days	post‐virus	(dpv),	
32 dpl. All mortalities were examined for sea lice and screened for 
the	presence	of	IHNV	by	quantitative	RT‐PCR	on	anterior	kidney	
samples.

2.5 | Sample collection

Tissue and blood samples were collected from 10 fish per group 
(five	 fish	 per	 tank)	 at	 3,	 5,	 and	 7	dpl	 (1,	 3,	 and	 5	dpv).	 At	 32	dpl	
(30 dpv), samples were collected from survivors: 10 fish each from 
the	V−/SL−	 and	V−/SL+	 groups,	 nine	 fish	 from	 the	V+/SL−	 group,	
and	four	 fish	from	the	V+/SL+	group.	For	sampling,	water	 flow	to	
each	tank	was	temporarily	stopped	and	0.15	mg/L	of	metomidate	
hydrochloride (Aquacalm; Syndel Canada) was added. After 12 min, 
five fish were individually netted into separate buckets and killed in 
400 mg/L of tricaine methanesulfonate (MS‐222; Syndel Canada) in 
sea water. The total number of lice on the fish and in their individual 
buckets was used to determine mean parasite abundance according 
to	Bush,	Lafferty,	Lotz,	and	Shostak	(1997).	Physical	damage	to	skin	
was noted using a semi‐quantitative scale from 0 to 4: (0) no skin 
damage, no haemorrhaging, no lesions; (1) minor petechial haemor‐
rhaging	and/or	scale	loss	over	25%	or	less	of	body	surface;	(2)	wide‐
spread	petechial	 haemorrhaging	 and/or	 scale	 loss	over	25%–50%	
of body surface; (3) subcutaneous oedema (raised scales), scale 
loss	over	50%–75%	of	body	surface	and/or	areas	of	blood;	and	(4)	
lesions present, erosion of the epidermis, ulcers and/or scale loss 
over	75%	or	greater	of	body	surface	(Long	et	al.,	2019).	Blood	was	
collected for haematocrit and plasma analysis as described in Long 
et al. (2019). Anterior kidney and skin tissue were taken for gene 
expression and viral load determination. Tissue samples were im‐
mediately	flash‐frozen	in	liquid	nitrogen	and	stored	at	−80°C.	Skin	
samples 1 cm long and 1 cm wide were collected at a standardized 
location on the left mid‐flank directly above the lateral line where a 
line drawn from the anterior end of the dorsal fin intersected with 
the	 lateral	 line	 (Fast	 et	 al.,	 2002).	 If	 a	 sea	 louse	was	 attached	 to	
this site, then the sample was taken on the right side in the same 
location.

2.6 | RNA extraction and reverse transcription

Total RNA was extracted from anterior kidney and skin samples in 
TRIzol Reagent (Life Technologies) following manufacturer's instruc‐
tions	using	5‐mm	stainless	steel	beads	(Qiagen).	Kidney	tissue	was	
mechanically homogenized in a TissueLyser II (Qiagen) for 2 min at 
25	Hz,	and	skin	was	mechanically	homogenized	for	10	min	at	30	Hz.	
RNA	was	stored	at	−80°C.

To prepare cDNA for viral load determination in anterior kidney 
samples,	1.5	µg	of	total	RNA	was	reverse‐transcribed	using	a	High	
Capacity cDNA Reverse Transcription kit (Applied Biosystems) fol‐
lowing	the	manufacturer's	instructions.	cDNA	was	stored	at	−20°C	
until needed.

For	gene	expression	analysis,	RNA	was	DNase	 treated	using	 a	
TURBO DNA‐free™ Total kit (Ambion) prior to cDNA synthesis. RNA 
quality was confirmed by agarose gel electrophoresis with a subset 
of	 samples	 from	 both	 tissues.	 To	 prepare	 cDNA,	 1	µg	 of	 DNase‐
treated	RNA	was	reverse‐transcribed	in	a	40‐µl	reaction	using	a	High	
Capacity cDNA Reverse Transcription kit (Applied Biosystems) with 
equal concentrations of random hexamers and Oligo d(T)18 primer 
(Thermo Scientific). cDNA samples were diluted 1:4 in nuclease‐free 
water	and	stored	at	−20°C	until	needed.

2.7 | IHNV quantitative RT‐PCR

Quantification of IHNV in kidney tissue was carried out using pub‐
lished primer and probe sequences targeting the IHNV N gene 
(Purcell	 et	 al.,	 2013).	 An	 individual	 reaction	was	 comprised	 of	 1X	
TaqMan™	Universal	PCR	Master	Mix	(Applied	Biosystems),	900	nm	
each	of	the	forward	and	reverse	primer,	250	nm	each	of	the	probe	
and	artificial	positive	control,	2.5	µl	cDNA	template,	and	nuclease‐
free	water	for	a	final	reaction	volume	of	25	µl.	Reactions	were	run	
on	a	Stratagene	Mx3000P	qPCR	system	following	the	manufactur‐
er's	protocol.	To	determine	the	number	of	virus	copies	per	µg	total	
RNA, a double‐stranded DNA gBLOCK fragment (IDT Technologies) 
consisting of the sequence targeted by the IHNV primers was used. 
An 8‐step serial dilution of the gBLOCK spanning 107	to	50	copies	
per reaction was used as a standard curve for each run. All samples 
and standard controls were tested in duplicate and considered posi‐
tive if at least one replicate had a Ct value <40.

