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Titin is a giant elastic protein expressed in the contractile units of striated

muscle cells, including the sarcomeres of cardiomyocytes. The last decade

has seen enormous progress in our understanding of how titin molecular

elasticity is modulated in a dynamic manner to help cardiac sarcomeres

adjust to the varying hemodynamic demands on the heart. Crucial events

mediating the rapid modulation of cardiac titin stiffness are post-transla-

tional modifications (PTMs) of titin. In this review, we first recollect what

is known from earlier and recent work on the molecular mechanisms of

titin extensibility and force generation. The main goal then is to provide a

comprehensive overview of current insight into the relationship between

titin PTMs and cardiomyocyte stiffness, notably the effect of oxidation and

phosphorylation of titin spring segments on titin stiffness. A synopsis is

given of which type of oxidative titin modification can cause which effect

on titin stiffness. A large part of the review then covers the mechanically

relevant phosphorylation sites in titin, their location along the elastic seg-

ment, and the protein kinases and phosphatases known to target these

sites. We also include a detailed coverage of the complex changes in phos-

phorylation at specific titin residues, which have been reported in both ani-

mal models of heart disease and in human heart failure, and their

correlation with titin-based stiffness alterations. Knowledge of the relation-

ship between titin PTMs and titin elasticity can be exploited in the search

for therapeutic approaches aimed at softening the pathologically stiffened

myocardium in heart failure patients.

Introduction

Throughout life, the heart is continuously adapting to

varying mechanical demands imposed by the circula-

tion. These demands are compensated for, at the level

of the cardiomyocytes, by the contractile units known

as the sarcomeres. Sarcomeres are serially arranged in

myofibrils and (in a simplified view) consist of three

main filament systems: actin-based, myosin-based, and

titin-based myofilaments (Fig. 1A). Actin and myosin
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generate force via the well-known sliding-filament

mechanism, whereas the giant titin molecules (Fig. 1B)

ensure sarcomeric integrity and provide myocytes with

unique mechanical properties, as detailed below. Titin

generates ‘passive’ tension through its spring-like char-

acteristics [1–3], which determine—along with those of

the microtubular network [4,5]—the ‘passive’ stiffness

of the cardiomyocyte and contribute a significant pro-

portion of the total myocardial wall stiffness [6,7].

Moreover, titin stiffness and titin interactions with

other myofilament proteins can modulate Ca2+-depen-

dent active tension [8]. Therefore, alterations in titin-

based spring force affect both the passive and the

active forces of cardiomyocytes. The modulation of

titin spring force can occur via two principal mecha-

nisms, the switch of titin isoforms and post-transla-

tional modifications (PTMs), although additional

mechanisms (e.g., binding of Ca2+ or chaperones) also

play a role [9].

This review initially provides an updated model of

titin extension in cardiac sarcomeres under stretch

and highlights the importance of the unfolding of

titin immunoglobulin-like (Ig) domains in this pro-

cess. The main goal of the review then is to explore

how PTMs, specifically oxidation and phosphoryla-

tion, can alter titin-based stiffness. Considering the

expanding literature on titin phosphorylation, we

include a comprehensive coverage of known,

mechanically relevant, phosphosites within the titin

spring segment and explain location-specific effects

of phosphorylation on titin stiffness mediated by dif-

ferent protein kinases and phosphatases. Our review

also highlights gaps in knowledge that need to be

filled. Since complex changes in titin phosphorylation

have consistently been reported in heart disease, we

discuss which of these changes are observed in which

cardiac disorder, in both animal models of disease

and human heart failure (HF), and how they alter

Fig. 1. Titin isoforms and force-extension mechanisms in human cardiac sarcomeres. (A) Schematic of a section of a myofibril constituted

by sarcomeres (bordered by Z-disks), which consist mainly of the three myofilaments, actin (thin), myosin (thick), and titin (elastic). (B) A

half-sarcomere is shown at two different stretch states. Cardiac titin isoforms, N2B and N2BA, are drawn as being coexpressed in the half-

sarcomere; molecular spring elements within elastic I-band titin are highlighted. TK, titin kinase domain. (C) Relative titin-based passive

tension vs. sarcomere length relationship of a cardiomyocyte. Colors indicate the sequential extension of I-band titin segments of the N2B

isoform, which includes initial straightening of the Ig domain regions, followed by extension of the PEVK and N2Bus elements, and the

continuous increase in the probability of Ig domain unfolding with stretching.
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cardiomyocyte passive force in failing vs. healthy

hearts.

Which springy regions in titin and
molecular mechanisms of extension
do we know?

In the sarcomere, titin molecules (Fig. 1B) extend from

the Z-disk (NH2-termini) to the M-band (COOH-ter-

mini) [10]. The titin protein is encoded by one of the

largest genes, TTN (higher vertebrates have one titin

gene). The TTN meta-transcript encompasses 363

exons and 109224 base pairs (NCBI: NM_

001267550.1) [11]. Many exons are alternatively spliced

resulting in multiple titin isoforms [11–13], with two

main full-length isoforms expressed in the heart

(Fig. 1B): longer N2BA titin consisting of up to 313

exons and up to 34 350 amino acids (in human titin)

and the shorter N2B variant, which includes exactly

191 exons and 26 926 amino acids (amino acid

sequences of human titin according to UniProtKB

entry Q8WZ42). Titin molecular segments are orga-

nized pursuant to the sarcomere structure and are

referred to as Z-disk-bound element, elastic I-band

spring, A-band-bound element, and M-band-bound

element (Fig. 1B). These segments consist of Ig

domains interspersed with ‘Z’-repeats (Z-disk segment)

or with other short unique sequences (Z-disk/I-band/

M-band segments), Ig domains alternating with fibro-

nectin type-III domains in ‘super repeat’ patterns (A-

band segment), a titin kinase (TK) domain (near the

M-band), and long stretches of Ig domains flanking

long unique sequences, such as PEVK (made up of

protein motifs rich in proline, glutamate, valine, and

lysine) and N2Bus (I-band) [12]. N2Bus is found in

cardiac but not in skeletal muscle titin isoforms. The

PEVK segment but not N2Bus is exposed to massive

alternative splicing. These unique sequences are con-

sidered to be intrinsically disordered and are one of

two types of extensible segments in the elastic I-band

spring. The second type is tandem Ig domain regions

termed ‘proximal Ig’, ‘middle Ig’, and ‘distal Ig’. The

proximal and distal Ig segments are constitutively

expressed, whereas the middle Ig region is alternatively

spliced in N2BA as compared to N2B titin. As a

result, there is a greater number of Ig domains and

PEVK motifs in N2BA than in N2B isoforms

(Fig. 1B). All of these extensible elements in cardiac I-

band titin contribute to the spring force generated by

the elastic segment upon sarcomere stretch [14,15].

The elasticity of titin’s I-band segment is entropic in

nature [16,17]. The I-band spring elements behave like

serially linked biopolymers, generating entropic force

upon stretching due to their tendency to maintain a

more compact state rather than extended states.

