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1  | INTRODUC TION

It is generally accepted we have entered a period of unprecedented 
biodiversity loss (Pimm et al., 2014; Vogel, 2017). Evaluating the 
scope and regional variation in this loss will require the capacity 

to quantify shifts in species composition rapidly and on a far larger 
scale than ever before to better understand and manage ecosys-
tems (Cristescu, 2014; Ji et al., 2013; Moriniere et al., 2016; Waldron 
et al., 2017). As arthropods account for the majority of terrestrial 
biodiversity (Medeiros et al., 2013), they are an obvious target for 
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Abstract
Although DNA metabarcoding is an attractive approach for monitoring biodiversity, 
it is often difficult to detect all the species present in a bulk sample. In particular, se-
quence recovery for a given species depends on its biomass and mitome copy num-
ber as well as the primer set employed for PCR. To examine these variables, we 
constructed a mock community of terrestrial arthropods comprised of 374 species. 
We used this community to examine how species recovery was impacted when am-
plicon pools were constructed in four ways. The first two protocols involved the con-
struction of bulk DNA extracts from different body segments (Bulk Abdomen, Bulk 
Leg). The other protocols involved the production of DNA extracts from single legs 
which were then merged prior to PCR (Composite Leg) or PCR‐amplified separately 
(Single Leg) and then pooled. The amplicons generated by these four treatments 
were then sequenced on three platforms (Illumina MiSeq, Ion Torrent PGM and Ion 
Torrent S5). The choice of sequencing platform did not substantially influence species 
recovery, although the Miseq delivered the highest sequence quality. As expected, 
species recovery was most efficient from the Single Leg treatment because amplicon 
abundance varied little among taxa. Among the three treatments where PCR oc-
curred after pooling, the Bulk Abdomen treatment produced a more uniform read 
abundance than the Bulk Leg or Composite Leg treatment. Primer choice also influ-
enced species recovery and evenness. Our results reveal how variation in protocols 
can have substantial impacts on perceived diversity unless sequencing coverage is 
sufficient to reach an asymptote.
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bio‐surveillance. Although they are easily collected in large num-
bers (Russo, Stehouwer, Heberling, & Shea, 2011), the subsequent 
processing and identification of specimens has traditionally been a 
barrier to large‐scale monitoring programmes (Bassett et al., 2012). 
DNA barcoding, the use of short standardized gene regions to dis-
criminate species, breaks this barrier by enabling nontaxonomists to 
identify specimens once a reference sequence library is established 
(Hebert, Cywinska, Ball, & de Waard, 2003; Hebert & Gregory, 
2005).

DNA barcode studies initially focused on developing the ana-
lytical protocols to construct a specimen‐based reference library 
(Hebert et al., 2003; Hebert, Penton, Burns, Janzen, & Hallwachs, 
2004). Although improved protocols have reduced costs, leading to 
the analysis of millions of single specimens (Hajibabaei et al., 2005; 
Hebert et al., 2018; Ivanova, deWaard, & Hebert, 2006), this ap-
proach is too expensive to support large‐scale bio‐monitoring pro-
grammes. However, by coupling a DNA barcode reference library 
with the analytical capacity of high‐throughput sequencers (HTS), 
DNA metabarcoding provides a path to rapid, low‐cost assessments 
of species composition (Brandon‐Mong et al., 2015; Hajibabaei, 
Shokralla, Zhou, Singer, & Baird, 2011; Moriniere et al., 2016; Yu 
et al., 2012). It achieves this goal by generating amplicons internal 
to the barcode region from bulk DNA extracts which are then se-
quenced and assigned to operational taxonomic units (OTUs) that 
are queried against reference sequences to ascertain their source 
species (see Cristescu, 2014). Studies have now employed this ap-
proach to assess species composition in communities of aquatic and 
terrestrial arthropods (Beng et al., 2016; Elbrecht, Vamos, Meissner, 
Aroviita, & Leese, 2017; Ji et al., 2013), vertebrates (Sato, Sogo, 
Doi, & Yamanaka, 2017), diatoms (Vasselon et al., 2017) and fungi 
(Aas, Davey, & Kauserud, 2017; Bellemain et al., 2012; Tedersoo, 
Tooming‐Klunderud, & Anslan, 2018). Such metabarcoding analysis 
routinely reveals more species than morphological approaches while 
requiring far less time (Brandon‐Mong et al., 2015; Elbrecht, Peinert, 
& Leese, 2017; Elbrecht, Vamos et al., 2017; Hebert et al., 2018; Ji 
et al., 2013; Shokralla et al., 2015; Vivien, Lejzerowicz, & Pawlowski, 
2016; Yu et al., 2012).

Despite the advantages of metabarcoding, several factors often 
complicate the recovery of all species in a sample. First, DNA tem-
plates derived from the species in a mixed sample are often differen-
tially amplified (Elbrecht & Leese, ; Piñol, Mir, Gomez‐Polo, & Agustí, 
2015; Tedersoo et al., 2018). Such bias can arise from either the 
DNA polymerase (Dabney & Meyer, 2012; Nichols et al., 2018; Pan 
et al., 2014) or the PCR primers (Clarke, Soubrier, Weyrich, & Cooper, 
2014). Polymerase bias involves the differential amplification of tem-
plates as a result of variation in their sequence motifs, GC content or 
length (Dabney & Meyer, 2012; Nichols et al., 2018; Pan et al., 2014). 
Primer bias arises due to either varying levels of primer mismatch or 
template degradation (Clarke et al., 2014; Elbrecht & Leese, 2015). 
The impact of primer mismatches can often be reduced either by 
lowering annealing temperatures or by raising the degeneracy of the 
primers (Clarke et al., 2014; Elbrecht & Leese, 2017). However, these 
“solutions” have a downside; they often increase the amplification of 

nontarget sequences such as bacterial endosymbionts or mitochon-
drial pseudogenes, which is especially problematic for eDNA stud-
ies (Macher et al., 2018; Smith et al., 2012; Song, Buhay, Whiting, & 
Crandall, 2008).

The capacity of metabarcoding to recover all species in a bulk 
sample is further complicated because the component species typi-
cally vary by several orders of magnitude in mass and hence in copy 
numbers of the target template. Unless other factors intervene, this 
variation in template number means that large‐bodied species are 
more likely to be recovered (Brandon‐Mong et al., 2015; Elbrecht, 
Peinert et al., 2017). Because of this effect (in addition to primer 
bias), efforts to infer species abundance from read counts obtained 
in metabarcoding studies are at best weak (Elbrecht & Leese, 2015; 
Piñol et al., 2015). Correction factors can improve such estimates 
(Thomas, Deagle, Eveson, Harsch, & Trites, 2015; Vasselon et al., 
2017), but any method based on the analysis of bulk DNA extracts 
will fail to accurately determine species abundance.

