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SUMMARY

Maize (Zea mays L.), a model species for genetic studies, is one of the two most important crop species

worldwide. The genome sequence of the reference genotype, B73, representative of the stiff stalk heterotic

group was recently updated (AGPv4) using long-read sequencing and optical mapping technology. To facili-

tate the use of AGPv4 and to enable functional genomic studies and association of genotype with pheno-

type, we determined expression abundances for replicated mRNA-sequencing datasets from 79 tissues and

five abiotic/biotic stress treatments revealing 36 207 expressed genes. Characterization of the B73 transcrip-

tome across six organs revealed 4154 organ-specific and 7704 differentially expressed (DE) genes following

stress treatment. Gene co-expression network analyses revealed 12 modules associated with distinct bio-

logical processes containing 13 590 genes providing a resource for further association of gene function

based on co-expression patterns. Presence�absence variants (PAVs) previously identified using whole gen-

ome resequencing data from 61 additional inbred lines were enriched in organ-specific and stress-induced

DE genes suggesting that PAVs may function in phenological variation and adaptation to environment. Rel-

ative to core genes conserved across the 62 profiled inbreds, PAVs have lower expression abundances

which are correlated with their frequency of dispersion across inbreds and on average have significantly

fewer co-expression network connections suggesting that a subset of PAVs may be on an evolutionary path

to pseudogenization. To facilitate use by the community, we developed the Maize Genomics Resource web-

site (maize.plantbiology.msu.edu) for viewing and data-mining these resources and deployed two new

views on the maize electronic Fluorescent Pictograph Browser (bar.utoronto.ca/efp_maize).

Keywords: Zea mays, B73, AGPv4, differential expression, co-expression, presence�absence variants, gene

atlas.

INTRODUCTION

Based on tonnage, maize (Zea mays L.) is the most pro-

duced staple crop worldwide (http://www.fao.org/faostat).

While significant advances have been made in maize

improvement efforts since domestication, targeted

advancements in yield and stress tolerance will be needed

to address increasing population sizes and changing cli-

mates (Gong et al., 2015). Improving our understanding of

gene function including how altered environments affect

the transcriptome and the resulting phenotype will facili-

tate development of improved maize cultivars.

Gene expression profiling of development and abiotic/

biotic stress treatments has been performed previously in

maize resulting in identification of organ-specific, differen-

tially expressed (DE) gene sets, and co-expression
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networks (Opitz et al., 2014; Makarevitch et al., 2015; Stelp-

flug et al., 2016; Huang et al., 2017; Swart et al., 2017).

With respect to the B73 reference genotype, representative

of the stiff stalk heterotic group, Sekhon et al. (2011) pro-

filed gene expression in 60 B73 tissues using microarrays

that were later quantified via RNA-sequencing (RNA-seq)

(Sekhon et al., 2013), permitting a more robust assessment

of gene expression among paralogs. Additional develop-

mental sampling of the B73 genotype includes a post-polli-

nation leaf and internode time course (Sekhon et al., 2012)

and a root developmental series (Stelpflug et al., 2016)

yielding 79 replicated tissue samples from six organs that

span the majority of the developmental stages and tissues

that have been extensively analyzed including construction

of co-expression networks (Huang et al., 2017). Several

high quality biotic and abiotic stress experiments have also

been conducted in B73 revealing transcriptional changes

under Cercospora zeina infection (Swart et al., 2017),

drought stress (Opitz et al., 2014), and temperature stress

(Makarevitch et al., 2015). While these analyses are avail-

able for the community, all of these analyses were per-

formed using the previous B73 genome assembly and

annotation. Recently, version 4 of the B73 genome, which

was assembled from long-reads and validated with optical

mapping, and an updated set of gene annotations (AGPv4)

were released (Jiao et al., 2017). While data are available

to convert loci between deprecated versions of the B73

genome, these do not take into account changes to the

underlying sequence and/or annotation in AGPv4. Indeed,

8549 v3 genes could not be mapped to the v4 annotation

and an additional 68 245 filtered protein-coding transcripts

were added to the AGPv4 genome assembly (Jiao et al.,

2017).

The pan-genome concept, first introduced by Tettelin

et al. (2005) in the bacterium Streptococcus agalactiae

(Tettelin et al., 2005), has now been characterized in a

range of plant species (Springer et al., 2009; Tan et al.,

2012; Golicz et al., 2016; Hardigan et al., 2016). The pan-

genome is composed of core genes present in all acces-

sions of a species whereas dispensable genes, structural

variants in the form of copy number variants (CNVs)

and PAVs are present in a subset of accessions of the

species. In plants, CNVs and PAVs have been shown to

function in environmental adaptation responses includ-

ing flowering time (D�ıaz et al., 2012), secondary metabo-

lism (Winzer et al., 2012), and stress tolerance (Hattori

et al., 2009; Gaines et al., 2010; Cook et al., 2012). In

maize, several pan-genome studies have been conducted

using array comparative genomic hybridization (Springer

et al., 2009; Swanson-Wagner et al., 2010), RNA-sequen-

cing (Hirsch et al., 2014a), whole genome resequencing

(Lai et al., 2010; Jiang et al., 2015; Brohammer et al.,

2018), genotyping-by-sequencing (Lu et al., 2015), and

whole genome comparison (Hirsch et al., 2016; Sun

et al., 2018). Recently, using resequencing data from 62

inbred lines with a CDS (coding sequence) coverage

threshold of 20%, Brohammer et al. (2018) identified

30.7% of the anchored B73 v4 loci as absent in at least

one inbred line; and 581 loci were absent in 41 to 61 of

the inbreds (Brohammer et al., 2018). The pervasiveness

of PAVs in the maize genome led Swanson-Wagner

et al. (2010) to theorize that PAVs present in gene fami-

lies have functional redundancy, as other family mem-

bers can minimize gene loss effects (Swanson-Wagner

et al., 2010). While some PAVs have been demonstrated

to have a function (Hattori et al., 2009; Winzer et al.,

2012), most PAVs lack a known function; gene expres-

sion studies could better associate PAVs with putative

function.