2.8 | Host gene expression using quantitative real‐
time PCR

Gene expression in anterior kidney and skin samples was analysed 
at	3	and	7	dpl	 (1	 and	5	dpv).	 See	Supporting	 Information	Table	S1	
for primer concentrations, primer efficiency values, standard curve 
dilution, primer sequences, and source. To prepare the standard 
curve, equal volumes of DNase‐treated RNA from all samples were 
combined and cDNA prepared. Standard material was then diluted 
accordingly (Supporting Information Table S1). To confirm absence 
of genomic DNA, the standard control RNA was used in a no‐re‐
verse transcriptase reaction for each primer set. If amplification 
occurred in the no‐RT reaction, there had to be a difference of at 
least five cycles between the no‐RT reaction and sample reactions. 
All	reactions	were	carried	out	on	a	StepOne‐Plus	machine	(Applied	
Biosystems).	An	individual	PCR	mixture	was	comprised	of	1X	Power	
SYBR®	Green	PCR	Master	Mix	(Applied	Biosystems),	1	µl	of	diluted	
cDNA template, forward and reverse primers (concentrations given 
in Supporting Information Table S1), and nuclease‐free water for 
a	 final	 reaction	volume	of	15	µl.	Cycling	conditions	were	95°C	 for	
10	min	and	40	cycles	of	95°C	for	5	s,	60°C	 for	20	s,	and	72°C	for	
10 s. A dissociation curve was performed with each run to confirm 
specificity.

Genes of interest for this study were associated with acute phase 
response (serum amyloid a, saa; tumour necrosis factor, tnf) cytokines 
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(interleukin‐1beta, il‐1β; interleukin‐4/13A, il‐4/13A; interleukin‐10, 
il‐10), antigen display (major histocompatibility class I, mhc I), inter‐
feron‐induced (mx‐1; radical s‐adenosyl methionine domain containing 
2, rsad2), immunoglobulins (immunoglobulin M, igM; immunoglobulin T, 
igT), tissue repair (matrix metalloproteinase‐9, mmp‐9), and iron trans‐
port and circulation (hepcidin‐1, hep‐1; transferrin, tf). Reference gene 
candidates were elongation factor‐1alpha (ef‐1α), beta‐actin (β‐actin), 
dynein (dyn), eukaryotic translation initiation factor 3 subunit 6 (etif3s6) 
and mRNA turnover protein 4 homolog (mrto4). The three most stable 
reference genes were determined for each tissue type using geNorm 
(Vandesompele et al., 2002). The most stable genes in both skin and 
kidney tissue were ef‐1α, etif3s6 and mrto4 with collective M values 
of	0.53	and	0.51,	 respectively.	Relative	quantities	were	calculated	
from	the	raw	fluorescence	qPCR	data	using	the	global	fitting	model	
of Carr and Moore (2012) in the R package qpcR in R version 3.4.4 
(R Core Team, 2018; Spiess, 2018). Target gene expression was nor‐
malized to that of the three most stable reference genes and log2 
transformed for further analysis.

2.9 | Statistical analysis

Plots	of	 individual	physiological	parameters	were	visually	analysed	
and data log10 transformed if non‐normality was indicated. Kaplan–
Meier survival curves and log‐rank analysis of differences in mortal‐
ity were generated using the survminer package in R (Kassambara & 
Kosinski, 2018) which generated adjusted p values (Bonferroni) of 
the pairwise comparisons. As skin damage data were non‐continu‐
ous, differences in values between treatments at a time point were 

analysed by a Kruskal–Wallis test followed by Dunn's multiple com‐
parison (Holm‐adjusted p values).

To evaluate the effect of treatment, time and their interaction on 
physiological parameters, gene expression, lice abundance and virus 
copy number, a linear mixed‐effect model was employed using the 
nlme	package	(Pinheiro,	Bates,	DebRoy,	Sarkar,	&	Team,	2018).	The	
random effect term in the model was tank, and a term for unequal 
variance between treatments was included. The number of virus 
copies/µg	RNA	was	log10	transformed	prior	to	analysis.	For	the	post	
hoc analysis, least‐square means were generated in R using lsmeans 
from the package emmeans (Lenth, 2019) with the lme model. The 
adjusted p values (Tukey) of the pairwise comparisons of the means 
were then used for the analysis and are reported. A Spearman's rank‐
order correlation matrices between log2 CNRQ gene expression val‐
ues	and	either	virus	copy/µg	RNA	or	total	number	of	lice	for	kidney	
or skin, respectively, were performed in R version 3.4.3.

Results for all analyses were considered significant if p	≤	0.05.	
Graphs were prepared in R using the ggplot2 package (Wickham, 
2009). R code examples are given in the Supporting Information 
Material (Data S1).

3  | RESULTS

3.1 | Survival and skin damage

The earliest and greatest number of mortalities was observed in the 
V+/SL+	group,	where	average	cumulative	mortality	reached	60%	and	
occurred	 from	12	to	21	dpl.	This	 represented	6	 (1	and	5	per	 tank)	
mortalities out of the 10 fish remaining after sampling at 7 dpl. In 
the	V+/SL−	group,	average	cumulative	mortality	was	10%	 (1	of	10	
remaining fish) with the lone mortality occurring at 22 dpl. No mor‐
talities	occurred	in	either	the	V−/SL−	or	the	V−/SL+	group.	All	mor‐
talities	were	positive	for	IHNV	by	quantitative	RT‐PCR.	Survival	 in	
the	V+/SL+	group	was	significantly	lower	than	that	in	the	V−/SL−	and	
V−/SL+	groups	but	was	not	significantly	different	from	the	V+/SL−	
group (p	=	0.024;	Figure	1).