In addition to factors complicating the recovery of sequences 
from all species in a bulk sample, sequence variation introduced 
during PCR, library preparation and sequencing can make it difficult 
to assign sequences to their source species (Tedersoo et al., 2018). 
PCR error can be reduced by the use of high‐fidelity polymerases 
(Lee, Lu, Chang, Loparo, & Xie, 2016; Potapov et al. 2017), but it 
is more difficult to escape complexities introduced by sequencing 
error because all second‐generation sequencers have error rates 
(e.g. 1%–2%) that are high enough to complicate the discrimination 
of closely related species. Third‐generation platforms, such as Pacific 
Biosciences Sequel (e.g. Hebert et al., 2018), can produce sequences 
with much lower error rates, but they currently generate too few 
reads (~0.3 million/run) to reveal all species in a taxonomically di-
verse sample (Tedersoo et al., 2018). As a consequence, despite their 
high error rates, second‐generation platforms (Illumina, Ion Torrent) 
are commonly used for metabarcoding as they produce many mil-
lions of reads per run (Cristescu, 2014; Mardis, 2013). Illumina se-
quencers generate more reads (20 million–10 billion/run) with lower 
error rates than Ion Torrent platforms, but the latter instruments can 
deliver longer reads and can generate results more rapidly (Mardis 
et al., 2013). It is unclear how severely the choice of HTS platform 
affects species recovery as their performance has rarely been com-
pared in eukaryotes (Divolli, Brown, Kinne, McCracken, & O’Keefe, 
2018). However, work on microbial communities found general 
agreement between platforms although reads from Ion Torrent plat-
forms were lower quality and more length variable than those from 
Illumina (Salipante et al., 2014; Tessler et al., 2017). In cases where 
speed is critical, Ion Torrent platforms have an advantage because of 
their short run times.

To explore factors affecting the reliability of metabarcoding, we 
targeted the 658 bp barcode region of the cytochrome c oxidase 
I gene (COI). This gene region has three advantages for metabar-
coding studies. First, reference sequences are available for more 
than 500,000 animal species, far more than any other gene region 
(Andújar, Arribas, Yu, Vogler, & Emerson, 2018; Porter & Hajibabaei, 
2018). Second, because it is protein‐coding, pseudogenes can often 
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be detected because of the presence of frameshift mutations or 
stop codons. Third, COI has a more rapid rate of evolution than 
other candidate gene regions, an important advantage in discrimi-
nating closely related species, especially given the short amplicons 
often employed in metabarcoding. Some recent studies have sug-
gested that 16S RNA would be a better target region for metabar-
coding studies because of its more conserved priming sites (Deagle, 
Jarman, Cossiac, Pompanon, & Taberlet, 2014; Elbrecht et al., 2016). 
This proposal overlooks three disadvantages: (a) it lacks a compre-
hensive reference database, (b) its slower rate of evolution means 
that sister species will often share the same sequence (Andújar et al., 
2018), and (c) no diagnostic sequence changes are available to recog-
nize pseudogenes. Based on these three weaknesses, it is clear that 
COI is the better gene region for metabarcoding studies and that 
effort should be directed towards primer redesign in those cases 
where current primer sets are ineffective for the group under study 
(Elbrecht & Leese, 2017).

To examine factors influencing the success in recovering species 
through metabarcode analysis of COI, we assembled a mock com-
munity that included single representatives of 374 insect species. 
We subsequently used this community to examine the impacts of 
DNA source, extraction method, PCR protocol, amplicon template 
and sequencing platform on species recovery. In particular, we ex-
amined whether tissue type (abdomens and legs) influences success 
in the recovery of community composition or whether certain tis-
sues are more prone to false positives. We also wanted to ascer-
tain whether sample processing (bulk vs. individual) affected species 
recovery. Furthermore, we compared the major HTS platforms to 
determine whether different sequencing technologies introduced a 
bias. Specifically, we compared results obtained by analysing read 
abundance, evenness and species recovery for four amplicon pools 
on three sequencing platforms (Illumina MiSeq, Ion Torrent PGM, 
Ion Torrent S5). Two of these amplicon pools derived from the PCR 
of bulk DNA extracts (abdomen and leg) to test the impact of tis-
sue type. The other two amplicon pools derived from DNA extracts 
of single legs that were analysed by pooling prior to or after PCR. 
Finally, we examined species recovery and evenness for two ampl-
icons of differing length on the S5. The overall analytical approach 
involved evaluation of the relationship between read depth and 
species recovery for these treatment variables on three sequencing 
platforms.

2  | MATERIAL S AND METHODS

2.1 | Assembly of mock community

We began the assembly of a mock community by obtaining COI se-
quences from 3,044 insects collected in Malaise traps deployed near 
Cambridge, Ontario, Canada. A DNA extract was prepared from a 
single leg from each specimen employing a membrane‐based pro-
tocol (Ivanova et al., 2006). The 658 bp barcode region of COI was 
amplified and then Sanger sequenced to link a haplotype to each 
individual specimen. Amplicons were generated using the primer 

cocktail of C_LepFolF/C_LepFolR (Hernández‐Triana et al., 2014) 
with initial denaturation at 94°C for 2 min followed by 5 cycles of 
denaturation for 40 s at 94°C, annealing for 40 s at 45°C and ex-
tension for 1 min at 72°C; then 35 cycles of denaturation for 40 s 
at 94°C with annealing for 40 s at 51°C and extension for 1 min at 
72°C; and a final extension for 5 min at 72°C (Hebert et al., 2018; 
Ivanova et al., 2006). Unpurified PCR products were diluted 1:4 with 
ddH2O before 2 μl was used as the template for a cycle sequenc-
ing reaction (Hebert et al., 2018). All products were sequenced in 
the forward and reverse directions following standard procedures 
on an ABI 3730xl DNA Analyzer (Applied Biosystems, Foster City, 
California, USA).

Because some specimens could not be identified to a species 
level, we employed the Barcode Index Number (BIN) system which 
examines patterns of sequence variation at COI to assign each spec-
imen to a persistent species proxy (Ratnasingham & Hebert, 2013). 
The overall analysis provided sequence records for 803 BINs. From 
this total, we selected 374 BINs showing > 2% COI sequence diver-
gence from their nearest neighbour under the Kimura 2‐parameter 
model (Kimura, 1980). The resulting mock community included 
representatives of 10 orders and 104 insect families. Supporting 
Information Table S1 lists the taxa in the mock community and 
provides details on vouchers, their body size (as estimated by ab-
dominal mass) and the GC content of their COI barcode. Following 
selection of the specimens for inclusion in the mock community, 
DNA extraction and PCR utilized the protocols described below, 
and the resultant amplicon pools were analysed on three sequencing 
platforms.

2.2 | Experimental design for metabarcode analysis

Species recovery was compared for amplicon pools that resulted 
from four DNA extraction/PCR protocols (Figure 1). Two in-
volved the analysis of amplicons generated from bulk DNA ex-
tracts derived from two tissues (Bulk Abdomen and Bulk Leg). 
The other two treatments involved the initial extraction of DNA 
from individual legs. The resultant DNA extracts were either 
pooled prior to PCR to create the Composite Leg treatment 
or separately amplified and subsequently pooled to create the 
Single Leg treatment (Figure 1). Although the initial design called 
for the same specimens to be included in each mock community, 
this was not possible. The Composite Leg and Single Leg treat-
ments did include the selected array of 374 BINs. However, five 
of their source specimens either lacked an abdomen or another 
leg for inclusion in the Bulk Abdomen or Bulk Leg treatments. 
As a result, five BINs, generally belonging to the same order as 
the excluded ones, were employed as replacements to maintain 
374 BINs per treatment (BOLD:AAA2323, BOLD:AAA2632, 
BOLD:AAF4234 and BOLD:AAP6354; BOLD:ABV1240). Due to 
the complexity of our mock community and our desire to evalu-
ate several variables (tissue type, PCR protocol, PCR amplicon 
and sequencing platform), we did not evaluate multiple biological 
replicates.
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2.3 | Bulk DNA extractions and PCR