According to models of entropic biopolymer elasticity

[16–19], I-band titin will resist against external stretch

forces by generating an elastic force, which rises with

the stretch amplitude and thus, the sarcomere length

(SL), in a quasi-exponential manner (Fig. 1C). Nota-

bly, at shorter SLs and low stretch forces (up to ~ 1

pN/titin molecule), titin becomes extended first due to

the straightening of the short linkers between the tan-

dem Ig domains [14,15] (Fig. 1B,C). Intermediate to

high stretch forces (up to ~ 10 pN/titin) thereafter

extend the PEVK segment, followed by the N2Bus ele-

ment [14,15,18–21] (Fig. 1C). The wormlike chain

model of entropic elasticity readily describes this

sequential extension mechanism of cardiac titin

[15,18,19].

In addition to I-band segment extension, reversible Ig

domain unfolding [22] contributes to titin extension

under physiological stretch forces. Earlier, the unfolding

of Ig domains was proposed as a safety mechanism, lim-

iting high forces in the sarcomere but not taking place at

physiological SLs and stretch forces [17,18,23]. However,

recent findings have confirmed, at both the molecular

and sarcomere levels, that unfolding of Ig domains

already occurs at lower, physiological forces below ~ 10

pN/titin [24,25] (Fig. 1B,C). Interestingly, Ig unfolding

provides a mechanism to store elastic energy, which is

released by refolding [26], potentially assisting active

muscle contraction [24] (titin’s role in active muscle con-

traction is discussed in detail in reference [8]). In conclu-

sion, reversible Ig domain unfolding is a physiologically

relevant mechanism of titin extension-release and sar-

comeric force adjustment.

How can cardiac titin stiffness be
modulated dynamically?

Since titin stiffness is a main contributor to cardiomy-

ocyte stiffness and thus, total myocardial stiffness [27,28],

the modulation of titin stiffness will affect the wall ten-

sion of the heart chambers, with consequences for dias-

tolic filling and subsequent systolic pump function (via

an autoregulatory mechanism known as the Frank–Star-
ling law) [8,29,30]. One important long-term mechanism

of titin stiffness adjustment is titin isoform switching. It

is based on the lower stiffness of the N2BA isoform as

compared to the N2B isoform and the coexpression of

these two isoforms in the same (half-)sarcomere (Fig. 1B)

[13,31,32]. For instance, predominant expression of

shorter, stiffer N2B titin is seen in adult as opposed to

fetal hearts, which express long and compliant (fetal)

N2BA isoforms; therefore, adult cardiac sarcomeres are

2242 The FEBS Journal 286 (2019) 2240–2260 ª 2019 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies

Titin stiffness modulation by PTMs F. Koser et al.

http://www.ncbi.nlm.nih.gov/protein/NM_001267550
http://www.ncbi.nlm.nih.gov/protein/NM_001267550
http://www.uniprot.org/uniprot/Q8WZ42


much stiffer than fetal ones [33–35]. The titin isoform

composition is under the control of splicing factors, of

which RNA-binding motif 20 (RBM20) is the best-

known splicing factor for cardiac titin [36]. The splicing

repressor activity of RBM20 is likely to be regulated by

different mechanisms; for example, it is inhibited by

polypyrimidine tract-binding protein 4 [37]. Additionally,

thyroid hormone T3 and insulin have been shown to

modulate myocardial titin isoform composition via the

PI3K-AKT-mTOR kinase axis [38,39]. Their mechanism

of action includes effects on RBM20 [40,41]. Titin iso-

form switching allows more stable, general changes in

titin-based passive stiffness over a relatively long period.

Isoform transitions of titin can also occur under patho-

logical conditions, such as in endstage failing human

hearts [42–44].

However, to compensate beat-to-beat requirements,

the heart also needs quicker, finer control over passive

tension. This can be achieved through PTMs of titin

spring elements. Multiple lines of evidence have estab-

lished that titin-based passive stiffness can be readily

adjusted via PTMs targeting the N2Bus and PEVK

unique sequences, and perhaps also the Ig domains. In

the following sections, this regulation via PTMs will

be discussed, with consideration given to oxidation

and emphasis put on phosphorylation.

How do redox modifications affect
titin-based cardiomyocyte stiffness?

All three filament systems of the sarcomere are tar-

geted by oxidative modifications (see [45] for details on

actin and myosin modifications). Oxidative stress

occurs when there is a disturbance in the balance

between the production of reactive oxygen/nitrogen

species (ROS/RNS) and antioxidant defense mecha-

nisms [46]. Depending on their nature and level, ROS/

RNS can cause reversible and/or irreversible protein

modifications mainly targeting amino acids containing

a thiol group (predominantly cysteines but also

methionine) [47–50]. Reversible oxidative modifications

have been described for titin, including disulfide bond-

ing in the N2Bus segment, S-glutathionylation in Ig

domains, and disulfide bonding and isomerization in

Ig domains (Fig. 2). These modifications have been

shown to alter titin-based stiffness in vitro and in iso-

lated cardiac muscle preparations [45].

N2Bus oxidation

Indirect evidence for the possibility of oxidative modi-

fications in the N2Bus titin segment was already

obtained two decades ago. By immunoelectron

microscopy, the extensibility of the N2Bus segment in

cardiac sarcomeres appeared to be impaired under oxi-

dizing conditions [15,21]. This finding was confirmed

and extended later in single-molecule force-extension

measurements using the atomic force microscope

(AFM), which directly showed increased extensibility

of recombinant N2Bus protein under reducing vs. oxi-

dizing conditions [51] Moreover, this study demon-

strated that up to three disulfide bridges could be

formed by the six cysteines present in the human

N2Bus segment (Fig. 2A). The disulfide bridges

mechanically stabilize (cross-link) the otherwise disor-

dered N2Bus segment, which results in increased pas-

sive tension under oxidative stress conditions (Fig. 2A)

[51,52].

Disulfide bridge formation in the cardiac N2Bus seg-

ment might also interfere with intracellular signaling

pathways intersecting with N2Bus [53]. For example,

disulfide bridges could alter the N2Bus-binding

propensity of the four-and-a-half LIM-domain pro-

teins FHL1 and FHL2 [54,55] and the small heat

shock proteins ab-crystallin and HSP27 [56,57], as well

as the ATP-dependent chaperone HSP90 [58]. One or

more of these alterations could then affect mechanisms

of mechanosensation and protein quality control in the

cardiomyocytes under oxidative stress conditions, in

addition to altering titin-based passive tension.

Another likely scenario is that redox modifications of

N2Bus affect other types of PTMs in N2Bus, such as

phosphorylation, with consequences for titin-based

passive tension modulation (see below). Preliminary

evidence for such an interdependence has been pub-

lished [59].

Ig domain oxidation

The Ig domains of titin have been known for some

time to contain putative sites of oxidation [60]. Recent

work has demonstrated that many titin Ig domains

can be modified under oxidizing conditions by S-glu-

tathionylation and disulfide bonding/isomerization.

Various studies used single-molecule mechanical meth-

ods, such as AFM force spectroscopy, to elucidate the

relationship between domain oxidation and mechanical

strength of recombinantly expressed domains [61–65].

