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1  | INTRODUC TION

Agricultural production and food security are threatened by the in‐
creases in temperature and precipitation extremes under a warming 
climate with intensified water cycle (Bengtsson, 2010; Chou et al., 
2013; Hegerl et al., 2015; Lesk, Rowhani, & Ramankutty, 2016). The 

United States, the world's largest maize producer that supplies >30% 
of global maize production, has experienced significant increases 
of heat, drought, and extreme rainfall since 1980 (Groisman et al., 
2005; Kunkel & Easterling, 1999; Mazdiyasni & AghaKouchak, 2015; 
Wuebbles et al., 2017). These climate extremes have already caused 
substantial damage to maize production in the United States (Lobell 
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Abstract
Increasing drought and extreme rainfall are major threats to maize production in the 
United States. However, compared to drought impact, the impact of excessive rainfall 
on crop yield remains unresolved. Here, we present observational evidence from 
crop yield and insurance data that excessive rainfall can reduce maize yield up to 
−34% (−17 ± 3% on average) in the United States relative to the expected yield from 
the long‐term trend, comparable to the up to −37% loss by extreme drought (−32 ± 2% 
on average) from 1981 to 2016. Drought consistently decreases maize yield due to 
water deficiency and concurrent heat, with greater yield loss for rainfed maize in 
wetter areas. Excessive rainfall can have either negative or positive impact on crop 
yield, and its sign varies regionally. Excessive rainfall decreases maize yield signifi‐
cantly in cooler areas in conjunction with poorly drained soils, and such yield loss gets 
exacerbated under the condition of high preseason soil water storage. Current pro‐
cess‐based crop models cannot capture the yield loss from excessive rainfall and 
overestimate yield under wet conditions. Our results highlight the need for improved 
understanding and modeling of the excessive rainfall impact on crop yield.
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et al., 2013,2014; Pielke & Downton, 2000; Schlenker & Roberts, 
2009; Troy, Kipgen, & Pal, 2015; Zipper, Qiu, & Kucharik, 2016) and 
are expected to continue increasing in frequency and severity in the 
future (Mann et al., 2018; Prein et al., 2017; Wuebbles et al., 2017).

Drought and excessive rainfall ranked, among extreme events, as the 
first and second largest cause of maize production loss in the United States, 
totaling damage of 18 and 10 billion US dollars, respectively, from 1989 to 
2016 (crop insurance data from Risk Management Agency [RMA], Figure 
S1). The impacts of drought and heat on crops have been extensively studied 
using empirical‐based (Lobell et al., 2013,2014; Troy et al., 2015; Zipper et al., 
2016), and model‐based approaches (Asseng et al., 2014; Deryng, Conway, 
Ramankutty, Price, & Warren, 2014; Glotter & Elliott, 2017; Jin, Zhuang, Tan, 
& Dukes, 2016). However, less attention has been paid to excessive rainfall, 
despite available field and experimental evidence (Hardjoamidjojo, Skaggs, 
& Schwab, 1982; Mukhtar, Baker, & Kanwar, 1990; Shaw & Meyer, 2015; 
Wenkert, Fausey, & Watters, 1981) indicating excessive water reduces crop 
production as often as deficient water (Hardjoamidjojo et al., 1982). The 
lack of quantitative studies on the excessive rainfall impact leaves a critical 
knowledge gap (Rötter et al., 2018), which may hinder our ability to under‐
stand and assess the climate change impacts on crops.

A similar gap exists in the development and evaluation of global 
process‐based crop models. Most modeling efforts, for example, the 
participant models in the Agricultural Model Inter‐comparison and 
Improvement Project (AgMIP), focus on the temperature response 
and CO2 effects on crop yield (Bassu et al., 2014; Deryng et al., 
2016; Maiorano et al., 2017; Schauberger et al., 2017; Wang et al., 
2017), whereas the precipitation response and the excessive rainfall 
impact have for some time not been in the focus (Lobell & Asseng, 
2017; Rosenzweig, Tubiello, Goldberg, Mills, & Bloomfield, 2002; 
van der Velde, Tubiello, Vrieling, & Bouraoui, 2012). The extent that 
excessive rainfall adversely affects maize production in the United 
States is still largely unknown, especially when compared with the 
impact of drought (i.e., deficient rainfall), and how well current pro‐
cess‐based global gridded crop models (i.e., global crop models par‐
ticipated in the AgMIP, as opposed to point‐based models; Müller et 
al., 2017) simulate such impacts has not been evaluated.

In this study, we address this knowledge gap by offering new ob‐
servational evidence from crop yield and insurance loss data. We first 
quantify the impact of excessive rainfall on US's maize production from 
1981 to 2016 and compare it with the impact of extreme drought for 
the same period. We then investigate the regional patterns of the exces‐
sive rainfall and drought impacts and their possible explanatory factors. 
Finally, we compare the observed crop yield response to precipitation 
to that simulated by process‐based global crop models from AgMIP.

2  | MATERIAL S AND METHODS

2.1 | Data

2.1.1 | Maize yield data

The county‐level maize (grain) yield and harvest area, state‐level 
progress report and plant population (available for limited states) 

data from 1981 to 2016 were obtained from the U.S. Department 
of Agriculture National Agricultural Statistics Service (USDA NASS, 
https://quickstats.nass.usda.gov/). These agricultural data by NASS 
are collected from multiple sources and primarily from the ex‐
tensive surveys carried out during the production year, including 
area‐frame survey, stratified sampling farms survey, and farmer in‐
terviews (NASS, 1999). The NASS dataset is the most readily avail‐
able and high‐quality crop production data in the United States and 
has been widely used in climate and agriculture studies (Glotter & 
Elliott, 2017; Schlenker & Roberts, 2009; Troy et al., 2015; Zipper et 
al., 2016). For the historical maize yield data, since it has a long‐term 
trend in yield owing to improvements in technology, seeds, and 
management, we estimated the linear yield trend for each county 
separately to calculate their detrended yield anomaly. We also 
tested alternative trend method (i.e., a quadratic yield trend) and 
the results were not affected by the methods of trend estimation.