Prior to mock community assembly, the dry abdominal weight of each 
specimen was measured as a proxy for biomass. DNA extracts for the 
two bulk samples (Bulk Abdomen and Bulk Leg) were generated with 
a modified silica membrane‐based protocol (Ivanova et al., 2006). 
Specifically, the bulk abdomens (combined mass = 1,062.8 mg) and 
bulk legs (combined mass = 30.9 mg) were lysed overnight in the 
same relative volume of insect lysis buffer (51.6 ml and 1.5 ml, re-
spectively) with 10 mg/ml of Proteinase K (Invitrogen). Following 
lysis, a 100‐μl aliquot of each lysate was mixed with 200 μl of binding 
mix and transferred to an EconoSpin® column (Epoch Life Sciences) 
before centrifugation at 5,000 g for 2 min. The DNA extracts were 
then purified with three wash steps. The first wash employed 300 μl 
of protein wash buffer before centrifugation at 5,000 g for 2 min. 
Columns were then washed twice with 600 μl of wash buffer before 
being centrifuged at 5,000 g for 4 min. Columns were transferred to 
clean tubes and spun dry at 10,000 g for 4 min to remove any residual 

buffer, then transferred to clean collection tubes and incubated for 
30 min at 56°C to dry the membrane. DNA was subsequently eluted 
by adding 50 μl of 10 mM Tris–HCl pH 8.0 followed by centrifuga-
tion at 10,000 g for 5 min. All DNA extracts were normalized to 
3 ng/μl prior to PCR. All PCR reactions were composed of 5% treha-
lose (Fluka Analytical), 1 × Platinum Taq reaction buffer (Invitrogen), 
2.5 mM MgCl2 (Invitrogen), 0.1 μM of each primer (Integrated DNA 
Technologies), 50 μM of each dNTP (KAPA Biosystems), 0.15 units of 
Platinum Taq (Invitrogen), 1 μl of template and HyClone® ultra‐pure 
water (Thermo Scientific) for a final volume of 6 μl.

2.4 | Construction of HTS libraries

Two rounds of PCR were used to generate the amplicon librar-
ies destined for sequence characterization on the three platforms. 
Most first‐round reactions employed a primer cocktail targeting a 
407 or 421 bp region of COI, subsequently collectively referred 
to as the 407 bp amplicon. The 407 bp amplicon was generated 

F I G U R E  1   Protocol employed to 
examine species recovery from the mock 
community. Four amplicon pools were 
examined. Two derived from bulk DNA 
extracts (Bulk Abdomen and Bulk Leg). 
The others derived from DNA extracts 
from single legs that were either pooled 
(Composite Leg) or kept separate (Single 
Leg) prior to PCR. All four amplicon pools 
were sequenced on three platforms 
(Illumina MiSeq, Ion Torrent S5 and Ion 
Torrent PGM). There were three technical 
replicates for each treatment except 
Single Leg [Colour figure can be viewed at 
wileyonlinelibrary.com]
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using MLepF1 (Hebert et al., 2004) while the 421 bp region was 
generated by using RonMWASPdegen (Smith et al., 2012) as for-
ward primers; LepR1 (Hebert et al., 2004) and HCO2198 (Folmer, 
Black, Hoeh, Lutz, & Vrijenhoek, 1994) were used as reverse 
primers (Supporting Information Table S2). These primers have 
demonstrated high effectiveness in recovering this segment of 
the DNA barcode region from diverse lineages of arthropods for 
Sanger‐based sequencing. They have the advantage of generat-
ing an amplicon that is long enough to provide good taxonomic 
resolution, but short enough to allow characterization on second‐
generation HTS platforms. An alternate first‐round PCR targeted 
a 463 bp amplicon of COI; it was generated with a different for-
ward primer—AncientLepF3 (Prosser, deWaard, Miller, & Hebert, 
2016) (Supporting Information Table S2) and sequenced on the S5 
platform. Both amplicons employed in this study are longer than 
those often used in environmental DNA studies, but they have the 
advantage of maximizing taxonomic resolution and carry no disad-
vantage when dealing with nondegraded DNA.

All first‐round PCRs were run under the same conditions with ini-
tial denaturation of 94°C for 2 min, followed by 20 cycles of denatur-
ation at 94°C for 40 s, annealing at 51°C for 1 min and extension at 
72°C for 1 min, with a final extension at 72°C of 5 min. Three techni-
cal PCR replicates were generated for three of the treatments—Bulk 
Abdomen, Bulk Leg and Composite Leg.

Prior to the second PCR, first‐round products were diluted 
2 × with dd H2O. Fusion primers were used to attach platform‐
specific unique molecular identifiers (UMIs) along with sequencing 
adaptors for Ion Torrent libraries and a flow cell bind for the MiSeq 
libraries (Supporting Information Table S2). The second PCR was run 
under the same conditions as the first round for reactions slated for 
analysis on the Ion Torrent platforms, but the samples for Illumina 
were amplified following manufacturer's specifications with initial 
denaturation at 94°C for 2 min, then 20 cycles of denaturation at 
94°C for 40 with annealing at 61°C for 1 min and extension at 72°C 
for 1 min, followed by a final extension at 72°C of 5 min. Supporting 
Information Table S2 provides all primer sequences and details on 
sample indexing. For both PCRs, negative controls were used and 
checked for the lack of a PCR product by visually inspecting an aga-
rose gel.

For each platform, the UMI‐labelled reaction products were 
pooled prior to sequencing. The two Ion Torrent platforms, the PGM 
and the S5, differ in their workflows, chemistries and read output. 
As the S5 is the newer platform, it has a higher read output and gen-
erates longer reads (up to 600 bp). The sequence libraries for the S5 
were prepared on an Ion Chef™ (Thermo Fisher Scientific) following 
manufacturer's instructions while those for the PGM were prepared 
using the Ion PGM™ Hi‐Q™ View OT2 400 Kit and the Ion PGM™ 
Hi‐Q™ Sequencing Kit (Thermo Fisher Scientific). The PGM libraries 
were sequenced on a 318 v2 chip while the S5 libraries were se-
quenced on a 530 chip at the Canadian Centre for DNA Barcoding. 
Illumina libraries were sequenced (paired end) using the 300 bp re-
agent kit v3 on an Illumina MiSeq in the Genomics Facility of the 
Advanced Analysis Centre at the University of Guelph.

2.5 | Bioinformatics and analysis

All read libraries were uploaded to mBRAVE (Multiplex Barcode 
Research and Visualization Environment) an online platform for ana-
lysing and visualizing metabarcoding data (http://mbrave.net/). Prior 
to uploading MiSeq runs, read libraries were paired using the QIIME 
(Caporaso et al., 2010) pair join script (join_paired_ends.py) with a 
minimum overlap of 20 bp and a maximum difference of 10%. The 
quality value (QV) of each sequence was evaluated, and all records 
failing to meet any one of three quality standards were discarded: 
(a) mean QV < 20; 2) >25% of bp with QV < 20; and 3) >5% of bp 
with QV < 10. All reads were trimmed to 407 or 463 bp following a 
30 bp trim at the 5′ end to remove the forward primer. Reads shorter 
than 300 bp were discarded for the 407 bp amplicons while a 350 bp 
threshold was used for the 463 bp amplicon. Retained sequences 
were viewed as matching a BIN in the custom Sanger library if their 
distance was < 3% to any reference, a commonly employed thresh-
old (Edgar, 2013). Any reads not matching the Sanger reference 
library were subsequently queried against four other reference li-
braries (bacteria, noninsect arthropods, nonarthropod invertebrates 
and insects). All reads not matching any reference sequence were 
clustered at an OTU threshold of 2%. Standard analytical parameters 
were used for all treatments and sequencing platforms. The three 
replicates for the Bulk Abdomen, Bulk Leg and Composite Leg treat-
ments were also pooled for comparison with the technical replicates.