Here, the 79-tissue B73 developmental gene atlas data

(Stelpflug et al., 2016) and five publicly available stress

transcriptomic experiments (Opitz et al., 2014; Makarevitch

et al., 2015; Swart et al., 2017) were used with the updated

AGPv4 assembly and annotation of the reference accession

B73 to generate a comprehensive gene atlas encompass-

ing both development and stress responses. Differential

gene expression analyses were performed to identify

organ-specific and stress-related DE genes and weighted

gene co-expression network analysis (WGCNA) was con-

ducted to classify genes in co-expression modules and

determine gene correlation patterns. Using these gene

expression analyses, core genes and PAVs identified by

Brohammer et al. (2018) were studied to determine the dif-

ferential and co-expression characteristics across a diverse

set of maize inbreds and provide a foundational dataset to

infer function. To facilitate use by the community, the data

along with search and analysis tools are available via the

Maize Genomics Resource (MGR; maize.plantbiol-

ogy.msu.edu) and the Bio-Analytic Resource for Plant Biol-

ogy (BAR) Maize electronic Fluorescent Pictograph (eFP)

Browser (bar.utoronto.ca/efp_maize).

RESULTS AND DISCUSSION

Quality assessment of transcriptome data

Publicly available datasets for B73 RNA-seq experiments

that had at least three biological replicates per condition

with each replicate containing at least 10 million reads

were included in this study. Transcriptomic data for 222

samples for 79 tissues from six organs representing the

key developmental stages in B73 (Sekhon et al., 2011,

2012, 2013; Stelpflug et al., 2016) were combined with 52

samples representing replicated data from five publicly

available B73 abiotic and biotic stress experiments (Data

S1); in total 274 samples were analyzed. Biotic stress

experiments included leaves challenged with two fungal

pathogens, Colletotrichum graminicola and Cercospora

zeina, the causal agents of anthracnose and gray leaf spot
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disease, respectively (Swart et al., 2017). Abiotic stress

experiments included roots exposed to drought (Opitz

et al., 2014), leaves from plants challenged with salt stress,

and whole above-ground tissues exposed to temperature

stress (Makarevitch et al., 2015) (Data S1). Between 77.8

and 98.4% of the reads per sample mapped to the AGPv4

B73 genome (Jiao et al., 2017). After removing lowly

expressed genes (defined as fragment per kilobase of tran-

script per million mapped reads (FPKM) < 1 in all samples)

and conducting log2 transformation, Pearson’s correlation

coefficients (PCC) of all biological replicates were greater

than 0.92, except for correlations with the first replicate in

the C. graminicola experiment. Once this replicate was

removed, the average PCC value among biological repli-

cates was 0.98 (Figure S1). The high read mapping rate

and PCC values for biological replicates demonstrate the

quality and reproducibility of the data set.

To assess the relationship of the transcriptome across

the samples, Pearson’s correlations between all samples

were hierarchically clustered and principal component

analysis (PCA) was performed. In the hierarchical cluster-

ing, all six major plant organs clustered together, with sep-

arate clades for leaf, seed, root, reproductive, internode,

and shoot apical meristem (SAM) organs (Figure S2, Data

S2). Within each organ, samples clustered by tissue mor-

phology, physiology, and developmental attributes. After

averaging FPKM values across biological replicates and

performing PCA, the first principal component (PC1)

(31.1% of variance explained) and the second principal

component (PC2) (20.6% of variance explained) separated

the tissues by degree of tissue differentiation and develop-

ment, respectively (Figure 1). The organ hierarchical clus-

tering and principal component separation by tissue

differentiation and development further indicate that the

data are high quality as it separates according to the

expected biological identities.

In total, 36 207 genes had an FPKM greater than zero in

at least one developmental or stress gene atlas sample

Figure 1. Principal component analysis of transcriptomic data.

Principal component analysis was performed with the averaged biological replicate log2 transformed fragments per kilobase of exon model per million mapped

reads for both the developmental and stress gene atlas. Samples are plotted according to their distribution on the first two principal components (PC1 and PC2),

which together account for 51.7% of sample variance, and are colored according to organ. The leaf, seed, root, internode, reproductive, and shoot apical meris-

tem organs are colored orange, yellow, pink, turquoise, purple, and green-yellow, respectively. Samples from the stress experiments are colored gray.

© 2018 The Authors.
The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.,

The Plant Journal, (2019), 97, 1154–1167

1156 Genevieve M. Hoopes et al.



and 29 413 genes had an FPKM > 1, representing 92.8 and

75.4% of the annotated genes, respectively. Crown root

node 5 had the largest number of genes with an FPKM > 1

(22 776 genes; 58.4%) while the endosperm 24 days after

pollination had the smallest number of genes with an

FPKM > 1 (14 602 genes; 37.4%) consistent with previous

findings (Stelpflug et al., 2016). The number of genes

expressed in each tissue followed the continuum observed

in PCA whereby mature, differentiated tissues had the low-

est number of genes expressed and immature, undifferen-

tiated tissues had the highest number of genes expressed

(Data S1). Of the 9591 genes with an FPKM ≤ 1, 33.7%

were annotated as hypothetical proteins or of unknown

function.