Median	skin	damage	scores	 for	 the	V−/SL+	group	were	signifi‐
cantly	greater	relative	to	the	V−/SL−	group	at	3,	5	and	7	dpl	(p	<	0.05;	
Figure	2).	At	these	times,	median	scores	between	the	V−/SL+	and	the	
V+/SL+	groups	were	not	different,	but	at	7	dpl,	the	median	score	in	
the	latter	was	also	significantly	greater	than	that	of	the	V−/SL−	group	
(Figure	2).

3.2 | Pathogen load and prevalence

The	prevalence	of	 lice	 infections	in	the	V−/SL+	and	V+/SL+	groups	
declined	 over	 time	 (Table	 1).	 In	 the	 V−/SL+	 group,	 parasite	 abun‐
dance	at	32	dpl	was	significantly	lower	than	3,	5	and	7	dpl	(p	<	0.05).	
In	 the	 V+/SL+	 group,	 abundance	 at	 32	dpl	was	 significantly	 lower	
than	3	and	7	dpl	but	not	5	dpl	(p	<	0.05).	The	proportion	of	samples	
positive	for	IHNV	infection	peaked	at	7	dpl	(5	dpv)	in	the	V+/SL−	(9	
of	10)	and	the	V+/SL+	(8	of	10)	groups	(Figure	3).	Furthermore,	viral	

F I G U R E  1   Kaplan–Meier survival curves (n	=	10;	5	fish	per	
tank	after	sampling	at	7	dpl).	The	V−/SL+	line	is	hidden	by	the	V−/
SL−	line.	Circles	denote	sampling	events.	Letters	denote	statistically	
significant differences in survival between groups (p	≤	0.05)
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load	was	not	statistically	different	between	the	V+/SL−	and	V+/SL+	
groups at any of the sample times.

3.3 | Physiological response

Treatment, but not time, had a significant effect on plasma osmo‐
lality, K+	 and	 haematocrit	 (Figure	 4;	 Supporting	 Information	 Table	

S2).	Collectively,	plasma	osmolality	values	in	the	V+/SL+	group	were	
higher	than	those	in	the	V−/SL−	group	(p = 0.036). Similarly, plasma 
K+	values	 in	 the	V+/SL+	group	were	significantly	higher	 relative	to	
all other groups (p	<	0.05).	 Lastly,	 haematocrit	 values	were	 signifi‐
cantly	lower	in	the	V+/SL+	group	as	compared	to	the	V−/SL−	group	
(p = 0.028).

Changes in the mean values of plasma Na+ and Cl− in each group 
were dependent on time (p	<	0.05).	At	3	dpl,	mean	plasma	Na+ was 
significantly	higher	in	the	V−/SL+	group	relative	to	the	V−/SL−	and	
V+/SL−	group	(Figure	4b).	However,	at	5	dpl,	mean	plasma	Na+ in the 
V−/SL+	group	was	significantly	higher	than	the	uninfected	control	
but	not	the	V+/SL−	group.	Differences	in	mean	plasma	Na+ among 
groups were not detected at 7 and 32 dpl. A similar trend was ob‐
served for mean plasma Cl− values. At 3 and 7 dpl, mean plasma Cl− 
in	the	V+/SL+	group	was	significantly	higher	than	the	V−/SL−	group	
(Figure	4c).	However,	at	5	dpl,	differences	between	the	V+/SL+	and	
V−/SL−	groups	were	not	significant	although	mean	plasma	Cl− values 
in	the	V−/SL+	group	were	significantly	higher	than	the	V−/SL−	group.	
There were no significant differences in mean plasma Cl− values be‐
tween	the	uninfected	control	and	V+/SL−	group	at	any	time	point.

3.4 | Gene expression in anterior kidney

Treatment but not time had an effect on the expression of rsad2 
which	 was	 significantly	 elevated	 in	 the	 V+/SL−	 group	 as	 com‐
pared	 to	 the	 V−/SL+	 group	 (p = 0.01). The effect of treatment 
on the relative expression of several innate immune response 
genes (saa, il‐1β, il‐10, mx‐1, hep‐1 and mmp‐9) changed over time 

F I G U R E  2   Skin damage scores in sockeye salmon sampled at 
3,	5,	7	and	32	days	post‐lice	infection.	Data	are	presented	in	box	
plots in which the inner horizontal line is the median, and the upper 
and lower boundaries of the box correspond to the first and third 
quartiles. The upper and lower whiskers denote the largest and 
smallest	values	no	further	than	1.5	times	the	inter‐quartile	range.	
Open circles denote outliers. Letters denote statistically significant 
differences between groups at a sampling time (p	≤	0.05)	[Colour	
figure can be viewed at wileyonlinelibrary.com]

TA B L E  1  Prevalence	and	abundance	of	Lepeophtheirus salmonis 
on sockeye salmon exposed to either L. salmonis	(V−/SL+)	or	
L. salmonis	and	IHNV	(V+/SL+)	at	3,	5,	7	and	32	days	post‐lice	
infection (n = 10). Abundance is expressed as mean number of lice 
per fish ± SE (range). Superscripts denote significant differences in 
lice abundance over time (p	<	0.05)