OTU tables for each run were merged in r v3.4.4 (R Core Team, 
2018). To compare BIN accumulation across all samples, we randomly 
subsampled each run at different read depths for 10,000 replicates 
using a custom script (Supplemental material). To measure the BIN 
accumulation for each treatment, we compared the slopes between 
sequential points at eight read count intervals (102, 103, 103.5 104, 
104.5, 105, 105.5 and 106). Sequential points with a slope of < 0.01 
were viewed as indicating that an asymptote had been achieved.

To compare the different treatments and sequencing platforms, 
we reduced the data set to the 369 shared BINs. Read distributions 
were visualized using the jamp v0.44 package (https://github.com/
VascoElbrecht/JAMP) in r to produce a heat map using the “OTU_
heatmap” function. Read distributions across BINs were compared 
using density graphs generated with ggplot2 v2.2.1 (Wickham, 2009). 
The relative abundances of all BINs comprising > 0.01% of the overall 
reads were used to estimate Simpson's index, Pielou's mean even-
ness and Renyi's entropy implemented in the r package vegan v2.5–1 
(Oksanen et al., 2018). Compositional dissimilarity between repli-
cates and treatments was examined using a dendrogram based on 
the Bray–Curtis index and calculated with vegan. The values for the 
Bray–Curtis index were also used to generate a nonmetric multidi-
mensional scaling (NMDS) with vegan.

The relationships between read counts and body size, as mea-
sured by abdominal mass, and between read count and GC content 
of the COI amplicon were examined using Kendall Tau correlations 
in r v3.4.4 (R Core Team, 2018). An analysis of similarity (ANOSIM) 
with 999 permutations was used to compare species recovery 
among treatment types, sequencing platforms and between the two 

http://mbrave.net/
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TA B L E  1   Summary of run results for all treatments. mBRAVE filtering and BIN recovery including false positives are indicated for the  
four amplicon pools [Colour table can be viewed at wileyonlinelibrary.com]
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BAP 1267036 1265534 405 36.16 0.319 1151960 369 316 58 91560 149 0 3453 4 14 0 18198 14
BL1 422755 422421 405 36.12 0.320 382545 360 293 81 32008 46 0 1139 3 9 0 6674 18
BL2 373342 373126 405 35.99 0.319 337850 362 296 78 27706 34 0 1079 5 17 0 6440 20
BL3 546462 546060 405 36.25 0.321 495255 364 290 84 40309 43 0 1491 4 5 0 8957 23
BLP 1342560 1341607 405 36.14 0.320 1215650 370 297 77 101231 123 0 3709 3 31 0 20863 22
CL1 521445 521181 405 36.26 0.319 472713 361 296 78 28023 51 0 1518 8 25 0 8851 19
CL2 442923 442543 405 36.12 0.320 398739 366 296 78 35139 21 0 1122 4 1 0 7521 20
CL3 545824 545602 405 36.24 0.319 492799 362 304 70 42018 33 0 1508 5 5 0 9239 16
CLP 1510192 1509326 405 36.27 0.319 1364250 369 303 71 116265 105 0 4132 5 31 0 24542 20
SL 1542853 1540592 405 36.23 0.315 1513470 372 365 9 2338 521 0 7586 10 133 0 16543 6

BA1 473837 259691 381 27.62 0.321 243861 366 316 58 6707 32 0 961 7 2 0 8128 16
BA2 448934 258358 381 27.72 0.321 242366 362 312 62 6814 62 0 1066 4 4 0 8046 11
BA3 534795 326968 382 27.69 0.321 306818 362 310 64 9406 63 0 1246 8 3 0 9432 6
BAP 1457566 845017 382 27.68 0.321 793045 369 314 60 24707 157 0 3273 6 9 0 23826 9
BL1 591907 328155 379 27.63 0.324 307657 362 298 76 9672 87 1 1194 4 10 0 9535 9
BL2 476860 272357 380 27.61 0.323 256701 363 287 87 6835 69 0 1056 7 20 0 7676 10
BL3 603124 328797 380 27.7 0.324 307758 362 292 82 10234 48 0 1156 6 6 0 9595 12
BLP 1671711 929309 379 27.65 0.324 872116 367 286 88 28241 204 0 3406 4 36 0 25306 12
CL1 532057 300890 384 27.89 0.321 285294 362 303 71 7485 45 0 1167 7 20 0 6879 5
CL2 519479 291023 383 27.86 0.321 277352 363 311 63 6161 39 0 885 8 1 0 6585 6
CL3 453785 256149 384 27.83 0.321 245042 360 312 62 4616 33 0 769 6 1 0 5688 3
CLP 1505320 848052 384 27.86 0.321 807688 368 313 61 19978 117 0 2821 7 22 0 17436 4
SL 787631 438045 381 27.76 0.319 420427 370 347 27 3207 96 0 2423 14 15 0 11877 6

BA1 1032904 435627 396 27.01 0.322 416248 365 317 57 9616 111 0 1478 4 6 0 8168 10
BA2 935020 408907 396 27.02 0.322 390537 364 317 57 8652 194 1 1628 3 3 0 7893 11
BA3 1140310 537677 396 27.18 0.322 512138 366 316 58 13650 129 1 1821 3 10 0 9929 12
BAP 3108238 1382211 396 27.08 0.322 1318940 370 317 57 34739 434 1 4889 4 19 0 23129 9
BL1 1145406 489294 393 27.03 0.321 460637 365 304 70 14549 227 1 1640 3 5 0 12236 12
BL2 925531 401390 394 27.06 0.321 379942 363 309 65 10055 167 1 1584 4 12 0 9630 13
BL3 1186802 491140 393 26.98 0.322 461824 364 305 69 15258 161 1 1495 3 8 0 12394 14
BLP 3257559 1381824 393 27.02 0.321 1302400 371 310 64 42257 555 1 4719 2 25 0 31865 13
CL1 1188057 547727 396 27.26 0.321 521824 364 304 70 14012 128 0 1706 9 17 0 10040 8
CL2 1029459 479655 396 27.22 0.320 459412 366 310 64 10286 140 1 1128 5 5 0 8684 7
CL3 991378 474744 396 27.32 0.320 456177 363 311 63 8722 151 1 1203 3 3 0 8488 8
CLP 3208890 1502126 396 27.27 0.320 1437430 369 311 63 35561 419 0 3991 6 25 0 24700 6
SL 1735346 769426 394 27.12 0.319 743673 372 348 26 4778 350 1 3262 7 24 0 17339 10