Organ-specific and stress-related differentially expressed

genes

Organ-specific gene expression provides an opportunity

to understand the fundamental questions of development

as well as the identification of promoters specific to a

single organ. Using the 79-tissue developmental gene

atlas data, 4154 leaf, reproductive, root, seed, or intern-

ode organ-specific genes were identified (Data S3).

Nearly 50% of the organ-specific genes (1956) had leaf-

specific gene expression, while 19.2% (796) and 20.2%

(839) of the genes had root- and seed-specific gene

expression, respectively (Figure 2a), whereas both the

reproductive and internode organs had the lowest num-

ber of organ-specific genes (12.3 and 1.2% respectively),

consistent with previous analyses (Sekhon et al., 2011).

Gene ontology (GO) term enrichment analysis identified

top GO classes of ‘photosynthesis’ (GO:0015979) for leaf-

specific genes and ‘plant-type cell wall organization’

(GO:0009664) for root-specific genes (Data S4) indicating

that leaf-specific and root-specific genes serve roles in

carbon fixation and cell expansion, respectively. Seed-

specific, reproductive-specific, and internode-specific

genes were enriched for ‘nutrient reservoir activity’

(GO:0045735), ‘protein kinase activity’ (GO:0004672), and

‘regulation of gene expression’ (GO:0010468), respec-

tively. The seed and reproductive organ-specific genes

were further divided into tissue-specific expression,

specifically the embryo, endosperm, anther, meiotic tas-

sel, and silk-specific expression (Figure 2a, Data S5, Data

S6). Of the seed-specific genes, 62.7% could be classified

as either endosperm-specific or embryo-specific, with the

endosperm-specific genes enriched for nutrient reservoir

activity (GO:0045735). Of the reproductive-specific genes,

160 genes could be classified as tissue-specific, with

96.3% being anther-specific and enriched for protein

kinase activity (GO:0004672). This catalog of organ-speci-

fic genes provides a resource to better understand organ

development in maize and to selectively engineer maize

through modification of organ-specific genes and/or use

of organ-specific promoters.

To validate our organ-specific genes, we utilized tissue-

specific and subcellular gene localization data available

from the Maize Cell Genomics Database (Krishnakumar

et al., 2015). In total, 14 genes in the Maize Cell Genomics

Database were annotated as organ-specific in our analyses,

2 FPKM
8

4775 17181211

Log
1060 2 4

(a)

(b)

Figure 2. Organ-specific and stress-induced differential gene expression.

(a) Heatmap of log2 fragments per kilobase of transcript per million mapped reads for the 4154 genes identified as organ-specific in one of the six organs. Hier-

archical clustering was performed on the samples and the dendrogram is on top of the heatmap. Organ and tissue-specific genes are denoted on the right-hand

side and are grouped by organ. (b) Venn diagram of genes differentially expressed under abiotic stress (salt stress, drought (Opitz et al., 2014), and temperature

stress (Makarevitch et al., 2015)), biotic stress [Colletotrichum graminicola and Cercospora zeina infection (Swart et al., 2017)], and both stress types.
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nine of which had confocal image evidence for stably

expressed fluorescent tags. Six of the nine genes had fluo-

rescence in the specific organ identified through our differ-

ential gene expression analyses, while the other three

genes (Zm00001d022192, Zm00001d050032 and Zm00001-

d049099) had fluorescence in leaves rather than the repro-

ductive or seed organs. While our expression data for

these three genes indicates that they are expressed in the

leaf, their expression in the reproductive or seed organs

was more than two-fold higher compared with the leaf and

thus were classified as reproductive or seed-specific rather

than leaf-specific in our study. The concordance of the

organ-specific genes identified through our analyses with

the Maize Cell Genomics Database (Krishnakumar et al.,

2015) confirms the quality of our organ-specific gene

expression data.

The developmental gene atlas reflects major transcrip-

tional profiles involved in development, from seed to

seed, with limited exposure of the plants to abiotic or

biotic stress. Using RNA-seq datasets from abiotic and

biotic stress treatments, we identified DE genes following

stress to improve our understanding of stress responses

in B73 and to provide additional functional annotation to

the AGPv4 annotated gene set. Using biotic stress experi-

ments with C. graminicola and C. zeina (Swart et al.,

2017) infection and three abiotic stressors, temperature

(Makarevitch et al., 2015), salt, and drought (Opitz et al.,

2014) (Data S1), 7704 DE genes were identified (Data S7,

Figure S3). Over 60% of the genes (4775) were respon-

sive to abiotic stress (Figure 2b), yet only 23% of the

genes (1718) were responsive to biotic stress. However,

1211 genes were responsive to both biotic and abiotic

stress and GO enrichment analysis identified ‘oxida-

tion�reduction process’ (GO:0055114) and ‘DNA replica-

tion’ (GO:0006260) as the top GO terms (Data S4). Both

abiotic and biotic stress had DE genes enriched for terms

related to aromatic compound metabolism (GO:1901362,

GO:0006558) suggesting regulation of genes encoding

aromatic compound metabolism is a conserved stress

response (Hildebrandt et al., 2015). Abiotic stress-related

DE genes were also enriched for ‘response to hormone’

(GO:0009725) while biotic stress-related DE genes were

enriched for ‘response to biotic stimulus’ (GO:0009607).

These DE genes provided further functional data for the

B73 genome and further understanding of the molecular

mechanisms of stress responses.