In combination with human cardiomyocyte mechanics,

it was shown that upon stretching cardiac sarcomeres

and unfolding titin Ig domains, these domains reveal

‘cryptic’ cysteines, which are still buried inside the

folded domain [61]. The now-exposed cysteines can

become S-glutathionylated under oxidative conditions,

which prevent domain refolding and decrease the

mechanical stability of the Ig domain (Fig. 2B). By
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inhibiting Ig domain refolding, this S-glutathionylation

causes the titin spring to become longer, thereby con-

tributing to a decrease in cardiomyocyte passive stiff-

ness (Fig. 2B), which, however, is readily reversible

[61]. S-glutathionylation of sarcomere proteins, includ-

ing titin, increases in murine hearts upon myocardial

infarction [66], suggesting that S-glutathionylation is a

relevant mechanism of cardiomyocyte stiffness regula-

tion under oxidative stress.

Recently, S-sulfenylation of cryptic cysteines in Ig

domains was demonstrated as a potentially ‘compet-

ing’ mechanism, as it can cause titin stiffening [62].

Sulfenic acid is a short-lived intermediate that either

triggers protein misfolding or leads to the formation of

a disulfide bond which protects the Ig domain fold.

The covalent bond of the disulfide bridge cannot be

broken by physiological levels of force/molecule (in

the piconewton range). Therefore, the presence of an

intramolecular S-S bond leads to less stretchable (stif-

fer) Ig domain segments, as shown in a series of ele-

gant experiments using single-molecule force

spectroscopy methods [64,65]. Such a mechanism

would be expected to increase titin-based passive stiff-

ness in a reversible manner depending on the redox

state of the cardiomyocyte. Currently there is no evi-

dence to suggest whether S-sulfenylation is a mecha-

nism of titin stiffness regulation in vivo.

A related mechanism of stiffness modulation under

oxidative stress is the formation and isomerization of

disulfide bonds in unfolded titin Ig domains (Fig. 2C).

Multiple alignments of Ig domain sequences of human

titin (UniProKB entry Q8WZ42-1; isoform1; April 18,

2012; Version 4) revealed that 21% of the Ig domains

present in elastic I-band titin contain a conserved

Fig. 2. Mechanisms of titin-based passive tension modulation by oxidative stress-induced titin modifications. (A) Formation of up to three

intramolecular disulphide bonds within the human N2Bus element of titin under oxidative stress increases titin-based passive tension in

cardiomyocytes. (B) Ig domain unfolding due to sarcomere stretching causes exposure of hidden (‘cryptic’) cysteines in Ig domains, which

can become S-glutathionylated under oxidative conditions. S-glutathionylation prevents Ig domain refolding, resulting in decreased titin-based

passive tension. (C) Isomerization of disulfide bonds of the cysteine triad in titin Ig domains can occur under oxidative conditions. Depending

on where the intramolecular S-S cross-linking occurs, titin-based passive tension increases by different amplitudes. The key on bottom

explains the different shapes and colors shown in the figure.
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cysteine triad, which has the potential to form S-S

bridges and isomerize [63]. Those Ig domains contain-

ing the conserved cysteine triad can be oxidized result-

ing in a disulfide bridge, which then becomes

isomerized under force in a two-step mechanism

(Fig. 2C). This differs from the situation in reduced Ig

domains, in which stretch causes all-or-none extension.

Since disulfide bond formation and isomerization pre-

vent further unfolding of the Ig domain, titin-based

passive tension is predicted to be increased (Fig. 2C)

[63]. Mechanical measurements on recombinant Ig

domains of the middle Ig region by AFM force spec-

troscopy confirmed such a scenario [63]. The S-S iso-

merization provides an additional, potential mode of

titin stiffness adjustment, because the ‘free’ length of

the unfolded Ig domain is shorter or longer, depending

on the position of the intramolecular S-S cross-link

formed.

These mechanisms of oxidative modification of titin

Ig domains depend on the accessibility of the cryptic

cysteines buried inside the folded Ig domains. Since

reversible Ig domain unfolding occurs at physiological

forces [24] (Fig. 1C), cryptic cysteines should become

accessible at least at higher physiological SLs. Nota-

bly, Ig domains containing the conserved cysteine triad

are located almost exclusively in the middle Ig region,

which is expressed in cardiac titin isoform N2BA (and

skeletal isoform N2A) but not in N2B. Due to this

inclusion of many more Ig domains (and PEVK

motifs) in N2BA compared to N2B titin, the stretch

force experienced by the N2BA spring (coexpressed

with N2B in the same sarcomere; Fig. 1B) is much less

than that experienced by the N2B spring. It is, there-

fore, likely that only very few (if any) Ig domains from

the middle Ig segment unfold under physiological

stretch forces and expose cryptic cysteines. Taken

together, the mechanically relevant types of oxidative

modification of titin Ig domains in the presence of

physiological stretch forces and oxidative stress may

be S-glutathionylation and disulfide bonding (in

unfolded Ig domains from the N2B isoform), rather

than S-S isomerization. Interestingly, S-glutathionyla-

tion and disulfide bonding in titin Ig domains have

opposite effects on overall titin stiffness, which impli-

cates a unique potential for titin oxidation to differen-

tially fine-tune cardiomyocyte tension under oxidative

stress. However, at present there is no information on

the preferred type of titin oxidative modification and

their effect on passive tension in the living

myocardium.

In the muscle mechanics field, the consequences of

titin oxidation and disulfide bond formation for the

mechanical properties of the myocytes have only rarely

been considered. For instance, many studies utilize

antioxidants and reducing agents during tissue prepa-

ration and this type of pretreatment has the potential

to break disulfide bonds and alter titin-based stiffness

prior to any experimental procedures or measure-

ments. Therefore, the role oxidation plays in dynamic

stiffness regulation of titin in vivo may be greater than

currently understood.

Which protein kinases/phosphatases
(de)phosphorylate titin for a
mechanical effect?

Phosphorylation is one of the most common PTMs

that regulates cellular function. A variety of physiolog-

ical stimuli, including hormones and neurotransmit-

ters, regulate the cardiac contractile performance via

phosphorylation/dephosphorylation of intracellular

proteins, and sarcomere proteins are no exception

[67,68]. A fine-tuned system of protein kinases and

protein phosphatases ensures the regulation of sarcom-

ere function by phosphorylation. Some of these

enzymes exert their specific effects through defined

subcellular localization [58,69,70].

Regarding titin, there are five main kinases that

have been implicated in the phosphorylation of its

molecular spring segment, causing altered titin-based

stiffness (Fig. 3A): protein kinase (PK)A, PKCa, cyc-
lic guanosine monophosphate (cGMP) dependent

PKG [gene name: PRKG1 (protein kinase cGMP-de-

pendent 1)], ERK2, and Ca2+/calmodulin-dependent

protein kinase IId (CaMKIId) [6]. PKA is activated

by cyclic adenosine monophosphate upon b-adrener-
gic stimulation. The kinase phosphorylates myofila-

ment and calcium handling proteins in

cardiomyocytes to mediate the response of the heart

to altered sympathetic activity [71]. PKCa (the major

PKC isoform in the heart [72]) is activated through

a1-adrenergic stimulation and has been implicated in

many forms of cardiac dysfunction [73–75]. PKG is

activated by cGMP following the release of nitric

oxide (NO) or natriuretic peptides. Phosphorylation

by PKG also regulates cardiomyocyte function in

multiple ways, including alterations to myofilament

and calcium-handling protein functions. PKG is

importantly involved in pathways of fibrosis and cell

survival and it has a protective role in the heart

[76]. ERK2 is an effector kinase of the Raf1-MEK1/

2-mitogen-activated protein kinase pathway and has

been implicated in cardiac hypertrophy [77,78]. CaM-

KIId is the predominant CaMKII isoform in the

heart regulated by intracellular calcium levels. It has

many signaling functions in both the healthy and
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the diseased heart [79–82]. All of these kinases have

the potential to fine-tune cardiomyocyte passive ten-

sion via titin phosphorylation.