BA1* 906390 401586 447 27.27 0.323 336480 372 331 43 48317 1095 4 1293 5 44 0 14357 11
BA2* 817662 379557 448 27.3 0.323 315568 368 327 47 48099 814 4 1452 8 37 0 13587 8
BA3* 858365 383034 448 27.22 0.324 322595 370 331 43 45058 975 3 1194 7 12 0 13200 10
BAP* 2582420 1164177 448 27.27 0.323 974643 372 331 43 148719 2884 4 3939 5 93 0 33899 7
BL1* 790492 366040 450 27.32 0.326 310157 369 305 69 41399 878 4 1190 7 20 0 12396 14
BL2* 865993 393835 450 27.3 0.327 333924 369 306 68 44241 848 4 1143 6 26 0 13653 15
BL3* 857754 383518 449 27.32 0.326 324214 370 306 68 44200 770 5 1116 5 14 0 13204 14
BLP* 2514240 1143393 450 27.31 0.326 968295 372 308 66 135142 2496 3 3449 7 60 0 33951 17
CL1* 965017 468482 449 27.4 0.324 388336 372 312 62 58208 359 3 2057 10 8 0 19214 36
CL2* 860367 431266 449 27.41 0.323 363098 374 312 62 49241 445 2 1830 10 5 0 16647 29
CL3* 806183 403854 449 27.38 0.324 341946 373 311 63 44404 505 3 1579 11 33 0 15117 27
CLP* 2631840 1303332 449 27.4 0.324 1093380 374 312 62 156996 1609 3 5466 8 46 0 45835 35
SL* 3301111 1549636 449 27.41 0.323 1477380 374 371 3 23821 8227 5 9886 14 1877 3 28444 4

MiSeq

PGM

S5

Note. BA: Bulk Abdomen; BL: Bulk Leg; CL: Composite Leg; SL: Single Leg.
Replicates are numbered 1–3, and pooled replicates are denoted by a P. BINs (Barcode Index Number) for reads not matching the direct reference  
library were only counted if their relative abundance was greater than 0.01%. All results are based on the analysis of a 407 bp amplicon except those  
marked with a * which are based on a 463 bp amplicon.
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amplicons with the r package vegan v2.5–1 (Oksanen et al., 2018). All 
custom scripts are available as supplementary materials.

The relationship between the read count for each BIN and primer 
mismatches were investigated for the 407 and 463 bp amplicons. 
The number of mismatches was quantified by counting the number 
of nucleotide substitutions between the primer sequence and the 
template DNA for each BIN. Information on the DNA sequence for 
the forward primer binding sites was available from the Sanger reads 
for all 369 BINs. Calculation of mismatches was straightforward for 
the 463 bp amplicon as it involved a single forward primer. As the 
407 bp amplicon was generated with two different forward prim-
ers, mismatches were quantified based upon the forward primer 
with the best match to the template for each BIN. The same two 
reverse primers were employed to generate the 407 and 463 bp am-
plicons, but DNA sequence information for template DNA was not 
available from the Sanger sequence (as it was based on amplicons 
generated with the same reverse primer). As a result, an alternate 
reverse primer, C1‐N‐2395d (Simon et al., 1994), was employed to 
extend each sequence in the 3′ direction, an approach which deliv-
ered the desired sequence information for 203 of the 369 BINs. As 
a consequence, it was possible to examine the relationship between 
read counts and the number of mismatches between template and 
forward primer for all 369 BINs and the total mismatch count for 
the forward and reverse primers for the 203 BINs with template se-
quences for both regions.

3  | RESULTS

3.1 | Run quality

We first compared the output and quality of the reads from the HTS 
platforms. The S5 and MiSeq generated a similar number of reads 

(~1 million per replicate), while the PGM generated substantially 
fewer (~450,000 per replicate). About 60%–65% of the MiSeq reads 
were filtered during merging of the paired‐end reads, but subsequent 
filtering was minimal (<1%). The PGM and S5 encountered a similar 
loss of reads as 45%–50% of the raw reads were filtered (Table 1). 
The MiSeq reads showed more length consistency and higher qual-
ity than those from both Ion Torrent platforms, reflecting their near 
consistent QV versus the decline towards the 3′ end of the PGM and 
S5 reads (Supporting Information Figure S1).

3.2 | Read depth

Rarefaction curves were calculated for each of the four treat-
ments and their technical replicates to ascertain if read depths 
were sufficient to recover all BINs (Figure 2; Supporting 
Information Figure S2). Although BIN recovery was high in all 
cases, the Single Leg treatment reached it with far fewer reads 
of the 407 bp amplicon than the other treatments (104–4.5 vs. 
104.5–5 – Supporting Information Table S3). There was evidence 
of variation among platforms as the PGM needed more reads 
to achieve an asymptote than the S5 or MiSeq. BIN accumula-
tion curves for the other treatments were similar, but the Bulk 
Abdomen showed a small, but consistent outperformance versus 
the Bulk Leg and Composite Leg treatments. The target amplicon 
also had a substantial impact as just 103.5 reads of the 463 bp 
amplicon were required for the Single Leg treatment to reach 
its asymptote (Supporting Information Table S3). The technical 
replicates showed little divergence on all platforms; they had 
similar BIN recovery, similar mean read counts per BIN and simi-
lar coefficients of variation (Supporting Information Table S1). 
Pielou's evenness, Simpson's Index, Inverse Simpson's Index, 
Renyi's diversity and Shannon Indices were also similar across 

F I G U R E  2   Rarefaction curves 
showing BIN recovery versus the number 
of sequences analysed for the four 
amplicon pools (Bulk Abdomen, Bulk Leg, 
Composite Leg and Single Leg) on the 
three sequencing platforms. Two amplicon 
lengths (407 and 463 bp) were analysed 
on the S5, but just one (407 bp) on the 
other platforms [Colour figure can be 
viewed at wileyonlinelibrary.com]
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TA B L E  2  Values for selected diversity indices (Shannon–Weaver, Simpson, Inverse Simpsons and Pielou's Evenness) for the four amplicon pools 
[Colour table can be viewed at wileyonlinelibrary.com]

Note. BA: Bulk Abdomen; BL: Bulk Leg; CL: Composite Leg; SL: Single Leg.
Replicates are numbered 1–3 while P is the result from pooling the replicates. All results are based on the analysis of a 407 bp amplicon except those 
marked with a * which are based on a 463 bp amplicon.
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treatments on all platforms (Table 2; Supporting Information 
Figure S3). Finally, density plots were congruent among technical 
replicates for all treatments and platforms indicating that differ-
ent HTS platforms produced similar results (Figure 1; Supporting 
Information Figure S4).

3.3 | BIN recovery

When the criterion for BIN recovery was set at one or more reads, all 
platforms recovered > 98% of the BINs, but only the Single Leg treat-
ment recovered all of them (Figure 3). Differences in recovery suc-
cess among treatments were greater when the criterion for recovery 
was set at > 0.01% of the reads. Under this criterion, the Single Leg 
treatment recovered > 92.5% of the BINs versus 83%–89% for the 
Bulk Abdomen treatment and 76%–83% for the Composite Leg and 
Bulk Leg treatments (Table 1). The greater evenness in read count 
for the Single Leg treatment was striking; it led to lower coefficients 
of variation, higher diversity indices and Pielou's evenness (Table 2; 
Figure 3; Supporting Information Figure S3). Density plots of read 
abundance also demonstrated much higher evenness for the Single 
Leg treatment, especially for the 407 bp amplicon on the MiSeq and 
for the 463 bp amplicon on the S5 (Supporting Information Figure 
S4). These differences were also reflected in BIN recovery, Pielou's 
evenness and diversity indices (Table 2; Supporting Information 
Table S2).