Days 
post‐lice 
infection No. examined No. infected Abundance

V−/SL+

3 10 10 6.6 ± 1.4 (2–14)y

5 10 10 6.5	±	1.1	(2–13)y

7 10 8 5.1	±	1.5	(0–14)y

32 10 4 0.6 ± 0.3 (0–3)z

V+/SL+

3 10 10 5.7	±	0.7	(2–10)y

5 10 8 3.2	±	1.5	(0–15)yz

7 10 10 5	±	1.0	(1–11)y

32 4 2 1 ± 0.7 (0–3)z

F I G U R E  3   Log10	virus	copies/µg	RNA	in	anterior	kidney	from	
individual	fish	in	the	V+/SL−	and	V+/SL+	groups	sampled	at	3,	5,	
7	and	32	days	post‐lice	infection	(1,	3,	5	and	30	days	post‐virus	
infection). Each dot represents an individual fish. The black bar 
denotes	the	median	value	for	that	group	[Colour	figure	can	be	
viewed at wileyonlinelibrary.com]
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(p	<	0.05;	Figure	5).	Compared	to	the	uninfected	control,	expres‐
sion of saa	was	significantly	elevated	in	the	V−/SL+	group	at	3	dpl	
but not at 7 dpl. At 7 dpl, expression of saa	in	the	V+/SL−	and	V+/
SL+	 groups	was	 significantly	 elevated	 relative	 to	 the	 uninfected	
control	 (Figure	5a).	Expression	of	 il‐1β, il‐10 and mx‐1 did not dif‐
fer between groups at 3 dpl, but significant differences were ob‐
served at 7 dpl. The expression of il‐1β	in	the	V+/SL−	and	V+/SL+	
groups	was	elevated	as	compared	to	the	V−/SL−	group	(Figure	5b).	

Similarly, il‐10 expression at 7 dpl was significantly greater in 
the	V+/SL−	group	compared	with	 the	V−/SL−	and	V−/SL+	groups	
(Figure	 5d).	 Lastly,	mx‐1 expression was significantly greater in 
the	 V+/SL−	 group	 compared	with	 the	 V−/SL+	 group	 (Figure	 5e).	
Conversely, significant differences in hep‐1 and mmp‐9 expres‐
sion were observed only at 3 dpl. Expression of hep‐1 in	the	V+/
SL−	 group	 was	 significantly	 downregulated	 relative	 to	 the	 V−/
SL+	and	V+/SL+	groups	(Figure	5h).	The	expression	of	mmp‐9 was 

F I G U R E  4  Physiological	
measurements from sockeye salmon 
sampled	at	3,	5,	7	and	32	days	post‐lice	
infection.	See	caption	for	Figure	2	for	
box plot description. Letters denote 
statistically significant differences 
between groups within a sampling time 
if there was a significant interaction of 
treatment and dpl for that parameter 
(p	≤	0.05)	[Colour	figure	can	be	viewed	at	
wileyonlinelibrary.com]
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F I G U R E  5   Gene expression for sockeye salmon 
kidney sampled at 3 and 7 days post‐lice infection 
(1	and	5	days	post‐virus	infection).	Each	dot	
represents an individual fish. The black bar denotes 
the mean expression value for that group. Letters 
denote statistically significant differences in values 
between groups within a sampling time if there was 
a significant interaction of treatment and dpl for that 
parameter (p	≤	0.05)	[Colour	figure	can	be	viewed	at	
wileyonlinelibrary.com]
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significantly	elevated	in	the	V+/SL+	group	compared	with	the	V+/
SL−	group	(Figure	5l).

3.5 | Gene expression in skin

Treatment but not time had a significant effect on il‐1β, mmp‐9, 
mx‐1 and tf expression (p	<	0.05).	The	expression	values	of	il‐1β and 
mmp‐9	were	 significantly	higher	 in	 the	V−/SL+	and	V+/SL+	groups	
relative	to	the	V−/SL−	and	V+/SL−	groups.	Expression	of	tf was sig‐
nificantly	 higher	 in	 the	V−/SL+	 group	 than	 in	 the	V−/SL−	 and	V+/
SL−	groups	but	not	the	V+/SL+	group.	Although	expression	of	mx‐1 
in	the	V+/SL−	group	was	significantly	higher	compared	to	the	V−/SL+	
group,	there	were	no	significant	differences	among	the	V+/SL−,	the	
V+/SL+	and	the	V−/SL−	groups.

The effect of treatment on the expression of il‐10, rsad2, mhc 
I and hep‐1 changed over time (p	<	0.05;	 Figure	 6).	 With	 the	 ex‐
ception of hep‐1, significant differences in the expression of these 
genes were only observed at 7 dpl. Thus, expression of rsad2 and 
il‐10	was	significantly	lower	in	the	V−/SL+	group	compared	with	the	
V−/SL−	and	V+/SL−	groups	(Figure	6d,f).	In	the	V+/SL−	group,	rsad2 
expression	was	significantly	greater	compared	to	the	V−/SL−	group	
(Figure	6f).	Expression	of	mhc I	was	significantly	greater	in	the	V+/
SL−	group	than	in	all	other	groups	(Figure	6g).	At	3	dpl,	expression	
of hep‐1	was	significantly	greater	in	the	V−/SL+	and	V+/SL+	groups	
than	in	the	V−/SL−	and	V+/SL−	groups.	At	7	dpl,	expression	of	hep‐1 
in	the	V+/SL+	group	was	significantly	greater	than	the	V−/SL−	group.