Weighted gene co-expression network analysis

Gene co-expression analyses can reveal co-regulated

genes, pathways, and biological processes; this guilt-

by-association method has proven fruitful for assigning

function to genes with unknown function (for review see

Usadel et al., 2009). Weighted gene co-expression network

analysis (WGCNA; Langfelder and Horvath, 2008) was

performed on filtered log2 transformed FPKM values

obtaining 12 gene modules containing 13 590 genes (Data

S8). When performing hierarchical branch cutting to define

modules, Module 6 was assigned to genes that did not

cluster at the specified threshold and consequently is the

largest module with 4836 genes (Figure S4). Enrichment

analyses of organ-specific and stress-related DE genes

within each module identified modules associated with

specific organs and stress functions (Figure 3; Table S2).

Module 11 is enriched for leaf-specific genes (P < 2e-15)

and GO term enrichment confirmed Module 11 is enriched

for genes associated with ‘photosynthesis’ (GO:0015979)

(Data S4). Reproductive-specific genes were enriched in

Modules 1 and 12 (P < 2e-15) corresponding to GO enrich-

ment terms of ‘sexual reproduction’ (GO:0019953). Specifi-

cally, meiotic tassel and anther-specific genes were

enriched in Modules 1 and 12, respectively (P < 2e-15).

Three modules (Modules 4, 8, and 10) are enriched for

seed-specific genes (P < 2e-15) with GO term enrichment

classes of ‘nutrient reservoir activity’ (GO:0045735) and

‘embryo development’ (GO:0009790). Module 4 is enriched

for endosperm-specific genes and Module 10 is enriched

for embryo-specific genes (P < 2e-15). Module 3 is

enriched for root-specific and biotic-related DE genes

(P < 0.001) and GO enrichment identified ‘response to

oxidative stress’ (GO:0006979) and ‘cell wall organization

or biogenesis’ (GO:0071554). Module 6 was jointly

enriched for internode-specific genes, biotic-related DE

genes, and DE genes under both biotic and abiotic stress

(P < 5e-9). The enrichment of organ-specific and stress DE

genes in Module 6 suggests that there may be co-

expressed groups of genes within this module that did not

reach the branch cutting threshold and application of a

more stringent threshold may separate these into separate

modules. Two modules (Modules 2 and 5) were enriched

for abiotic-related DE genes (P < 2e-15) and Module 9 was

enriched for biotic-related DE genes and DE genes under

both biotic and abiotic stress (P < 4e-5). Among the mod-

ules enriched for stress DE genes, Module 2 had GO

enrichment for core functions such as ‘DNA replication’

(GO:0006260) and ‘primary metabolic process’ (GO:004-

4238).

Gene and module connectivity measures are important

indicators of central pathway genes and module cohesive-

ness. The WGCNA R package (Langfelder and Horvath,

2008) outputs a total connectivity measure (kTotal) which

sums all row values for the given gene in the transformed

correlation matrix (i.e., the adjacency matrix). Similarly,

there is an intra-modular connectivity measure (kWithin) in

which row values are summed only for the genes within

the same module. The average kTotal and kWithin values

were 177.96 (�139.73) and 138.88 (�137.21) (Table 1). The

modules with the most genes had the highest average kTo-

tal with the exception of Module 6 indicating that highly
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connected hub genes tend to be in larger modules enriched

for core functions. Module cohesiveness can be assessed

by evaluating the difference between intra-modular connec-

tivity and inter-modular connectivity (kDiff). A module with

a positive average kDiff suggests that the genes in the mod-

ule have more connections to each other than to genes out-

side the module. Most modules had positive kDiff averages

(Table 1), though Modules 8 and 10 had lower averages of

5.31 and 4.46, respectively. Modules 4, 8, and 10 are seed-

specific modules, with Modules 4 and 10 enriched for endo-

sperm-specific and embryo-specific genes, respectively,

while Module 8 is primarily expressed in the whole seed

(Figure S5). The low kDiff average is likely due to the over-

lapping functions of these three modules in seed develop-

ment leading to high inter-modular connectivity between

the modules. Module 6 unsurprisingly had a slightly nega-

tive kDiff of �0.41 and two other modules (5 and 9) had

negative kDiff averages of �1.73 and �18.87, respectively

suggesting that Modules 5 and 9 may not be individual co-

expression modules and the branch cutting threshold could

have been slightly adjusted to prevent their identification.

These co-expression modules and the gene connections

provide an extensive resource for understanding co-

regulated genes and pathways.

Understanding dispensable gene function through

expression analyses

Hirsch et al. (2016) identified PAVs from a comparison of

the B73 (AGPv3) and PH207 draft assemblies, and found

these to be more lowly expressed and organ-specific com-

pared with core genes (Hirsch et al., 2016). Brohammer

et al. (2018) identified 11 971 PAVs from the anchored

AGPv4 B73 loci using resequencing data from 62 inbreds

and defining a gene as a PAV if the CDS coverage was less

than 20% (Brohammer et al., 2018). Of the PAVs identified

in the Brohammer et al. (2018) study, 43.1% were present

in 61–57 inbreds (broadly dispersed) while 4.9% were pre-

sent in 20–1 inbreds (restricted dispersion) (Table S1).

Using our set of 274 diverse developmental and stress

transcriptome samples, 4420 PAVs were expressed with an

FPKM > 1 accounting for 15.0% of the expressed genes in

B73. Relative to core genes present in all inbreds, PAVs

had lower mean expression abundances within the 79

developmental gene atlas samples which were inversely

Figure 3. Weighted gene co-expression network analysis modules.