3.4 | BIN abundances

Because a single specimen of each BIN was included in the mock 
community, the proportion of sequences from each should, in the 
absence of bias, be similar across sequencing platforms, amplicons 
and treatments. In practice, the relative abundances of the BINs var-
ied markedly. Perceived abundance of the 369 taxa based on their 
read counts varied more than 11,000‐fold for the Bulk Abdomen, 
Bulk Leg and Composite Leg treatments, and 4,000‐fold for the 
Single Legs. A single‐link dendrogram based on Bray–Curtis dissimi-
larity values indicated that samples clustered first by treatment, next 
by amplicon length and finally by sequencing platform (Figure 4a). 
An analysis of similarity using Bray–Curtis distances affirmed signifi-
cant differences in BIN abundances by treatment type (p = 0.001, 
R = 1), amplicon length (p = 0.027, R = 0.17), but not by sequencing 
platform (p = 0.13, R = 0.037) (Figure 4b; Supporting Information 
Figure S5).

3.5 | Primer mismatches and read count

Examination of the relationship between the read count for each 
of the 369 BINs and its number of mismatches from the forward 
primer revealed a strong negative relationship. BINs with a high 
mismatch count were typically represented by few reads. For exam-
ple, very few reads were recovered from the only BIN in the order 
Dermaptera and this was associated with a high mismatch Index 
from the forward primers for both the 407 and 463 bp amplicons. 

Considering all taxa, BIN recovery was substantially higher for the 
463 bp amplicon than for the 407 bp amplicon (Table 2; Supporting 
Information Figure S3) reflecting the fact that its forward primer 
better matched the template DNA (18 BINs had > 3 mismatches) 
versus the forward primer for the 407 bp amplicon (62 BINs with > 3 
mismatches) (Supporting Information Tables S1 and S4). The impact 
of these mismatches was clear; read count and relative abundance 
of BINs declined after two mismatches for the Bulk Abdomen, Bulk 
Leg and Composite Leg treatments and after four mismatches for 
the Single Leg. Examination of the joint impact of forward and re-
verse primer mismatches for 203 BINs similarly showed a significant 
decline in read count and relative abundance after four mismatches 
for the Bulk Abdomen, Bulk Leg and Composite Leg treatments and 
after seven mismatches for the Single Leg (Supporting Information 
Figure S6). Kruskal–Wallis tests showed that read depth declined 
significantly with an increasing number of primer mismatches for the 
forward primers for both the 407 and 463 bp amplicons (p < 0.0001) 
and for the summed primer mismatches (5′ + 3′) for the subset of 
203 BINs (p < 0.0001).

3.6 | Impacts of biomass and nucleotide 
composition on read count

Other factors also explained some of the variation in read counts 
among BINs. There was, for example, a weak negative correlation 
(r2 < 0.10) between the GC content of an amplicon and its read 
count, excepting the Single Leg treatment on the MiSeq where it was 
higher (r2 = 0.32) (Supporting Information Figure S7). A weak posi-
tive correlation (r2 = 0.24–0.28) was also apparent between the ab-
dominal mass of a BIN and its read count on all platforms (Supporting 
Information Figure S8).

3.7 | Nontarget sequences

Each run recovered some sequences with substantial sequence di-
vergence from the Sanger reference library (Table 1). The incidence 
of nontarget sequences for the 407 bp amplicon was slightly lower 
(4%–6%) on the PGM and S5 platforms than on the MiSeq (8%–10%). 
Interestingly, the 463 bp amplicon had substantially more nontarget 
reads (15%–17%). After excluding the relatively few chimeras (1.5%–
12.5%), half the reads from the nontarget sequences failed to match 
any sequence in the supplemental libraries. Of those that did find a 
match, most were arthropods.

3.8 | Taxonomic bias

There was evidence of differing taxonomic bias in the read counts 
for BINs between the two amplicons. For example, Orthoptera, 
Lepidoptera and Diptera dominated the 407 bp sequences from 
the Bulk Abdomen and Bulk Leg treatments while Lepidoptera, 
Mecoptera, Diptera and Coleoptera dominated those for the 463 bp 
amplicon (Supporting Information Table S5). The 463 bp amplicon 
also showed more variation among treatments than the 407 bp 
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amplicon (Supporting Information Table S5). Among the bulk sam-
ples, relative abundance differed among treatments. For example, 
the relative abundance of Lepidoptera and Mecoptera was lower, 
while Diptera and Orthoptera were higher in the Composite Leg than 
in the Bulk Leg and Bulk Abdomen treatments. The proportion of 
read counts for Trichoptera showed particularly large variation, being 
5–25X higher for the Bulk Leg than the Bulk Abdomen and Composite 
Leg treatments across all platforms and for both amplicons.

4  | DISCUSSION

Metabarcoding is a powerful tool for characterizing biodiversity 
patterns (Cristescu, 2014), but data interpretation is complicated 

by several factors. PCR amplification bias and variation in the copy 
number of template DNA from the source specimens not only make 
it impossible to estimate abundances, but can impede the recovery 
of all species (Beng et al., 2016; Elbrecht & Leese, 2015; Ji et al., 
2013; Yu et al., 2012). Although prior studies have revealed these 
complexities, there has been limited evaluation of the strength of 
their influence on interpretations of taxon diversity. To address 
this gap, the present study examined the impact of diverse factors 
including source DNA, PCR primers, sequencing platform and se-
quencing depth on species recovery from a diverse assemblage of 
insects. Both primer sets demonstrated their effectiveness for meta-
barcoding as they recovered > 98% of the 374 species in a taxonomi-
cally diverse mock community (10 orders, 104 families). However, it 
did require substantial sequence coverage to recover these species 

F I G U R E  3   Heat map showing the relative log abundance of the 369 BINs in each treatment for the four amplicon pools. This heat map 
was created using the JAMP package (https://github.com/VascoElbrecht/JAMP). Technical replicates are indicated with numbers while in 
silico pooled results are designated by the letter P [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E  4   (a) Bray–Curtis dissimilarity dendrogram for the four amplicon pools (BA = Bulk Abdomen, BL = Bulk Leg, CL = Composite Leg 
and SL = Single Leg). Replicates are numbered 1–3 while P is the result from pooling the replicates. The 463 bp amplicon is indicated with an 
asterisk (*). (b) Nonmetric multidimensional scaling (NMDS) ordinations using Bray–Curtis dissimilarity for the four amplicon pools. Coloured 
ellipses represent 95% confidence intervals for the BIN composition of the different treatments using ordiellipse (Oksanen et al. 2012). The 
shapes within each ellipse represent replicates for the four combinations of sequencing platform–amplicon length for three treatments. No 
replicates were available for the Single Leg treatment, so it has just four points [Colour figure can be viewed at wileyonlinelibrary.com]
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because of their varied amplicon abundance. Variation in body size 
of the species and shifts in the GC composition of their COI tem-
plates partially accounted for the divergence in amplicon abundance, 
but the mismatch count between primers and template DNA had 
a greater effect. While new primer sets can be designed to reduce 
such mismatches, it will never be possible to entirely escape them in 
any large assemblage of phylogenetically diverse species.