Although comparatively little is known about pro-

tein phosphatases that dephosphorylate titin, a recent

study identified serine/threonine protein phosphatase

(PP)5 as an enzyme that binds to the N2Bus region of

the I-band spring [58]. PP5 specifically dephosphory-

lates various sites in N2Bus previously phosphorylated

by one of the above-mentioned protein kinases

(Fig. 3A). Transgenic, cardiomyocyte-specific overex-

pression of PP5 in mouse heart reduces phosphoryla-

tion of N2Bus but not PEVK or Z-disk titin sites and

the mechanical effect is an increase in titin-based car-

diomyocyte passive tension [58]. PP5 has less basal

activity in cardiomyocytes than PP1 or PP2a, which

have many important regulatory functions in these

cells [68]. However, PP5 is a highly regulated phos-

phatase that can be activated by various stimuli, for

example, by arachidonic acid or HSP90 binding [58].

Like PP5, PP1 and PP2a (and alkaline phosphatase)

have been used in vitro to dephosphorylate cardiac

titin segments, including N2Bus and PEVK [83,84]. At

present it is unknown whether PP1 and PP2a are

involved in the dephosphorylation of cardiac titin

in vivo, in addition to PP5.

Which sites in titin are (de)
phosphorylated by which enzyme and
what is the mechanical effect?

According to phosphoproteomic screens (e.g., www.

phosphosite.org [85]), many phosphorylation sites are

distributed all over the titin molecule (Fig. 3B). More

than 300 phosphosites are listed for mouse and human

titin [86], representing a huge potential for the regula-

tion of cardiomyocyte structure and function. In light

of this large number and the multiple kinases involved

in titin phosphorylation, it has been a reasonable

approach to measure all-titin phosphorylation, in

order to determine overall trends in the regulation of

titin by phosphorylation. For the purpose of this

review, we have considered methods involving phos-

phoprotein staining by sensitive dyes, such as ProQ

Diamond, western blotting with anti-serine/threonine

antibodies, and autoradiography after back-phospho-

rylation as ‘all titin’ phosphorylation. However, note

that none of these methods detects every single phos-

phosite in a protein. These measurements have pro-

vided general insight into the importance of titin

phosphorylation in altering titin-based passive tension,

with the obvious disadvantage that they are not able

to detect site-specific phosphorylation events.

Fig. 3. Potential and verified phosphorylation sites in human titin. (A) Layout of the N2BA titin isoform in a cardiac half-sarcomere,

highlighting protein kinases (for details, see main text) and protein phosphatase (PP)5 known to mediate phosphorylation/ dephosphorylation

at two distinct molecular spring elements, N2Bus and constitutively expressed PEVK (light green bit of PEVK). Phosphorylation of N2Bus

reduces titin-based passive tension, whereas phosphorylation of PEVK increases it, which is explained by the different net charge of these

elements. Constitutive PEVK has a net positive charge (+) and high isoelectric point (pI), N2Bus a net negative charge (�) and low pI. Note

that the alternatively spliced PEVK subsegment (yellow bit of PEVK) also has a net negative charge. (B) Known potential phosphosites in

human cardiac titin (vertical red bars), from www.phosphosite.org [85]. Locations of phosphosites verified by site-specific methods are

highlighted (blue and green boxes). TK, titin kinase domain.
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Considering the overwhelming number of titin phos-

phosites, the determination of all-titin phosphorylation

arguably has limited informative value.

Only a small number of phosphorylation sites in

titin has been verified by site-specific methods, such as

mutagenesis or phosphospecific antibodies. These

phosphosites are almost exclusively located within the

unique sequences, N2Bus and PEVK (Fig. 3B) [86]. As

for the PEVK element, only the extreme COOH termi-

nus was included in the previous analyses; this PEVK

subsegment is constitutively expressed in all full-length

titin isoforms. One may ask why the site-specific analy-

sis of titin phosphorylation sites has been limited to

these two regions. A reason is that the recombinant

expression of the whole titin protein is currently

impossible due to its enormous size. In contrast,

shorter segments can be readily expressed and ana-

lyzed for in vitro phosphorylation, and it was a sensi-

ble choice to initially focus on N2Bus and PEVK as

these regions are established as mechanically active ele-

ments in I-band titin [15,18,19]. Phosphorylation of

these sites was thus considered to have potential to

modulate titin-based passive stiffness. Although this

historical bias may skew the importance of phosphory-

lation at these two segments, differences in phosphory-

lation at N2Bus and PEVK have been observed

between healthy and diseased hearts and have been

associated with changes in titin-based passive tension,

supporting the functional relevance of phosphorylation

at these two regions. In the future, it will be important

to also address the functional implications of phospho-

rylation sites in titin Ig domain segments (there are

many, as indicated in Fig. 3B) and study their possible

pathophysiological relevance.

Confirmed phosphosites in the N2Bus element

Within the titin N2Bus segment, several cross-species–
conserved phosphoserines, including S4010, S4062, and

S4099, as well as nonconserved (human-only) S4185

(numbering according to human titin consensus

sequence, UniProKB #Q8WZ42-1), have shown

altered regulation in animal models of heart disease

and human failing hearts, as will be detailed below

(Figs 4 and 5). S4185 was the first phosphosite to be

detected in human N2Bus, initially through mutagene-

sis of recombinant N2Bus protein and back-phospho-

rylation/autoradiography [83]. A subsequent study

confirmed this site via mass spectrometry of back-

phosphorylated, recombinant N2Bus [87]. These stud-

ies found that S4185 can be phosphorylated by PKA

or PKG. Another substrate of PKA is S4010, and

PKG also phosphorylates S4099, while several

additional (nonconserved) PKA/PKG-dependent sites

are present in N2Bus [87]. S4010 is also phosphory-

lated by ERK2, as are a few other N2Bus sites [88].

CaMKIId phosphorylates S4062 and presumably addi-

tional serines and threonines within N2Bus, as demon-

strated by phosphoantibody staining and in vivo

quantitative phosphoproteomics using mass spectrome-

try on heart tissues from WT and CaMKII knockout

mice, in comparison to hearts from the ‘stable isotope

labeling of amino acids’ (SILAC) mouse [89]. Dephos-

phorylation of S4010, S4062, S4099, and S4185 can

occur in vivo through PP5 [58]. The phosphorylation

of all these sites has been associated with a decrease in

titin-based cardiomyocyte passive tension [83,90], the

dephosphorylation with an increase [58] (Fig. 3A). The

strongest evidence has come from single-molecule

mechanical measurements on recombinant N2B ele-

ment using AFM force spectroscopy [83,90]. Interest-

ingly, ROS activate both ERK [91] and PP5 [92].

Thus, under oxidizing conditions, phosphorylation of

the N2Bus segment potentially switches to ERK2-

based regulation of phosphosites.