Pie chart of the 12 co-expression modules identified through weighted gene co-expression network analysis. Numbers around the outside of the pie chart indi-

cate the module and numbers beneath the boxes indicate the number of genes present in each module. Boxes around the pie chart indicate organ-specific,

stress-related, and presence�absence variant (Brohammer et al., 2018) enrichment within the module. Tissues in parentheses after an organ indicate enrichment

of those tissue-specific genes. ‘Both stresses’ refers to genes that are differentially expressed under both abiotic and biotic stress types.
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correlated with the frequency of the PAV in the panel

(Figure 4a). Zm00001d031168, an ortholog of the Ara-

bidopsis thaliana cold, circadian rhythm, and RNA binding

2 gene (AT2G21660), had a mean log2 FPKM expression of

12.4 and was a PAV with 61–57 inbreds encoding Zm0000-

1d031168. Interestingly, among all expressed genes, genes

with organ-specific and stress-related gene expression

were enriched for PAVs (P < 0.002) with PAVs present in

61–57 inbreds being the main contributor of PAV enrich-

ment among organ-specific and stress-related DE genes

(Figure 4b,c). Seed-specific genes were enriched among

PAVs present in 61–42 inbreds (P < 0.008) with endo-

sperm-specific genes enriched among PAVs present in 61–
57 inbreds and 51–42 inbreds (P < 6e-11). Seed-specific

PAVs were enriched for ‘defense responses’ (GO:0006952).

Upregulated abiotic stress-induced DE genes were

enriched among PAVs present in 51–21 inbreds (P < 0.04)

and enriched for ‘response to hormone’ (GO:0009725). Our

results are consistent with previous findings of low PAV

expression and increased PAV organ-specificity (Hirsch

et al., 2016) and expand the role of PAVs to include

response to abiotic and biotic stress. Additionally, the

lower expression values and lack of functional enrichment

among PAVs present in a small number of inbreds indi-

cates that this subset of PAVs may be undergoing pseudo-

genization (Tan et al., 2012) or have highly specific

expression patterns and functions not captured in these

studies.

In the WGCNA, Modules 5, 6, 7, and 9 were enriched for

PAVs (P < 6e-6) and Module 7 was also enriched for stress-

related DE genes (Figure 3; Table S2). These modules had

negative average kDiff values (Table 1) suggesting that

PAVs associated with stress responses interact with path-

ways that are not co-expressed. Furthermore, when com-

paring core gene and PAV network connectivity, PAVs had

significantly lower total and intra-modular connectivity,

with smaller connectivity values as fewer inbreds encoded

the gene (Figure 5a). This pattern is consistent with that

observed for PAV expression and further suggests that

PAVs have discrete expression patterns that are not cap-

tured under the conditions sampled in this study or are on

a path to pseudogenization.

Interestingly, 52 PAVs did not follow this pattern and

had a kTotal value greater than 500 (top 4% of genes), of

which 42 were from Module 12 and enriched for ‘sexual

reproduction’ (GO:0019953) (Data S4, Data S9). In total,

66.7% of the 52 outlier PAVs were present in 61–57 inbreds

and one gene (Zm00001d047146) was missing in 49

inbreds. Zm00001d047146 is a classical gene annotated as

expansin b1 (EXPb1; www.maizegdb.org/), a protein shown

to be involved in pollen tube penetration of silk tissue (Val-

divia et al., 2009; Tabuchi et al., 2011). EXPb1 has 543 gene

connections in the co-expression network (Data S9) and is

part of a monocot-specific orthologous group in which

EXPb1 has 14 other paralogs in B73. Among the paralogs,

eight are PAVs, of which, two are classical genes: EXPb1
(Zm00001d047146) and EXPb10C (Zm00001d040609).

EXPb1 is connected to 13 of the 14 other EXPb1 paralogs

and the overlapping gene connections among the paralogs

was assessed to investigate the degree of compensation

for EXPb1 loss. Of the 543 genes connected to EXPb1, 466
genes were connected to all 14 paralogs with just three

genes connected to less than five of the paralogs. Based

on sequence similarity to A. thaliana and O. sativa genes, a

plant thionin (Zm00001d029071) and a proline-rich nuclear

receptor coactivator (Zm00001d038160) were connected to

EXPb1 and the PAV paralog Zm00001d047147 (Figure 5b).

Plant thionins are antimicrobial peptides (Tam et al., 2015)

and proteins with proline-rich receptor coactivator motifs

have been shown to be involved in mRNA de-capping

(Wurm et al., 2016). The third gene (Zm00001d007894),

which has sequence similarity to gibberellin 20 oxidase 3

(GA20ox3) was connected to two other paralogs

(Zm00001d047147 and Zm00001d017736). GA20ox3 func-

tions in gibberellin biosynthesis and has been shown to

confer enhanced resistance against biotic stress in rice

(Qin et al., 2012). While Zm00001d017736 is a core gene

and could replace EXPb1 and the other PAV paralog, it has

a weaker connectivity weight suggesting that this connec-

tion is not as important (Figure 5b). All three of these

genes are putatively involved in plant defense responses

and were the only genes not strongly compensated for by

another non-PAV EXPb1 paralog suggesting that the loss

of this gene may be associated with an altered stress

response rather than an altered reproductive capacity.