4.1 | Sequencing depth

Because of diversity in amplicon abundance among taxa, sequencing 
depth has a strong impact on taxon recovery and hence perceived di-
versity patterns (Leray & Knowlton, 2015; Leray & Knowlton, 2017). 
Species with low representation in the amplicon pool, because of 
primer–template mismatches or low template concentrations linked 
to rarity or small body size, are likely to be missed unless sequencing 
depth is very high. When species are overlooked, alpha diversity is 
underestimated, and beta diversity is exaggerated (Bellemain et al., 
2012; Sickle et al., 2015; Sickle et al., 2015; Yamamoto et al., 2017). 
There is a simple way to assess whether sequencing effort has been 
adequate; the slope of the rarefaction curve is zero when all spe-
cies have been recovered (Lanzen, Lejang, Jonassen, Thompson, & 
Troedsson, 2017). Technical replicates are also useful because every 
replicate should include the same OTUs when sequence coverage is 
adequate. Although taxon richness was fixed in our study, we em-
ployed a slope for the rarefaction curve of < 0.01 as the criterion to 
decide whether taxon diversity had achieved an asymptote. This cri-
terion has the advantage of being applicable in situations where the 
species count is unknown, as is regularly the case in nature. Based 
upon this criterion, we detected up to 100‐fold differences in the 
level of sequencing that was required to achieve an asymptote among 
the four treatments and two amplicons examined in this study.

BIN accumulation curves indicated that the read depth employed 
in this study allowed all four treatments to meet a slope of < 0.01. 
However, the Single Leg treatment reached this value with much 
lower read depth than the bulk samples due to its relative protection 
from the impacts of PCR bias (Nichols et al. 2018; Pan et al., 2014, 
Dabney & Meyer, 2012; Elbrecht & Leese, 2015). Interestingly, the 
other three treatments showed similar BIN accumulation curves on all 
three sequencers, suggesting shared factors constrain BIN recovery.

4.2 | Sequencing platforms

The three sequencing platforms generated similar estimates of BIN 
diversity. However, results from the MiSeq had advantages over 
those from the PGM and S5 for both clustering algorithms and for 
haplotype analysis (Elbrecht, Varnos, Steinke, & Leese, 2018) re-
flecting its delivery of full‐length, higher fidelity reads. In particular, 
the paired‐end protocol consistently recovered sequences for the 
full 407 bp amplicon, while those from the PGM and S5 were often 
truncated and possessed more indels. Finally, the MiSeq reads had 
consistently higher mean QV. Because these factors simplified data 
analysis (Edgar et al., 2013; Mardis et al., 2013) and sequencing costs 

were similar, the MiSeq is currently the best platform for metabar-
coding (Mardis et al., 2013).

4.3 | Impacts of analytical protocols

Our four treatments made it possible to compare the impact of 
targeting different tissues, employing different DNA extraction 
regimes and using different PCR protocols. Despite their similar 
tissue input and DNA extraction regime, the Single Leg treat-
ment achieved asymptotic diversity much more rapidly than the 
Composite Leg treatment, indicating how separate PCR reactions 
reduce amplification bias. By contrast, BIN accumulation curves 
and diversity indices for the Composite Leg treatment were simi-
lar to those for the Bulk Leg and Bulk Abdomen, indicating that 
DNA extraction was equally effective whether carried out on 
single specimens or on bulk samples (Table 2). The comparison 
of the results for the bulk/composite samples did reveal more 
nuanced differences as the number of reads for particular taxa 
varied among these three treatments despite similar BIN recov-
ery profiles (Figure 3). These differences likely stem from dif-
ferential leg/abdomen mass ratios among species which led to 
varied mitochondrial copy numbers for the component species 
among treatments. Certainly, mitochondrial copy number varies 
among tissues and among species (Cole, 2016; Veltri, Espiritu, 
& Singh, 1990). Future efforts to explore this relationship and 
its importance to metabarcoding studies should quantify copy 
number differences between tissues and species. In the absence 
of such information, copy number bias due to biomass or spe-
cies differences can be reduced by partitioning the specimens in 
a bulk sample into size fractions (Elbrecht, Peinert et al., 2017; 
Vivien et al., 2016).

Variation in read counts for the taxa in any bulk sample is, as al-
ready noted, strongly influenced by primer–template mismatches. 
Although degenerate primers (Elbrecht & Leese, 2017; Moriniere 
et al., 2016; Yu et al., 2012) and improved primer sets (Clarke et 
al., 2014; Elbrecht & Leese, 2017; Leray & Knowlton, 2017) can re-
duce such bias, it cannot be avoided unless all target species pos-
sess identical sequences for the primer binding sites, a condition 
that will never be satisfied for a large assemblage. However, ef-
forts to target highly conserved regions can improve the situation. 
For example, the BIN accumulation curve for the 463 bp amplicon 
reached its asymptote with much lower read coverage than for the 
407 bp. Further effort to develop primers that maximize primer–
template matches for diverse taxa will reduce the sequencing ef-
fort needed to recover all taxa. So too will strategies that minimize 
mismatches by partitioning bulk samples into major taxonomic 
groups (Bellemaine et al., 2012; Cristescu, 2014; Moriniere et al., 
2016; Tedersoo et al., 2015). Lowering the variation in recovery 
success linked to size differences among species can be achieved 
by partitioning the species present in bulk samples into subsets 
with similar size (Elbrecht, Peinert et al., 2017; Moriniere et al., 
2016; Vivien et al., 2016). Currently, the only means to fully es-
cape the varied factors influencing sequence recovery is to 
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process specimens individually through the entire analytical chain 
from DNA extraction to sequencing but this approach is too costly 
for large biodiversity surveys (Ji et al., 2013).

4.4 | BIN recovery

Although sequences were recovered from most of the BINs in 
each treatment, this outcome shifted when recovery success 
was defined as only those BINs comprising > 0.01% of the read 
count, a criterion often employed to exclude low‐frequency se-
quences that are chimeras, contaminants or sequencing errors 
(Leray & Knowlton, 2017). Under this criterion, BIN recovery was 
substantially higher (>92.5%) for the Single Leg treatment than 
for the other three (76%–89%). Interestingly, the Bulk Abdomen 
treatment showed higher BIN recovery than the Bulk Leg and 
Composite Leg treatments, perhaps reflecting more similar mi-
tochondrial copy numbers among abdomens than legs (Figure 3) 
(Cole, 2016; Veltri et al., 1990). As expected, BIN recovery was 
more efficient for the 463 bp than the 407 bp amplicon because 
of its higher primer–template correspondence. There was also 
less taxonomic bias (Table 2) for the 463 bp than for 407 bp am-
plicon in three treatments (Bulk Abdomen, Composite Leg and 
Single Leg).

4.5 | False positives, negatives and 
unmatched OTUs

Although most BINs were recovered in each treatment, some 
comprised < 0.01% of the counts, creating false negatives that 
would underestimate alpha diversity. As in other metabarcoding 
studies (Vivien et al., 2016; Ficetola et al., 2015; Brandon‐Mong et 
al., 2015; Port et al., 2016), false positives were also encountered, 
likely reflecting eDNA associated with specimens or contamina-
tion during sample processing (Port et al. 2016) or NUMTs (Song et 
al., 2008). Their impact can be reduced by employing curated ref-
erence libraries to discriminate sequences that derive from known 
species versus those that represent pseudogenes (Bergsten et 
al., 2014; Braukmann, Kuzmina, Sills, Zakharov, & Hebert, 2017; 
Hebert et al., 2003; Landi et al., 2014; Zimmerman et al., 2014). 
As well, negative controls make it possible to identify reads that 
derive from contamination events during sample processing (Port 
et al. 2016).