3.6 | Correlation analysis

Correlation	analysis	showed	that	 in	 the	V+/SL−	group	at	7	dpl,	ex‐
pression values of genes associated with the host response to IHNV 
(il‐1β, il‐10, mx‐1, rsad2 and saa) were significantly correlated to virus 
load	in	the	anterior	kidney.	In	the	presence	of	sea	lice	(V+/SL+),	cor‐
relations between viral load and expression of saa and il‐10 were no 
longer evident (Table 2). In skin, the expression values of most genes 
associated with the host response to L. salmonis infection (hep‐1, tf, 
mmp‐9, il‐1β) were not correlated to the total number of lice present. 
However, tf expression was significantly correlated to total num‐
ber	of	lice	in	the	V−/SL+	group	but	not	the	V+/SL+	group	(Table	2).	
Finally,	mx‐1 expression was correlated with number of sea lice in the 
V+/SL+	group	but	not	the	V−/SL+	group	(Table	2).

4  | DISCUSSION

Previous	gene	expression	analyses	of	Pacific	salmon	 infected	with	
L. salmonis postulated that parasitized sockeye salmon would be 
more	susceptible	to	viral	infections	(Braden	et	al.,	2015;	Sutherland	
et al., 2014) due to the suppression of antiviral responses. In the 
study herein, although survival was reduced in the co‐infected 
group as compared to the other groups, there was no difference in 
the prevalence of virus infections or mean viral load between virus‐
only and co‐infected salmon indicating that reduced survival of the 

co‐infected salmon was not a consequence of increased infection 
with IHNV. The lack of statistical significance between the co‐in‐
fection and virus‐only groups was likely due to the low number of 
biological replicates in each group (n = 10). We hypothesize that co‐
infection of sea lice and IHNV in sockeye salmon altered the host 
capacity to modulate the effects of sea lice infection indicating a 
synergistic interaction between L. salmonis and IHN virus. Decreased 
survival in Atlantic salmon co‐infected with L. salmonis and infec‐
tious salmon anaemia virus (ISAV) has also been reported (Barker et 
al., 2019). Barker et al. (2019) concluded that sea lice‐infected fish 
modulated the host immune system resulting in increased suscepti‐
bility to ISAV. Given the differences between the two studies (host 
species, virus, study design and sample numbers, parameters exam‐
ined), further investigation is necessary to determine whether co‐in‐
fection increases host susceptibility and modulates host response to 
the physiological effects of sea lice infection, or both.

Sockeye salmon are highly susceptible to L. salmonis and infec‐
tion results in increased plasma osmolality and Na+ and Cl− con‐
centrations along with severe cutaneous lesions and subcutaneous 
oedema	 (Braden	 et	 al.,	 2015;	 Jakob,	 Sweeten,	 Bennett,	 &	 Jones,	
2013; Johnson et al., 1996; Long et al., 2019). Host osmoregula‐
tion is affected by both the direct (attachment and feeding) and in‐
direct (passive loss of water across the gills due to stress) effects 
of L. salmonis infection (Wendelaar Bonga, 1997). In contrast, the 
effects of IHNV on host osmoregulation are not well documented 
although	Amend	and	Smith	(1975)	reported	reduced	plasma	osmo‐
lality in moribund rainbow trout Oncorhynchus mykiss. In the current 
study, co‐infected salmon had higher skin disruption scores, ele‐
vated osmoregulatory indicators and lowered haematocrit values as 
compared to the uninfected control. There was no disruption in os‐
moregulatory indicators in salmon infected only with IHNV, whereas 
elevated osmoregulatory indicator values were transient in salmon 
infected only with sea lice. Therefore, we conclude that the reduced 
survival in co‐infected sockeye salmon resulted from the osmoregu‐
latory consequences of the sea lice infections which were amplified 
in the presence of infection with IHN virus.

Upon infection with a virus, the host immune system initiates 
differentiation of Th lymphocytes into Th1 cells resulting in the 
production of cytotoxic T cells and interferon‐γ as well as promot‐
ing macrophage activation (Bradley & Jackson, 2008; Cox, 2001). 
In contrast, Th2 cells are recruited when extracellular pathogens 
such as parasites are present, and this response is associated with 
up‐regulation of il‐4/13A, il‐10 and transforming growth factor beta. 
Activation of B cells and proliferation of eosinophils due to cytokine 
production is a hallmark of the Th2 response to parasite infection 
(Cox,	2001).	Braden	et	al.	 (2015)	reported	activation	of	a	Th2‐type 
regulatory pathway in the skin of L. salmonis‐resistant coho salmon 
Oncorhynchus kisutch and hypothesized this as a mechanism of re‐
sistance as activation of this pathway was not detected in the sus‐
ceptible sockeye and Atlantic salmon. In the current study, sockeye 
salmon displayed no evidence of a Th2‐type pathway as il‐4/13A 
expression was unchanged during L. salmonis infection and up‐reg‐
ulation of il‐10 only occurred in response to IHNV exposure. This 
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F I G U R E  6   Gene expression for sockeye salmon 
skin sampled at 3 and 7 days post‐lice infection 
(1	and	5	days	post‐virus	infection).	See	caption	
for	Figure	5	[Colour	figure	can	be	viewed	at	
wileyonlinelibrary.com]
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suggests that the enhanced susceptibility to sea lice in co‐infected 
salmon was not related to switching from an anti‐parasite Th2 to a 
virus‐type Th1 immune response. Analysis of the expression of ad‐
ditional response‐specific genes will be required to adequately ad‐
dress this question.