Confirmed phosphosites in the PEVK element

Regarding the PEVK region, site-specific verification

of phosphosites is currently limited to the constitu-

tively expressed COOH-terminal portion encoded by

TTN exons 219-224 (in the human TTN meta-tran-

script). Two well-established phosphoserines are phos-

phorylated by PKCa, S11878, and S12022 [84]. At

least one of these sites, S12022, is also phosphorylated

by CaMKIId [89]. Both CaMKIId and PKCa phos-

phorylate several other serines/threonines within this

PEVK subsegment, as shown by a number of different

approaches, including back-phosphorylation experi-

ments with recombinant PEVK fragments exposed to

amino acid exchange, mass spectrometry of in vitro

expressed PEVK fragments, and in vivo quantitative

mass spectrometry using the SILAC method [84,89,93].

Interestingly, phosphorylation of the PEVK segment

by PKCa increases the passive tension of the car-

diomyocytes (Fig. 3A) [84].

Differences in net charge explain differential

changes in stiffness upon phosphorylation

An important difference to the N2Bus element is that

the (constitutive) PEVK segment has a different net

charge (Fig. 3A). N2Bus has a low isoelectric point

(pI = 4.4 in human N2Bus) due to the large number of

acidic amino acids, resulting in a net negative charge

(as the intracellular milieu of a cardiomyocyte is
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maintained at a nearly neutral pH of 7.1–7.2 [94]). The

introduction of negatively charged phosphate groups

(‘phosphorylation’) could, therefore, increase

intramolecular electrostatic repulsion. Thus, the force

required to extend the N2Bus segment would be low-

ered, causing decreased titin-based passive tension.

Conversely, the COOH-terminal PEVK segment con-

tains many basic amino acids resulting in a high pI of

8.8 (in human titin) and a net positive charge. The

introduction of negatively charged phosphate groups

would trigger additional intramolecular ionic interac-

tions, causing increased titin-based passive tension, as

the force needed to extend this PEVK subsegment

would increase (Fig. 3A). This concept is supported by

single-molecule AFM force-extension measurements

where an increase in the persistence length of the

N2Bus element was seen upon phosphorylation with

PKG [83], whereas a reduction in the persistence

Fig. 4. Changes in titin phosphorylation in animal models of heart disease and relationship with alterations in cardiomyocyte passive tension.

The size of the bars indicates the relative amount of change in phosphorylation in diseased hearts vs. the respective control, healthy hearts

(for some conditions, an average value is shown). The relative changes are as indicated by the respective study authors and therefore,

magnitude comparisons between studies may not be plausible. Note the heterogeneity in the direction of change in all-titin phosphorylation

among the different models. Also, note that in failing hearts, the N2Bus element is frequently hypophosphorylated at one or more sites,

whereas phosphoserine (S11878) within the PEVK element is usually hyperphosphorylated. Conversely, PEVK site S12022 mostly shows

hypophosphorylation. For those studies where titin-based passive tension was measured, the direction of change (arrow) in disease (red

curves) relative to healthy heart samples (green curves) is indicated. Protein kinases known to target individual phosphosites are listed in

parentheses. References are in square brackets. TAC, transversal aortic constriction (afterload increase); I/R, ischemia/reperfusion injury; MI,

myocardial infarction; T2DM, type 2 diabetes mellitus; Shunt, aorto-caval shunt model (preload increase); HFpEF, heart failure with

preserved ejection fraction; TtnD/Ajxn, deletion of titin segment at I-band/A-band junction; HT, hypertension; PAH, pulmonary arterial

hypertension; ZSF-1, Zucker spontaneously hypertensive, fatty-1 model; LV, left ventricle; RV, right ventricle; LA, left atrium.
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length of the (constitutive) PEVK element appeared

upon phosphorylation by PKCa [84]. In the case of

the PEVK domain, the main effect on stiffness seems

to be mediated by phosphorylation of S11878 [95]. If

this concept holds true, one would expect that phos-

phorylation of the alternatively spliced PEVK region

(not yet studied) reduces titin-based passive tension, as

this PEVK subsegment has a pI of 5.1 (in human titin)

and a net negative charge (Fig. 3A).

Considering the large size of the I-band titin spring,

phosphorylation of only one site within the N2Bus or

PEVK segments may have a negligible effect on

overall titin-based tension. It is more likely that several

serines/threonines in N2Bus, PEVK, and/or other titin

spring segments must be phosphorylated at one time

by a given protein kinase to result in a mechanical

effect. An interesting situation arises when a kinase

can phosphorylate both N2Bus and PEVK, as is the

case for CaMKIId [89] (Fig. 3A). In theory, the phos-

phorylation of both segments together might cause no

change in passive tension, as the mechanical effects

could cancel out each other. However, mechanical

experiments have demonstrated that the passive force

of permeabilized cardiomyocytes decreases with

Fig. 5. Changes in titin phosphorylation in human failing hearts and relationship with alterations in cardiomyocyte passive tension. The size

of the bars indicates the relative amount of change in phosphorylation in failing vs. nonfailing hearts (for some conditions, an average value

is shown). The relative changes are as indicated by the respective study authors and therefore, magnitude comparisons between studies

may not be plausible. Note the absence of hyperphosphorylation of all-titin. Also, note the general pattern of hypophosphorylation at one or

more N2Bus sites and hyperphosphorylation at PEVK site S11878, whereas phosphorylation at S12022 mostly remains unaltered. For those

studies where titin-based passive tension was measured, the direction of change (arrow) in disease (red lines) relative to healthy heart

samples (green lines) is indicated. Protein kinases known to target individual phosphosites are listed in parentheses. References are in

square brackets. DCM, dilated cardiomyopathy; CHF, congestive heart failure; IDCM, idiopathic DCM; HCM, hypertrophic cardiomyopathy;

HFpEF, heart failure with preserved ejection fraction; HFrEF, heart failure with reduced ejection fraction; HT, hypertensive heart disease;

PAH, pulmonary arterial hypertension; AS, aortic stenosis; PPCM, peripartum cardiomyopathy; ISHD, ischemic heart disease. LV, left

ventricle; RV, right ventricle.
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ex vivo CaMKIId-treatment [89,90]. Moreover, passive

tension was elevated in cardiomyocytes of CaMKIId/c
double-knockout mouse hearts and reduced in those of

CaMKIId-overexpressing transgenic mouse hearts, rel-

ative to WT mouse cardiomyocytes [89]. Thus, the

CaMKII-mediated phosphorylation of N2Bus appears

to dominate the mechanical effect. Furthermore, the

affinity of CaMKIId could be different for the N2Bus

and PEVK substrates, or the N2Bus phosphosites may

be better accessible than the PEVK phosphosites in a

stretched sarcomere. Alternatively, additional unidenti-

fied CaMKIId-dependent phosphosites may exist in

cardiac titin, which could drive the effect on stiffness.

In summary, site-specific phosphorylation by several

different kinases has been confirmed in the N2Bus and

PEVK segments of titin. There is consensus that phos-

phorylation of the constitutive PEVK segment

increases titin stiffness, whereas phosphorylation of

N2Bus decreases it. Considering the total number of

potential phosphosites in cardiac titin, the verification

of other phosphosites (including those in Z-, A- and

M-band titin) by site-specific methods is needed to

provide further insight into the regulation of titin-

based passive tension (and other functions) through

phosphorylation. Despite this limitation, phosphoryla-

tion of titin spring elements is a well-established modu-

lator of titin-based stiffness in cardiomyocytes.