Although we expected the Bulk Abdomen treatment to gener-
ate more nontarget sequences than the others, reflecting template 
DNA from the digestive tract, this was not the case. In retrospect, 
it seems likely that DNA molecules from this source were too 
degraded to be recovered via the 407 bp and 463 bp amplicons. 
Certainly, most metabarcoding studies on gut contents or fae-
cal samples have employed shorter amplicons (Hajibabaei, Spall, 
Shokralla, & Konynenburg, 2012; Kartzinel et al. 2015; Linard, 
Arribas, Andújar, Crampton‐Platt, & Vogler, 2016). Because legs 
have a much higher surface area to volume ratio than abdomens, 

they may bind more eDNA, leading to their slightly higher recov-
ery of nontarget DNA.

Approximately 1%–4% of the filtered reads did not match any 
sequence in the reference library. This varied slightly by platform 
with the MiSeq showing fewer unmatched reads (1.07%–1.73%) 
than the S5 (1.64%–2.50%) and PGM (2.06%–3.11%). Similarly, the 
407 bp amplicon on the S5 had fewer nonmatching reads (1.64%–
2.50%) than the 463 bp amplicon (1.84%–4.10%) on this platform. 
Some of the unmatched reads are undoubtedly derived from 
NUMTs, PCR errors and sequencing errors. Although we did not 
evaluate the incidence of pseudogenes, they likely represent some 
of the highly divergent unidentified OTUs (Leray et al., 2015). 
Their frequency among terrestrial arthropods needs to be further 
explored through specimen‐based analysis. The Miseq produced 
the highest quality reads, suggesting that the higher incidence of 
unmatched reads on the Ion Torrent platforms reflect, in part, se-
quencing errors, especially the PGM which has a steep decline in 
quality towards the 3’ end (Supporting Information Figure S1). PCR 
errors introduced by the DNA polymerase can be exacerbated by 
sequencing errors (Dabney & Meyer, 2012; Nichols et al., 2018; 
Pan et al., 2014). Because long amplicons improve taxonomic res-
olution, their use should be standard for metabarcoding studies 
unless template DNA is degraded.

5  | FUTURE METHODS AND 
CONCLUSIONS

This study has established that current PCR‐based protocols for 
metabarcoding can recover most species in a diverse assemblage 
of insects when sequencing depth is adequate. Specifically, it re-
quired from 100,000 to 500,000 reads (300x–1,000x average read 
depth) to recover > 95% of the 374 species from bulk DNA extracts. 
Although the choice of sequencing platform had little impact on final 
results, the higher quality of sequences generated by Illumina MiSeq 
simplified data analysis. Given current analytical costs (Supporting 
Information Table S6), there is a clear justification to search for pro-
tocols that make it possible to reveal the species in any assemblage 
with limited sequencing effort. The importance of employing primer 
sets that minimize mismatches with template DNA was evidenced in 
this study by the fact that a tenth as many sequences were required 
to recover 95% of the species for the 463 bp than the 407 bp am-
plicon. Given such impacts, further effort to design primers which 
minimize mismatches for DNA extracts from diverse taxonomic as-
semblages (e.g. zooplankton, insects) are important. Success should 
be facilitated because 3rd generation sequencers can analyse longer 
amplicons, permitting the use of primer sets that target regions of 
COI where sequences are constrained because they code for amino 
acids that bind substrates or cofactors. However, because sequence 
variation is inevitable in any diverse taxonomic assemblage, the copy 
number of sequences in the amplicon pool will diverge from their 
abundance in the original DNA extract.
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To escape such bias, PCR‐free protocols have been proposed 
(Liu et al., 2016, Tang et al., 2014). In their simplest implementa-
tion, they involve the random analysis of genomic fragments, fol-
lowed by the exclusion of reads that fail to match a sequence in 
the reference library. This approach means that many sequences 
do not contribute to a species assignment. For example, if analy-
sis focused on COI‐5’, approximately 1 in every 2,000 sequences 
would be retained because it represents just 5% of the mitochon-
drial genome and mitochondrial DNA represents just 1% of the 
total DNA in a cell. Hence, to recover a single barcode sequence 
from 374 species, presuming an identical number of COI templates 
for each taxon and sampling one copy per species, 750,000 se-
quences would be needed. In practice, far more sequences would 
be required to overcome the impacts of random sampling and body 
size. To recover 95% of the species in the mix, assuming random 
sampling and equal template count for each species would require 
an average of ~3 sequences per species, based on N

∑k

i=0

1

N−i−1
 , a 

variation of the coupon‐collector's problem (Motwani & Raghavan, 
1995) where N is the number of species and k is the recovered 
subset, raising the required number of sequences to 2.25 mil-
lion. Further sequencing would be needed to compensate for the 
variation in template numbers linked to body size variation. The 
species of arthropods examined in this study varied 7,500‐fold in 
body mass. Assuming that mitochondrial copy number and meta-
bolic rate scale in a similar fashion with body mass0.66 (Burgess et 
al., 2017), the largest species examined in this study should have 
possessed about 360 times more target template than the small-
est species. Given of this difference, some 810 million sequences 
would be needed to recover 95% of the species in the assemblage. 
More conservatively, if specimens with the lowest 5% body mass 
are excluded, there is a 178‐fold difference between the smallest 
and largest species. The largest species will have 30 times more 
target template, requiring 67.5 million reads to recover the species 
in the assemblage. Since the simplest implementation of PCR‐free 
approaches is so inefficient, more advanced protocols employ baits 
to enrich for the target gene region (Dowle, Pochon, C. Banks, 
Shearer, & Wood, 2015), but they can create interpretational com-
plexities when capture efficiencies vary among taxonomic groups.

It is important to emphasize that no current metabarcoding pro-
tocol allows the estimation of species abundances. PCR‐based meth-
ods fail because of distortions in the amplicon pool introduced by 
variation in primer binding. PCR‐free methods can reveal the abun-
dance of each template in the total DNA extract, but this count of 
COI molecules cannot predict species abundance because a high 
value might derive from a few adults or many juveniles. Given these 
barriers to abundance assessment through metabarcoding, it is worth 
noting that specimen‐based analysis can deliver this information with 
very limited sequencing effort. For example, just 374 Sanger reads 
or 3,000 reads of a UMI‐tagged DNA pool on the Sequel platform 
(Hebert et al., 2018) would have revealed the presence and equal 
abundance of each species in the current sample. Although neither 
PCR‐based nor PCR‐free metabarcoding can deliver accurate in-
formation on species abundance, the two approaches can deliver 

complementary information on species composition. Because the 
amplicon pool generated by PCR is influenced by variation in primer 
binding, the impact of variation in body size is diminished since small 
species whose COI template closely matches primer sequences will 
be well represented in the amplicon pool. By contrast, PCR‐free 
methods can aid the recovery of large species that can be overlooked 
in PCR‐based studies because of poor amplification.

In summary, this study has established that PCR‐based metabar-
coding provides a cost‐effective way to recover information on the 
species composition of insect communities because current COI primer 
sets are broadly effective, and a well‐provisioned reference library is 
available. The optimal solution may be different for other taxonomic 
groups, especially those where primers fail to amplify many species 
or where amplification bias is extreme. However, in such cases, it re-
mains important to try to overcome these barriers rather than simply 
capitulating. It is also worth emphasizing that many natural communi-
ties possess greater complexity than the assemblage examined in this 
study; they include more species and the abundances of these species 
show great variation. Given these complications, community charac-
terization through metabarcoding will often require both intensive se-
quencing and improved informatics support to recognize sequences 
that reflect rare species rather than analytical artefacts.
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