Indeed, expansins have been shown to be involved in plant

Table 1 Weighted gene co-expression network analysis module
connectivity

Module kTotal kWithin kDiff kDiff/kTotal

1 93.90 80.48 67.06 0.71
2 209.20 180.47 151.75 0.73
3 260.74 197.33 133.93 0.51
4 97.91 73.84 49.78 0.51
5 27.02 12.65 �1.73 �0.06
6 92.28 45.94 �0.41 0.00
7 42.53 34.56 26.59 0.63
8 70.05 37.68 5.31 0.08
9 50.46 15.79 �18.87 �0.37
10 67.88 36.17 4.46 0.07
11 230.05 199.98 169.91 0.74
12 366.60 353.71 340.82 0.93

Average total (kTotal) and intramodular (kWithin) connectivity val-
ues for each co-expression module, with the difference in connec-
tivity between intramodular and intermodular connectivity (kDiff)
provided. The ratio between the kDiff and kTotal is also provided,
with values ranging from �1 to 1. A 1 indicates no genes are con-
nected to other modules and a �1 means no genes have connec-
tions within the module.
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stress responses (Marowa et al., 2016). This example

demonstrates the utility of co-expression analyses in con-

necting gene function and pathway information to deter-

mine potential genetic mechanisms of plant phenotype.

Among non-expansin genes in the 52 outlier PAVs,

88.6% (39) did not have a paralog(s) with overlapping gene

connections in the co-expression network. Furthermore, 31

of these 39 non-expansin outlier PAVs are single copy in

the B73 genome; of these 13 are annotated with functional

annotation corresponding to involvement in core pro-

cesses such as nuclear transport, protein phosphorylation,

and vesicle trafficking while the other 18 are annotated as

‘hypothetical’ or ‘conserved hypothetical’. It is unknown

how pathways are affected when highly connected PAVs

that lack a paralog which can compensate for lost connec-

tions are absent from an inbred. Future studies focused on

these singleton PAVs would be informative to understand

network changes and how these relate to differences in

biological processes.

Website and eFP browser development for open-source

data dissemination

The extensive AGPv4 transcriptome resource generated

here provides a multi-faceted and comprehensive database

for improved functional annotation and we have deployed

a robust set of on-line tools to data-mine these

transcriptome datasets. We created the MGR website

(maize.plantbiology.msu.edu) to provide search and query

tools for quick access to the data presented here via a

BLAST server, a genome browser, and gene report pages

in a layout similar to the Rice Genome Annotation Project

and Spud DB (Ouyang et al., 2007; Kawahara et al., 2013;
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(a) Box plot of log2 fragments per kilobase of exon

model per million mapped reads from the develop-

mental gene atlas for genes classified by how many

inbreds contain the gene. Genes were classified

into the subcategories using the presence�absence

variant data from Brohammer et al. (2018), with

each color corresponding to a subcategory. Letters

refer to significant differences from Tukey’s test

using a P-value threshold of 0.05. Zm00001d031168

is circled in red. (b) Bar plot of the percentage of

genes in each presence�absence variant category

which are organ-specific. The percentages are fur-

ther subdivided by organ type. (c) Bar plot of the

percentage of genes in each presence�absence

variant category which are differentially expressed

under stress. The stress types are further subdi-

vided into abiotic stress [salt stress, drought (Opitz

et al., 2014), and temperature stress (Makarevitch

et al., 2015)], biotic stress (Colletotrichum gramini-

cola and Cercospora zeina infection (Swart et al.,

2017)), and both stress types. The shade of color

indicates if the gene in each stress type has a posi-

tive or negative log2 fold change.
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Hirsch et al., 2014b) (Figure 6a). The MGR genome brow-

ser, an instance of JBrowse (Buels et al., 2016) with 561

tracks contains the AGPv4 assembly and annotation (Jiao

et al., 2017) along with RNA-seq coverage wiggle and XY

plots from the libraries analyzed here (Figure 6b). Addi-

tional tracks such as HapMap v3.2.1 variants (Bukowski

et al., 2018), RNA-seq variants (Hirsch et al., 2014a; Diepen-

brock et al., 2017), best protein matches from select spe-

cies in the Poaceae family, and transposable element

annotation provide additional contextual information for

gene function interpretation. Functional annotations

including Pfam, InterPro and GO annotation were gener-

ated for the AGPv4 gene models and are searchable by

keyword and accession with link outs to Gene Reports for

the matching gene models. A Gene Report page contains

the gene model identifier, alternative isoforms, gene model

attributes, genome browser view, gene model/CDS/peptide

sequences, associated GO annotations, Pfam hits, InterPro

hits, orthologous group membership, expression profiles

(FPKM, DE gene expression), WGCNA modules, and con-

nectivity values. Within the MGR, a sequence retrieval tool

for the AGPv4 genome, gene models, and surrounding

gene model regions are provided. A BLAST server is also

available to allow users to search Z. mays B73, including

older versions, PH207 (Hirsch et al., 2016), Mo17 (Sun

et al., 2018), W22 (Springer et al., 2018), and other assem-

blies and annotation. All data sets are also available for

download including the WGCNA and DE gene lists. The

MGR provides an easy to use resource for the maize com-

munity that implements updated functional annotation and

analyses for the AGPv4 assembly and gene annotation.

Data visualization is intuitive to the user and the Bio-

Analytic Resource for Plant Biology (BAR) (bar.utoronto.ca)

provides web-based tools for gene expression visualiza-

tion. Two new views, called ‘Hoopes et al. Atlas’ and

‘Hoopes et al. Stress’ were generated for the maize eFP
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(a) Box plot of the total connectivity measure (kTotal) and the intramodular connectivity measure (kWithin) for each gene present in a co-expression module cat-

egorized by how many inbreds contain the gene. Genes were classified into the sub-categories using the presence�absence variant data from Brohammer et al.

(2018), with each color corresponding to a subcategory. Letters refer to significant differences from Tukey’s test with a P-value threshold of 0.05. The gene cir-

cled in red is Zm00001d047146 (expansin b1). (b) Network of genes to which Zm00001d047146 is connected that are compensated by two other expansin par-

alogs. The weighted gene network co-expression analysis identified a co-expression network in which the nodes are the genes and the edges are the gene

connections. The thickness of the edge indicates the weight of the connection and the shape of the gene indicates gene type (a core gene present in all inbreds
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Figure 6. Maize genomics resource and eFP browser.