Hepcidin and transferrin proteins are involved in iron homeosta‐
sis. Modulation of their abundance during infections is an important 
component of nutritional immunity in which the host restricts the 
availability of essential metals that are otherwise available to patho‐
gens (Hood & Skaar, 2012). Lepeophtheirus salmonis is unable to syn‐
thesize haem (Brandal, Egidius, & Romslo, 1976), and evidence of 
host nutritional immunity during L. salmonis infections has previously 
been	documented	in	Atlantic	and	Pacific	salmon	(Braden	et	al.,	2015;	
Sutherland et al., 2014; Valenzuela‐Muñoz & Gallardo‐Escárate, 
2017). In the present study, hep‐1 expression in skin was up‐regu‐
lated in salmon lice‐infected salmon with or without a co‐infection. 
Up‐regulation of hep‐1 in the skin of sockeye salmon during L. sal‐
monis infection is likely due to inflammation in this tissue. Increased 
hep‐1 expression has been linked to tissue inflammation which has 
been reported in sockeye salmon infected with L. salmonis (Braden 
et	al.,	2015;	Johnson	et	al.,	1996;	Nicolas	et	al.,	2002).	Similarly,	tf 
expression was up‐regulated in skin of salmon lice‐infected salmon 
with or without a virus co‐infection. Therefore, we can conclude that 
the expression of hep‐1 and tf in sockeye salmon skin was induced 
by L. salmonis and that co‐infection with IHNV did not significantly 
impact the host nutritional immune response to L. salmonis.

Matrix metalloproteinases are primarily responsible for extracel‐
lular matrix degradation and tissue remodelling which occurs during 
the inflammatory response (Chadzinska, Baginski, Kolaczkowska, 
Savelkoul, & Verburg‐van Kemenade, 2008). In the kidney and skin 
of sockeye salmon, mmp‐9 was up‐regulated in response to L. salmo‐
nis infection which is in agreement with previous studies (Braden et 
al.,	2015;	Skugor	et	al.,	2008;	Sutherland,	Jantzen,	Sanderson,	Koop,	
& Jones, 2011; Tadiso et al., 2011). In the present study however, 
up‐regulation of mmp‐9 in response to IHNV infection was observed 
in neither tissue although mmp‐9 was induced in the kidney of IHNV‐
infected rainbow trout (MacKenzie et al., 2008). Inflammation due to 
infection typically results in up‐regulation of il‐1β leading to an influx 
of leucocytes which preferentially express mmp‐9 (Hong,	 Peddie,	
Campos‐Pérez,	 Zou,	 &	 Secombes,	 2003;	 Krasnov,	 Timmerhaus,	
Afanasyev, & Jørgensen, 2011). Significant up‐regulation of il‐1β was 
not observed in the kidney of salmon infected with virus alone until 
7	dpl	(5	dpv),	suggesting	the	possibility	that	mmp‐9 expression was 
up‐regulated after 7 dpl.

Serum amyloid A (SAA) is an acute phase protein whose lev‐
els increase in response to inflammation (Jensen et al., 1997; Rebl, 
Goldammer,	 Fischer,	 Köllner,	 &	 Seyfert,	 2009).	 Several	 cytokines,	
including interleukin‐1β (IL‐1β), can induce transcription of this gene 
(Jørgensen, Lunde, Jensen, Whitehead, & Robertsen, 2000). In fish, 
saa has been induced in immune organs in response to viral, bacte‐
rial	and	parasitic	infections	(Braden	et	al.,	2015;	Chettri	et	al.,	2014;	
Sutherland et al., 2014; Villarroel et al., 2008). Villarroel et al. (2008) 
have proposed that SAA is involved in local defence against patho‐
gens as they were unable to detect SAA in plasma of fish infected 
with Flavobacterium psychrophilum, but the gene was expressed in 
kidney, liver and spleen cells. In the current study, there was no evi‐
dence of up‐regulation of saa in skin in response to either pathogen. 
Expression of saa in kidney was up‐regulated in a pathogen‐depen‐
dent pattern. At 3 dpl (1 dpv), expression was only associated with 
salmon	lice	infection,	whereas	at	7	dpl	(5	dpv),	expression	of	saa oc‐
curred in the virus‐infected groups, perhaps indicative of time‐de‐
pendent patterns of inflammation.

IL‐1β is a pro‐inflammatory cytokine that enhances migration of 
leucocytes, modulates expression of IL‐17 by Th17 cells and induces 
anti‐inflammatory cytokines including IL‐10 (Hong et al., 2003; 
Skugor	et	al.,	2008;	Zou	&	Secombes,	2016).	Increased	expression	of	
il‐1β in response to either L. salmonis or IHNV has been documented 
(Braden	et	al.,	2015;	Fast,	Ross,	Muise,	&	Johnson,	2006;	Peñaranda,	
Purcell,	&	Kurath,	2009;	Purcell,	Kurath,	Garver,	Herwig,	&	Winton,	
2004;	Purcell,	Marjara,	Batts,	Kurath,	&	Hansen,	2011;	Sutherland	
et al., 2014). In the current study, il‐1β expression varied depending 
on tissue and target organ of the individual pathogen, regardless 
of co‐infection status. In kidney, il‐1β expression was up‐regulated 
during virus infections while in skin, expression was up‐regulated 
during sea lice infections. These results agree with previous single 
infection studies, and therefore, we can conclude that expression 
of il‐1β does not appear to be negatively impacted by co‐infection 
in	sockeye	salmon	(Braden	et	al.,	2015;	Chettri	et	al.,	2014;	Purcell	
et al., 2004).