Phosphorylation of the titin spring in
normal and failing hearts

The fine-tuning of titin-based passive stiffness through

changes in phosphorylation states becomes even more

relevant when considering pathological conditions of

the heart [6]. In heart disease, the regulation of many

signaling pathways becomes altered; for example, there

is frequent downregulation/deactivation of PKG [76]

and upregulation/activation of CaMKIId and PKCa
[73,79]. Among other things, these changes will alter

downstream signaling events, including titin phospho-

rylation. This could become critical to overall cardiac

function, if the changes in titin-based stiffness become

substantial: if myocardial stiffness becomes too high,

ventricular filling will be compromised, whereas lower

than normal stiffness will blunt length-dependent acti-

vation and thus, impair the Frank–Starling response

[8,29,30].

Changes in titin phosphorylation have been investi-

gated in animal models of heart disease and in failing

hearts of human patients, usually in comparison to

healthy/nonfailing hearts. The availability of phospho-

specific antibodies against several N2Bus and PEVK

sites has been instrumental in these studies. Heart

failure is generally defined as a clinical syndrome,

characterized by the inability of the heart to deliver

enough blood to meet the body’s metabolic needs. The

HF syndrome thus represents the result of various dif-

ferent cardiac and metabolic disorders. With this in

mind, it might be expected that titin phosphorylation

varies depending on the metabolic cause of the HF

subtype. However, the overall trends of phosphoryla-

tion changes in the N2Bus and PEVK segments seem

to be relatively consistent across the cardiac diseases

studied to date, in both humans and animal models.

Importantly, the direction of change can be different

for N2Bus and PEVK phosphosites (Figs 4 and 5).

Which changes in titin phosphorylation occur in

which animal models of heart failure?

Numerous animal models (mouse, rat, dog, and pig)

have been generated that mimic human heart diseases,

for example, ischemia/reperfusion (I/R) injury,

myocarditis, hypertension (HT), pulmonary arterial

hypertension (PAH), transverse aortic constriction

(TAC), type 2 diabetes mellitus (T2DM), chronic car-

diac overload (shunt), and heart failure with preserved

ejection fraction (HFpEF). These models have pro-

vided insight into where (site-specific) and in what

direction (hypo/hyper) the changes in phosphorylation

can occur in the diseased states (Fig. 4). These changes

have frequently been related to changes in titin-based

passive tension measured in cellular or subcellular car-

diac muscle preparations (Figs 4 and 5). If mechanical

measurements were performed, the typical result was

an increase in passive tension in diseased vs. healthy

hearts, with only a few exceptions in human samples.

Below we review the changes in titin phosphorylation

reported to date, including total titin and site-specific

N2Bus/PEVK phosphorylation, as well as report mea-

sured changes in passive tension.

Total titin phosphorylation

A majority of HF models presented with reduced car-

diac all-titin phosphorylation compared to healthy

controls. In murine studies, two different models of

myocarditis [96,97], a T2DM model [98], and a chronic

volume overload (shunt) model [99] all showed

reduced all-titin phosphorylation. However, a similar

murine shunt model showed no change in all-titin

phosphorylation [100], as was also the case in a murine

model of HFpEF [101]. In contrast, all-titin phospho-

rylation was significantly increased in left ventricular

(LV) samples from mice exposed to TAC [102] or I/R

injury [93] (Fig. 4). Unlike in the murine TAC model,
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no change in all-titin phosphorylation was seen in a

rat TAC model [103] and in the hearts of hypertensive

rats [104]. Total titin phosphorylation was reduced in

right ventricular (RV) samples of a rat model of PAH

[105] and was also substantially decreased in a rat

model of HFpEF [106], which is different from what

was seen in the mouse HFpEF model [101]. Dog mod-

els of HFpEF also showed conflicting results with

regard to all-titin phosphorylation (Fig. 4). One study

showed an increase in all-titin phosphorylation in left

atrial and LV samples from a dog model of HFpEF

[107], whereas an earlier study reported a decrease in

all-titin phosphorylation in a different set of LV sam-

ples from the same HFpEF dog model [108]. A pig

model of early HFpEF presenting with hypertension

and hyperlipidemia following treatment with deoxycor-

ticosteroneacetate and a western diet showed reduced

all-titin phosphorylation in the hearts, compared to

healthy pigs [109].

Apparently contradictory results regarding total titin

phosphorylation observed in the animal models might

be due to the stage of HF induced in the respective

model. For instance, the severity of HF may be differ-

ent in the mice [102] and the rats [103] exposed to

TAC, depending on the level of aortic constriction.

Moreover, strain and species differences could underlie

the differential changes in titin phosphorylation

observed. In any case, the importance of changes in

all-titin phosphorylation is difficult to judge consider-

ing the large number of titin phosphosites.

N2Bus site-specific phosphorylation

Site-specific phosphorylation studies in animals yielded

some overall trends but also appeared to be contradic-

tory at times (Fig. 4). The N2Bus segment was found

to be either hypophosphorylated or unchanged in all

animal species and HF models investigated. PKA/

ERK2-dependent phosphosite S4010 was hypophos-

phorylated in mice exposed to I/R [110] or chronic

volume overload [99], in rat TAC and HFpEF models

[103,106], and in a dog HFpEF model [108]. In con-

trast, no change in S4010 phosphorylation appeared in

other mouse and rat HFpEF models [101,111]. PKG-

dependent phosphosite S4099 was also found to be

hypophosphorylated in most animal studies

[99,103,108] except for a mouse I/R model [110] and a

rat HFpEF model [111], where S4099 phosphorylation

was unchanged. One study on a rat TAC model mea-

sured the phosphorylation of CaMKIId-dependent
phosphosite S4062, which was unchanged [103]. How-

ever, as expected, mouse hearts deficient in CaMKIId
showed hypophosphorylation at this site and

transgenic CaMKIId-overexpressing murine hearts had

increased phosphorylation at S4062 [89]. Where mea-

sured, an increase in passive tension was seen in all

models with N2Bus hypophosphorylation (Fig. 4),

consistent with the idea that phosphorylation of the

N2Bus segment lowers passive tension of cardiomy-

ocytes. In general, findings on these animal model

studies support the concept that decreased phosphory-

lation of the N2Bus titin segment contributes to the

increased myocardial stiffness frequently seen in heart

disease.

PEVK site-specific phosphorylation

Site-specific phosphorylation of the constitutively

expressed PEVK titin segment varied greatly between

the two phosphosites studied by western blot, and

among the animal models used (Fig. 4). All models

investigating PKCa-dependent phosphosite S11878

showed either hyperphosphorylation or no change in

the diseased state. Specifically, mice exposed to TAC

[102], I/R [110] or chronic volume overload [99], HT

rats [104], and a canine model of HFpEF [108] all

showed hyperphosphorylation of S11878. In contrast,

different studies using murine models of I/R [93] and

chronic volume overload [100], a rat TAC model [103],

and both a murine and two rat models of HFpEF

[101,106,111] revealed no change in phosphorylation at

S11878.