(a) Header for the Maize Genomics Resource website, which provides search and query tools for quick access to the data via a BLAST server, genome browser,

and gene report pages. (b) JBrowse view of Zm00001d047146 showing the locus, representative transcript, anther tissue XY plot, and silk XY plot. (c) The Bio-

Analytic Resource for Plant Biology maize eFP browser for the developmental gene atlas expression data. Zm00001d047146 expression abundances are shown,

with red indicating the highest absolute expression of the gene.
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(‘electronic Fluorescent Pictograph’) Browser (http://bar.

utoronto.ca/efp_maize) (Li et al., 2010) (Figure 6c). The eFP

images for any gene may be explored at the BAR maize

eFP Browser website, or viewed at the MGR via a web ser-

vice provided by the BAR, thereby providing a rapid means

of assessing where and when a gene is expressed.

CONCLUSION

We have developed a comprehensive transcriptomic

resource for the maize community to better interpret and

utilize genomic, transcriptomic, genetic, and functional

datasets with the long-read-based B73 AGPv4 genome

assembly and annotation. The unified web interface pro-

vides search and query tools for easy data access, and

gene expression visualization is available with the eFP

Browser. Access to a 79 tissue, 6-organ developmental

gene atlas coupled with a set of five abiotic/biotic stress

transcriptome datasets permitted robust annotation of

the 39 005 genes within the AGPv4 annotated gene set

including identification of 4154 organ-specific genes and

7704 genes that are differentially expressed following

stress treatment, and 12 co-expression modules. The util-

ity of a robust, comprehensive transcriptome resource

permitted further characterization of PAVs within a 62-

member diversity panel revealing that not only are PAVs

lowly expressed, but also that their expression is corre-

lated with their dispersion frequency across accessions.

Interestingly, seed-specific and stress-induced DE genes

are enriched for PAVs and co-expression modules

enriched for PAVs also tend to be enriched for stress-

induced DE genes. Together, these results suggest PAVs

are associated with environmental adaptation responses

and demonstrate the utility of the resource in elucidating

gene function.

EXPERIMENTAL PROCEDURES

Mapping transcriptome reads and calling gene expression

values

FASTQ files from the National Center for Biotechnology Informa-
tion (NCBI) (https://www.ncbi.nlm.nih.gov/) (Data S1) were down-
loaded and read quality was assessed with FastQC (v0.11.5)
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and
MultiQC (v1.0) (Ewels et al., 2016). Adapters, low quality bases
(Q < 20), and undefined bases at the ends of reads were
removed using Cutadapt (v1.12) (Martin, 2011), retaining reads ≥
30 nt in length. The cleaned paired-end reads were then concate-
nated into a single file. All cleaned reads were aligned to the Z.
mays B73 AGPv4 genome assembly (Jiao et al., 2017) with Bow-
tie2 software (v2.2.3) (Langmead and Salzberg, 2012) and
TopHat2 (v2.0.14) (Kim et al., 2013) using the unstranded mode
and a maximum intron length of 60 kb. Expression abundances
(FPKM) for Z. mays B73 AGPv4 genes (Jiao et al., 2017) were
quantified with Cufflinks (v2.2.1) (Trapnell et al., 2010) in
unstranded mode, a maximum intron length of 60 kb, and using
reference bias correction.

Quality assessment of transcriptomic data

Genes with FPKM values > 1 in at least one sample were log2

transformed and PCCs were calculated for all samples including
biological replicates using the R ‘cor’ function. One biological
replicate in the C. graminicola experiment with a PCC value below
0.92 was removed. PCC values across all samples were hierarchi-
cally clustered and visualized in a heatmap using the R package
‘gplots’ (Alexa and Rahnenfuhrer, 2016) ‘heatmap.2’ function. PCA
was conducted using the log2 transformed FPKM values of
expressed genes averaged by biological replicate and the R func-
tion ‘prcomp’. The R package ‘factoextra’ (Kassambara and Mundt,
2017) was then used to determine the extent of variance explained
by each component using the ‘get_eigenvalue’ function and to
extract the sample coordinates using the ‘get_pca_ind’ function.
The PCA was visualized via the R packages ‘ggplot2’ (Wickham,
2009) and ‘RColorBrewer’ (Neuwirth, 2014). To assess differences
in gene expression levels, Tukey’s test was performed after nor-
malizing the data in R and a P-value of 0.05 was used as the signif-
icance threshold.

Enrichment analyses

Locus GO terms were assigned by searching the AGPv4 pro-
teome using InterProScan (v5.14.53.0) (Jones et al., 2014) with
the ‘goterms’ option. For all GO term enrichment analyses, the
Bioconductor R package ‘topGO’ (Alexa and Rahnenfuhrer, 2016)
was used to perform a Fisher’s exact test with the classic
method using the custom GO term assignments to assign a P-
value to the GO term classes. The P-values were then adjusted
using the false discovery rate (FDR) correction and GO terms
with an adjusted P < 0.05 were retained. All other enrichment
analyses for the presence of PAVs, organ-specific genes, and
stress-related DE genes were conducted via the chi-squared test
in R using ‘chisq.test’ function and the P-values were adjusted
using the Bonferroni correction.