TA B L E  2   Results of Spearman's rank‐order correlation between 
gene	expression	values	and	virus	copy	number/µg	RNA	(kidney)	or	
total number of lice (skin) for individual fish. rs values are given for 
individual genes. If the correlation was statistically significant 
(p	˂	0.05),	rs values are bolded and the p‐value is given in 
parentheses. N.D. denotes not done

Gene

Kidney Skin

V+/SL− V+/SL+ V−/SL+ V+/SL+

saa 0.72 (0.030) 0.5 0.62 0.11

hep‐1 0.78 (0.013) 0.36 0.52 0.20

igM −0.42 0.02 N.D. N.D.

igT −0.067 −0.40 −0.55 0.62

il‐1β 0.77 (0.016) 0.86 (<0.01) 0.59 0.25

il‐10 0.8 (<0.01) 0.60 −0.018 0.34

il‐4/13A −0.65 −0.45 −0.40 0.30

mhc I −0.1 0.52 −0.40 0.68 
(0.032)

mmp‐9 0.067 −0.71 
(0.047)

0.5 −0.03

mx‐1 0.88 (<0.01) 0.76 (0.028) −0.26 0.74 
(0.013)

tf 0.5 0.62 0.65 
(0.043)

0.13

rsad2 0.88 (<0.01) 0.74 (0.037) −0.49 0.39

tnf N.D. N.D. 0.18 −0.06
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IL‐10 is a pleiotropic, anti‐inflammatory cytokine that down‐reg‐
ulates	inflammatory	Th	responses	(Zou	&	Secombes,	2016).	As	such,	
increased expression of il‐10 in kidney during virus‐only infections 
was likely in response to increased il‐1β expression in this tissue. 
Concurrently, the absence of statistical differences in the expression 
of il‐10 between co‐infected salmon and any of the other groups may 
indicate modulation of gene expression due to L. salmonis infection 
in the co‐infected fish. Down‐regulation of il‐10 in skin from L. salmo‐
nis‐infected sockeye salmon has been previously reported (Braden 
et	al.,	2015)	and	was	again	observed	 in	the	current	study,	demon‐
strating that regulation of the inflammatory response is impaired in 
skin of susceptible salmon species during the infection.

Transcription of mhc I is induced by interferon in response to 
virus infection. Expression of this gene in rainbow trout infected 
with IHNV varies by tissue, days post‐exposure and virus strain with 
the highest fold change reported in liver and spleen at 7 days post‐
exposure to highly virulent IHNV isolates (ATCC #VR‐1392, 220‐90 
and	BLK94;	Landis,	Purcell,	Thorgaard,	Wheeler,	&	Hansen,	2008;	
Purcell	 et	 al.,	 2011).	 In	 contrast,	 sea	 lice	 are	 anticipated	 to	down‐
regulate mhc I in kidney, as L. salmonis infection of Atlantic salmon 
had decreased mhc I	levels	(Fast	et	al.,	2006).	In	our	study,	no	signif‐
icant differences in mhc I were observed in sockeye salmon infected 
with sea lice alone. Overall, there were no significant changes of 
mhc I expression in kidney, despite sampling during the time of peak 
virus load. However, increased expression of mhc I is often reported 
3	days	after	virus	infection	(Hansen	&	LaPatra,	2002;	Landis	et	al.,	
2008) and may have been missed in this study due to the timing of 
sampling.

In skin tissue, the lack of change of mhc I expression in sock‐
eye salmon exposed to sea lice versus those uninfected agrees with 
previous studies that failed to demonstrate a difference in expres‐
sion regardless of L. salmonis	 infection	status	 (Braden	et	al.,	2015;	
Fast	et	al.,	2006).	Conversely,	in	sockeye	salmon	infected	only	with	
IHNV, mhc I expression was elevated indicating virus‐induced ex‐
pression. As IHNV replicates in skin cells both in vivo and in vitro, 
up‐regulation of mhc I in this tissue is not unexpected (Harmache, 
LeBerre,	Droineau,	Giovannini,	&	Brémont,	2006;	Yamamoto,	Batts,	
& Winton, 1992). However, as expression of mhc1 is reduced in co‐
infected fish, it is probable that the virus‐induced expression of mhc 
I was negatively impacted by L. salmonis exposure.