Differences in phosphorylation of PKCa/CaMKIId-
dependent S12022 were substantially more varied, with

hyperphosphorylation, hypophosphorylation, or no

change in phosphorylation being seen across many dif-

ferent models (Fig. 4). One murine model of I/R

showed increased phosphorylation of S12022 [110],

while another showed no change [93]. The difference

may potentially be due to differences in the severity of

I/R injury in these models. Furthermore, there was no

change in S12022 phosphorylation in HT rats [104],

murine chronic volume overload [100], and murine

HFpEF [101] models, all vs. the respective healthy

controls. This is in direct contrast to a similar murine

chronic volume overload [99] and a rat HFpEF model

[106], where hypophosphorylation at S12022 was

observed. Both mouse and rat TAC models also

showed hypophosphorylation of S12022 [102,103].

Taken together, constitutively expressed PEVK fre-

quently appears to be hyperphosphorylated at S11878

and hypophosphorylated at S12022 in animal heart

disease. Considering the net positive charge of the con-

stitutive PEVK subsegment, hyperphosphorylation of

S11878 is consistent with an increase in the passive

stiffness of cardiomyocytes, explained by additional
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ionic interactions within this subsegment of titin upon

addition of phosphate groups. Conversely, hypophos-

phorylation of S12022 would be expected to lower

titin-based passive force. Thus, either altered phospho-

rylation of S12022 has little effect on titin-based stiff-

ness (unlike expected) or changes in phosphorylation

of S11878—and those at the N2Bus element—may

dominate the overall mechanical effect. Additionally, it

is likely that altered phosphorylation of titin in HF

occurs at PEVK sites not included so far in the analy-

sis using phosphoantibody detection.

In summary, studies on animal models of heart dis-

ease suggest an overall decrease in titin phosphoryla-

tion compared to healthy control hearts, which may be

driven by hypophosphorylation of residues in the

N2Bus segment. Concomitantly, there is sometimes

hyperphosphorylation of PEVK sites such as S11878

but no change or hypophosphorylation at other PEVK

sites such as S12022. The functional net effect of these

changes in phosphorylation appears to be an increase

in titin-based passive tension in heart disease.

Which changes in titin phosphorylation occur in

what type of human heart failure?

Human studies into phosphorylation of titin in heart

disease are generally in agreement with the animal mod-

els in that an overall decrease (vs. nonfailing hearts)

occurs in all-titin phosphorylation and site-specific

N2Bus phosphorylation, whereas hyperphosphorylation

occurs at PEVK phosphosite S11878 (Fig. 5). In the

majority of cases reported, these changes are also asso-

ciated with increased cardiomyocyte passive tension.

Total titin phosphorylation

Of those studies that measured all-titin phosphoryla-

tion and compared with a control group (mostly non-

failing hearts), four showed a decrease in diseased vs.

healthy hearts (Fig. 5). Specifically, all-titin phospho-

rylation was decreased [83] or unchanged [87,112] in

the LV of endstage failing human hearts from patients

with dilated cardiomyopathy (DCM) compared to

nonfailing donor hearts. A moderate decrease in all-

titin phosphorylation vs. control hearts was detected in

RV samples from patients with PAH [113] and in LV

samples from patients with severe chronic HF due to

hypertrophic cardiomyopathy (HCM) [87], as well as

in endomyocardial LV biopsies from patients with sev-

ere aortic stenosis (AS) [114]. Another paper measured

the ratio of phosphorylated N2BA to phosphorylated

N2B cardiac titin isoforms in myocardial samples from

patients with AS and T2DM and found a significant

increase relative to nonfailing myocardium, while the

N2BA:N2B expression ratio remained unaltered, sug-

gesting hypophosphorylation of the N2B isoform and

hyperphosphorylation of the N2BA isoform [115]. An

earlier paper reported an increased phospho-N2BA:

phospho-N2B ratio in human HF (including HFpEF)

vs. AS myocardium [116]. However, this change was

accompanied by titin isoform transition toward N2BA

of a similar magnitude, suggesting no change in total

titin phosphorylation, while there was increased pas-

sive tension in HF vs. AS cardiomyocytes. The latter

result could be explained, in theory, by differential

phosphorylation of the N2Bus and PEVK elements in

HF vs. AS, which was not measured in that study.

The overall picture emerging from these studies is that

human failing hearts frequently have an all-titin phos-

phorylation deficit (and never show hyperphosphoryla-

tion of total titin), which could drive pathological

myocardial passive stiffening.

N2Bus site-specific phosphorylation

A reduction in the phosphorylation of N2Bus sites

was usually reported in diseased vs. donor hearts

(Fig. 5). Specifically, cardiac titin was hypophosphory-

lated at S4010 in LV samples from patients with severe

DCM [87,117], idiopathic DCM (IDCM) [118], HCM

[87], or peripartum cardiomyopathy (PPCM) [117].

Similarly, phosphorylation of N2Bus was decreased vs.

controls at phosphosite S4099 in end-stage failing

hearts of patients with DCM [87], HCM [87], or

HFpEF associated with T2DM [111]. Consistent with

these cross-species–conserved N2Bus sites, S4185 was

found to be hypophosphorylated in severely diseased

patients with DCM [87], HCM [87], HFpEF associated

with HT [119], AS [114], and RV samples from

patients with PAH [120]. Contradictory, N2Bus was

hyperphosphorylated at S4010 and S4062 in a subset

of end-stage failing hearts from transplant patients

with HFrEF but signs of hypertrophic cardiomyopa-

thy [89]. Whether this result was a consequence of the

increased cardiac CaMKIId expression and activity

reported in these patients remains unclear [89]. Aside

from this single study, reduced phosphorylation of

N2Bus sites appears to be the rule in human HF.

Hypophosphorylation of N2Bus was mostly associ-

ated with increased titin-based passive stiffness in dis-

eased vs. donor hearts (Fig. 5). This observation was

made in patients with severe forms of DCM [87],

HCM [87], HFpEF associated with HT [119], HFpEF

associated with T2DM [111], PAH [113], and PPCM

[117]. In contrast, some studies found that passive ten-

sion was unchanged in LV samples from patients with
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DCM or IDCM vs. donor hearts [117,118] or even

decreased at the level of the cardiac myofibrils

[42,43,112]. However, information about the titin

N2Bus phosphorylation status in these studies was lim-

ited or not provided (Fig. 5). Possibly, the switch in

titin isoform composition toward N2BA in endstage

failing human hearts [42,43] sometimes reduces titin-

based passive tension despite titin (including N2Bus)

hypophosphorylation.

PEVK site-specific phosphorylation

Hyperphosphorylation of PEVK phosphosite S11878

was seen in some human disease studies (Fig. 5). Specif-

ically, phosphorylation of S11878 was increased in LV

samples from patients with severe DCM [87,89], HCM

[87], and HFpEF associated with HT [119] or T2DM

[111] vs. the respective nonfailing controls. These

changes were accompanied by an increase in titin-based

passive tension. In a few studies on IDCM (LV) and

PAH (RV), S11878 phosphorylation was unaltered

[118,120]. Interestingly, in most reported cases, the

phosphorylation status of PEVK phosphosite S12022

was unaltered in failing vs. donor hearts (Fig. 5). In

RV samples of PAH patients, S12022 was even

hypophosphorylated and despite unaltered S11878

phosphorylation, cardiomyocyte passive tension was

increased [120]. Again, the hypophosphorylation of

N2Bus sites may be the driving factor that raises titin-

based stiffness in the hearts of these patients.