Differential gene expression analyses

Read counts per gene were obtained from the RNA-seq align-
ments using HTSeq (v0.9.1) (Anders et al., 2015) in unstranded
union mode. Differentially expressed genes were identified from
the gene read counts using DESeq2 (Love et al., 2014) with an
alpha level of 0.01. For organ-specific gene expression, an organ
was defined similarly to Sekhon et al. (2011) with some modifica-
tions (Sekhon et al., 2011). The endosperm and embryo were
grouped into a single organ (seed) and the cob, silk, tassel, and
anthers were grouped into one reproductive organ. The SAM was
also considered a separate organ establishing six organs for anal-
yses: internode, leaf, reproductive, root, seed, and SAM. Each
organ from the developmental gene atlas was individually con-
trasted against the other five organs retaining genes with an
adjusted P < 0.01 and a log2 fold change >2. A gene was consid-
ered organ-specific if it met these criteria in the organ of interest
when compared against all other organs. Tissue-specific gene
expression was similarly characterized for seed and reproductive
tissues. Using read counts for genes previously identified as seed-
or reproductive-specific, the seed and reproductive tissues were
contrasted against the other tissues in its respective organ. A gene
was considered tissue-specific if it had an adjusted P < 0.01 and a
log2 fold change >2 in all tissue comparisons. For stress-related
differential expression, each treatment was contrasted against its
respective experimental control, retaining genes with an adjusted
P < 0.01 and a log2 fold change <�2 or a log2 fold change >2. A
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gene was considered DE under both abiotic and biotic stress if it
met these criteria in at least one treatment from both stress types.
The organ-specific heatmap was generated with the R package
‘gplots’ (Alexa and Rahnenfuhrer, 2016) ‘heatmap.2’ function and
all other plots were generated with the R packages ‘ggplot2’
(Wickham, 2009) and ‘RColorBrewer’ (Neuwirth, 2014).

Weighted gene co-expression network analysis

Genes with an FPKM value > 5 in at least one sample were log2

transformed and retained only if they had a coefficient of variance
> 0.6. The WGCNA R package (Langfelder and Horvath, 2008) was
used with the filtered and transformed FPKM values to define
modules and gene connections. Briefly, the ‘pickSoftThreshold’
function was used to determine the optimal power to transform
the correlation matrix and the value of 12 provided the optimal
scale free topology fit. The ‘blockwiseModules’ function was used
to obtain gene modules using a cut height of 0.9 and the ‘in-
tramodularConnectivity’ function was used to obtain connectivity
measures using the adjacency matrix, which was generated using
a signed network type. Cytoscape files (Shannon et al., 2003) were
generated using the ‘exportNetworkToCytoscape’ function with an
adjacency value threshold of 0.5 for calling a network edge. To
assess differences in gene connectivity, Tukey’s test was con-
ducted after normalizing the data in R using a P-value of 0.05 as
the significance threshold.

Maize genomics resource website development

Additional analyses were conducted to provide enhanced func-
tional annotation of the gene models. AGPv4 protein gene model
sequences were searched against the Pfam (v31.0) (Finn et al.,
2016) database using the HMMER (v3.1b2) (Mistry et al., 2013)
‘hmmscan’ function. Proteins were also searched against InterPro
(v67.0) (Finn et al., 2017) using InterProScan (v5.28.67.0) (Jones
et al., 2014). Results from both were used to find protein domains
and motifs. The ‘goterms’ option was used with InterProScan to
assign GO terms to each gene model. The longest isoform for
each locus was assigned as the representative isoform. The repre-
sentative gene model protein sequences from Amborella tri-
chopoda (v1) (Amborella Genome Project, 2013), Arabidopsis
thaliana (TAIR10) (Lamesch et al., 2012), Oryza sativa (RGAPv7)
(Ouyang et al., 2007), Sorghum bicolor (v3) (McCormick et al.,
2018), and Z. mays (AGPv4) (Jiao et al., 2017) were run with
OrthoFinder (v2.2.0) (Emms and Kelly, 2015) using default parame-
ters to obtain orthologous and paralogous groups. Functional
annotation was generated by searching the AGPv4 gene models
against the A. thaliana proteome (TAIR10) (Lamesch et al., 2012),
Swiss-Prot (Bairoch and Apweiler, 2000), and Pfam (v29) (Finn
et al., 2016). Functional annotation was assigned from the first
match found in the results in the order: TAIR10, Swiss-Prot, and
Pfam. If the first match had the function ‘hypothetical’,
the assigned function was ‘conserved hypothetical’. Gene
models without hits in all three databases were annotated as
‘hypothetical’.

The two new views (‘Hoopes et al. Atlas’ and ‘Hoopes et al.
Stress’) for the Maize eFP Browser were generated by creating
appropriate images and XML files as described in the original eFP
Browser paper (Winter et al., 2007). RNA-seq data as FPKM values
were databased on the BAR server to provide rapid access to the
data by the eFP Browser engine, which ‘paints’ the expression
data onto images representing the samples used to generate the
RNA-seq data. We also enabled the eFP images to be generated
via a web service call such that they can be embedded in any web-
site, such as the MGR.

ACCESSION NUMBERS

Raw transcriptomic reads are available from NCBI via the

following BioProject IDs: PRJNA171684, PRJEB10574,

PRJNA226757, PRJNA244661, PRJNA323555, and PRJN-

A369690. All other data sets including the protein domain

and motif matches from HMMER and InterPro, orthologous

and paralogous groups from OrthoFinder, GO term assign-

ments, and functional annotation are available from Dryad

via the following DOI: https://doi.org/10.5061/dryad.5p58

q34. All data sets are also available for download via the

MGR download page (http://maize.plantbiology.msu.edu/

MSU_func_download.shtml).
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