Both mx‐1 and rsad2 are strongly induced by type I interferon, 
and their products are key components of the host antiviral re‐
sponse (Robertsen, 2008). Down‐regulation of mx‐1 has been re‐
ported	in	both	anterior	kidney	and	skin	of	Pacific	salmon	infected	
with L. salmonis	 (Braden	 et	 al.,	 2015;	 Sutherland	 et	 al.,	 2014).	
Conversely, in salmon infected with IHNV, mx‐1 and rsad‐2 levels 
typically	 peak	 between	 2	 and	 3	days	 after	 infection	 (Peñaranda	
et	 al.,	 2009;	 Purcell	 et	 al.,	 2011).	 At	 7	dpl	 (5	dpv),	mean	 expres‐
sion of these genes in both tissues was lower in salmon infected 
with sea lice only compared with those infected with IHNV only. 
We had hypothesized that L. salmonis infections would result in 
down‐regulation of interferon‐induced genes in co‐infected fish; 
however, expression of these genes did not differ between the 

virus‐infected and the co‐infected salmon. It should be noted that 
expression levels of both genes in co‐infected salmon did not dif‐
fer from those of the negative control in either tissue. Mapping 
protein expression will be necessary to determine whether the ob‐
served differences in the transcriptomic response result in mea‐
surable differences in the amount of protein produced.

Analysis of cytokine gene expression in skin highlighted an 
interesting pattern of expression in salmon infected with the 
virus alone. The genes rsad2, mx‐1 and mhc I were all up‐regu‐
lated	 indicative	 of	 an	 antiviral	 response.	 Furthermore,	 although	
il‐10	 expression	 was	 greatest	 in	 this	 group	 at	 7	dpl	 (5	dpv),	 the	
expected increase in il‐1β expression was not detected. A similar 
observation was made in Atlantic salmon infected with infectious 
pancreatic	necrosis	virus	(IPNV):	up‐regulation	of	il‐10 in conjunc‐
tion with a lack of induction of il‐1β and il‐8 (Reyes‐Cerpa et al., 
2012).	 The	 authors	 hypothesize	 that	 IPNV	 triggered	 an	 anti‐in‐
flammatory response which the virus then used to aid in estab‐
lishment of persistence, a strategy which has been reported for 
other animal viruses (Wilson & Brooks, 2010). Replication of IHNV 
in epidermal tissue and persistence of the virus in brain tissue of 
sockeye salmon have been reported (Müller, Sutherland, Koop, 
Johnson,	&	Garver,	2015;	Yamamoto,	Batts,	Arakawa,	&	Winton,	
1990). Therefore, we hypothesize that IHNV also regulates il‐10 
expression which would allow for virus replication in epidermal 
tissue and potentially enable persistence in infected hosts. To de‐
termine whether IHNV employs such a strategy, further testing is 
needed in which expression of other pro‐inflammatory cytokine 
genes such as il‐8 is measured to determine whether il‐10 is up‐
regulated in response to these genes. In addition, it is necessary 
to measure gene expression at additional time points to see how 
cytokine gene expression in skin changes through the course of 
an IHN infection.

In our study, co‐infection did not appear to alter igT expression in 
either skin or kidney tissue while expression of igM was not detected 
in skin from sockeye salmon. This is in contrast to previous studies 
indicating increased transcript levels of both genes during ectopar‐
asite infection. Chettri et al. (2014) observed increased expression 
of igM in skin from rainbow trout infected with Ichthyobodo necator 
at 9 dpi. Similarly, Tadiso et al. (2011) reported highest igM and igT 
levels in skin of Atlantic salmon infected with L. salmonis	at	15	days	
post‐copepodid infection. In addition to the differences in host spe‐
cies, samples were collected when parasite load was high, greater 
than	50	parasites/fish,	in	contrast	to	the	current	study	in	which	av‐
erage parasite load was less than 7 lice/fish at both sampling times. 
Given these conflicting results, further work is needed to develop a 
better understanding of the effects of co‐infection on the kinetics of 
antibody‐mediated immunity.

Correlation analysis of gene expression of individual fish to 
pathogen load revealed that viral load strongly influenced the mag‐
nitude of the antiviral response while the level of host response to 
sea lice was not necessarily dictated by the parasite load. Expression 
values for genes associated with the host response to L. salmonis 
such as hep‐1, tf, mmp‐9 and il‐1β were not significantly correlated 
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to the total number of lice per fish. In contrast, expression values 
of genes associated with the host response to IHNV (saa, il‐1β, il‐10, 
mx‐1 and rsad2) in salmon infected with virus alone were correlated 
to viral load. A similar trend has been reported for both IHNV and 
viral	 haemorrhagic	 septicaemia	 (Avunje,	 Kim,	 Park,	 Oh,	 &	 Jung,	
2011;	Purcell,	LaPatra,	Woodson,	Kurath,	&	Winton,	2010;	Zou	et	
al., 2014). In co‐infected salmon, expression values of only il‐1β, mx‐1 
and rsad2 were correlated to viral load.

5  | CONCLUSION

This study showed that the outcome of L. salmonis and IHNV co‐in‐
fections differed from those of single infections in sockeye salmon. 
Survival in co‐infected fish was reduced compared to both single 
infection groups, indicating that the two pathogens interacted 
synergistically with one another during co‐infections. There was 
a significant physiological disruption in co‐infected fish, suggest‐
ing the presence of IHNV partially impaired the host recovery from 
L. salmonis. With regard to gene expression, the only evidence of 
L. salmonis‐induced modulation of the host antiviral response was 
down‐regulation of mhc I although the possibility of modulation 
cannot be ruled out for interferon‐induced genes. There was no ef‐
fect of co‐infection on the expression of genes associated with the 
host response to L. salmonis. This research highlights the need for 
whole organism analysis in conjunction with transcriptomic analysis 
to fully understand the impacts of co‐infection on the susceptible 
host.
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