In summary, titin is consistently hypophosphorylated

at one or more N2Bus sites in failing human vs. non-

failing hearts. Frequently, titin is also hyperphosphory-

lated at PEVK residue S11878, but not at S12022. Such

relatively consistent states of phosphorylation from dif-

ferent heart disease stages may be somewhat unex-

pected; however, the direction of change is consistent,

at least in part, with previously shown alterations in the

expression/activity of protein kinases and phosphatases

in heart disease, especially PKCa and PKG [73,76] as

well as PP5 [58]. Interestingly, these findings are some-

what similar to what has been observed during acute

exercise [121]. One may speculate that this similarity is

also an indication of the additional work done by the

heart in a diseased state. In any case, these differential

alterations in titin phosphorylation are predicted to

cooperatively increase titin-based passive stiffness and

thus, myocardial stiffness in disease.

Potential for human therapy

Post-translational modifications of titin that alter titin-

based myocardial passive stiffness represent a potential

target for therapeutic intervention in HF patients with

overly stiff hearts, such as HFpEF. Strong evidence

has been obtained for the beneficial effect of enzyme-

mediated alterations in titin-based passive tension in

mechanical measurements on isolated myocardial sam-

ples. When skinned cardiomyocytes isolated from

human hearts are treated ex vivo with PKA [59,122],

PKG [83,116,123], or CaMKIId [120], their passive

tension drops. The PKA and PKG effects appear to

be particularly strong in cardiomyocytes from failing

hearts where titin is hypophosphorylated at the N2Bus

element, presumably due to reduced expression/activity

of these enzymes in HF (for a recent review, see [86]).

Attempts have been made to normalize myocardial

(titin-based) passive tension, and thereby improve dias-

tolic filling, by boosting the cGMP-PKG axis in vivo.

Studies on HF patient-mimicking, large animal models

are ongoing [109,124,125]. Work on a dog model of

early HFpEF demonstrated acute beneficial effects on

cardiomyocyte stiffness and LV diastolic distensibility

upon intravenous administration of sildenafil, an inhi-

bitor of phosphodiesterase 5A (PDE5A; a cGMP-de-

grading enzyme), and brain natriuretic peptide (an

activator of particulate guanylate cyclase), concomi-

tant with a rise in total titin phosphorylation, which

were explained by increased cGMP expression [124].

However, PDE5A does not appear to be expressed at

appreciable levels in cardiac tissue lysates from either

normal or failing hearts [126], suggesting it may not be

a good therapeutic target in human HF. Whether

another cGMP-selective phosphodiesterase, PDE9A, is

more highly expressed in failing human cardiomy-

ocytes, is a controversial issue requiring further study

[127,128], as do the potential benefits of inhibiting

PDE9A on titin phosphorylation and LV passive stiff-

ness in human HF. Furthermore, recent work demon-

strated no benefit on LV compliance from boosting

cGMP-PKG signaling by intravenous administration

of BAY 41-8543, a pharmacological stimulator of sol-

uble guanylate cyclase, in a porcine model of early

HFpEF [129]. In this study, total titin phosphorylation

and site-specific phosphorylation of both N2Bus and

PEVK sites were increased compared to untreated

pigs, suggesting multiple unexpected effects on titin

phosphorylation upon stimulation of the cGMP-PKG

pathway. These results dampen the enthusiasm for tar-

geting the cGMP-PKG axis in attempts to normalize

myocardial passive stiffness via effects on titin phos-

phorylation. Whether other avenues of cGMP-PKG

signaling may be more promising as potential targets

for therapy in this context remains to be seen. More-

over, signaling pathways of other titin-targeting pro-

tein kinases and phosphatases still need to be explored
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for possible effects on titin phosphorylation through

pharmacological manipulation.

Conclusions and outlook

The rapid regulation of titin stiffness helps to dynami-

cally couple cardiac myofilament activity to the pre-

vailing hemodynamic demands of the circulation under

physiological and pathophysiological conditions. The

main focus of this review has been the regulation of

cardiac titin stiffness by two types of PTMs, oxidation

and phosphorylation. As discussed, the last decade has

seen much progress in our understanding of how oxi-

dation and phosphorylation of titin spring elements

alter titin stiffness, and in which direction. Mechanistic

insight has come from in vitro studies on single iso-

lated cardiomyocytes, isolated titin molecules, or

recombinant titin fragments. Phosphospecific antibod-

ies have allowed for the evaluation of titin phosphory-

lation states at individual amino acids in diseased vs.

healthy hearts, including human failing hearts, and the

correlation with changes in titin-based spring force.

Information on phosphorylation changes in vivo is

available for the two titin spring elements N2Bus and

(constitutive) PEVK, but is lacking for the Ig domain

segments, which do contain many (potential) phospho-

sites. Moreover, ‘classical’ tests to probe the functional

relevance of a PTM within a molecule of interest have

not been performed for titin, for example, the knock-

in of the protein in a transgenic mouse model with the

phosphosite in question being mutated to a constitu-

tively phosphorylated/phosphomimicking or nonphos-

phorylatable residue and the phenotypic changes being

quantified. In fact, it is questionable whether such an

approach would be sensible for a molecule the size of

titin, especially regarding the effect on titin stiffness,

because a mechanical effect presumably requires the

biochemical modification of several titin residues at

once. Conversely, it has been useful to quantify site-

specific titin phosphorylation in mouse models where a

relevant protein kinase (CaMKII) was ablated or over-

expressed [89] or a relevant phosphatase (PP5) overex-

pressed [58]. However, these studies cannot address the

dynamic changes in titin phosphorylation likely occur-

ring swiftly under physiological and pathological

conditions.

We still lack crucial knowledge on several issues,

including what is the relative importance of titin iso-

form switching vs. PTMs for the regulation of titin

stiffness in vivo and whether the changes in titin phos-

phorylation observed in failing hearts can be the pri-

mary cause of heart disease or instead represent

compensatory adaptations. Oxidative changes in titin

have thus far been examined almost exclusively

in vitro, which calls for new studies to establish the

degree and exact location of titin oxidation in vivo.

Furthermore, the relevance of titin oxidation in heart

disease is largely unknown. Other PTMs (such as

arginylation [130]) may also alter titin-based passive

stiffness and warrant further investigation into the role

they may play in both healthy and diseased hearts.

Finally, PTMs of titin that alter titin-based myocardial

passive stiffness represent a promising potential target

for therapeutic intervention in HF patients with overly

stiff hearts (such as in HFpEF), despite recent setbacks

in some preclinical studies regarding to the role of

cGMP-PKG activation for myocardial stiffness in vivo.

However, new approaches have already shown that

titin phosphorylation and titin compliance can be

increased in animal models by targeting various other

intracellular pathways [111,131–133]. Results of these

studies suggest that the correction of mechanically rel-

evant PTMs of titin in failing hearts can reduce patho-

logical wall stiffness and normalize diastolic function.

The further identification of these PTMs and their

impact on titin-based passive tension will be instru-

mental in substantiating these achievements and trans-

lating the findings to humans.
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