2.1.2 | Crop insurance data

The county‐level crop insurance loss data from 1989 to 2016 for maize 
were obtained from the RMA, including “Cause of loss” (https://www.
rma.usda.gov/data/cause.html) and “Summary of Business” (https://
www.rma.usda.gov/data/sob.html). Cause of loss (COL) data contain 
indemnity amounts for different loss of causes for each year, such as 
“drought,” “heat,” and “excessive rainfall,” as well as the month of loss. 
Summary of business (SOB) data contain indemnity and premium 
amount, and loss ratio. The specific cause of loss (e.g., drought, heat, 
and excessive rainfall) is reported by farmers when they file a claim for 
their crop losses as required by insurance policy. The indemnity and pre‐
mium amount are collected from individual cases of various insurance 
programs. This information is compiled by RMA to the county‐level data 
used in this study. Loss ratio is defined as the ratio of payments made 
on crop insurance policies to the total premium paid for crop insurance 
policies, with larger values representing greater loss. The COL and SOB 
data combined can give loss ratio for each loss cause (e.g., heat, drought, 
excessive rainfall) at specific months. The direct economic crop loss and 
the cause of loss information from crop insurance data provide a unique 
opportunity to quantitatively measure the severity of crop damage as 
well as attributing the damage to extreme climate. Loss ratio is used in 
our analysis to represent the severity of crop damage instead of the ab‐
solute indemnity amount, because loss ratio is not affected by inflation 
or price change over time as indemnity amount. It should be noted that 
crop insurance programs, their coverage, and participation rates have 
changed over the years during the study period (1989–2016), leading 
to inconsistent spatial and temporal samplings and potential biases in 
the analysis. However, these factors would not affect the results be‐
cause our usage of the data did not rely on the temporal information 
and was independent of time, instead, we focused on the loss ratio 
of the sampled counties and their climate conditions. Therefore, the 
large number of county‐year samples (N = 46,689), though may not 
have complete spatial and temporal coverage, still provide enough in‐
formation to derive the loss ratio across a range of climate conditions. 
Moreover, the loss ratio and the cause of loss data in our study only 

https://quickstats.nass.usda.gov/
https://www.rma.usda.gov/data/cause.html
https://www.rma.usda.gov/data/cause.html
https://www.rma.usda.gov/data/sob.html
https://www.rma.usda.gov/data/sob.html
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serve as independent evidence to complement the crop yield response 
to precipitation and the attribution to extreme climate condition.

2.1.3 | Climate data

Temperature and precipitation data were obtained from PRISM (Daly 
et al., 2008) (ftp://prism.oregonstate.edu/) at daily and 4 km spatial 
resolution from 1981 to 2016. The daily climate data were averaged 
to monthly values at each county. Maize growing season is defined 
from May to August. The mean growing season maximum tempera‐
ture (i.e., the mean of daily maximum temperature) and the total pre‐
cipitation were calculated for each county based on their monthly 
values.

2.1.4 | Tile drainage data

Tile drainage data were from the Land Use Practices data of the 2012 
Census of Agriculture (https://www.nass.usda.gov/Publications/
AgCensus/2012/Online_Resources/Custom_Summaries/2012_
land_use_practices_by_county.xlsx). The “Land drained by tile, 
Acres, 2012” in the NASS 2012 census divided by the agriculture 
cropland area gives the percentage of cropland with tile drainage in 
each county.

2.1.5 | Soil data

The soil data were obtained from POLARIS (Chaney et al., 2016) 
(http://stream.princeton.edu/POLARIS/PROPERTIES/), including 
clay percentage and saturated hydraulic conductivity, which affect 
the drainage ability of soils. The soil data are available at 100 m 
resolution at different depths. We first extracted soil properties for 
maize pixels only, which were identified by the multiyear majority 
maize fields from the USDA Crop Data Layer data on Google Earth 
Engine. These county‐level soil property values were then averaged 
from those maize pixels from three depths up to 30 cm (0–5, 5–15, 
and 15–30 cm).

2.1.6 | Global gridded crop model simulation data

The simulation data of 12 global gridded crop models that par‐
ticipated in the Global Gridded Crop Model Intercomparison of 
the AgMIP were obtained from http://www.rdcep.org/research-
projects/ggcmi (Müller et al., 2017) (hereafter the AgMIP global 
crop models). We used the historical simulations for maize without 
irrigation from 1981 to 2010, at 0.5° spatial resolution. All models 
were driven by the same weather dataset AgMERRA or WFDEI.
GPCC with their default settings (with standard assumptions on 
growing seasons and fertilizer inputs). More detail on the experi‐
ment setup can be found in the Supplement of Müller et al. (2017). 
Following the same method of observed crop yield data, the simu‐
lated yield was first detrended and the crop yield change was cal‐
culated as the yield anomaly divided by the expected yield from 
their trend.

2.1.7 | Soil moisture data

The soil moisture dataset used is the European Space Agency 
Climate Change Initiative soil moisture (ESA CCI SM) v04.2 com‐
bined product (https://www.esa-soilmoisture-cci.org/). This satel‐
lite‐derived global soil moisture dataset is generated using active 
and passive microwave spaceborne instruments and the combined 
dataset of these two improves the spatio‐temporal coverage with 
more observation points (Dorigo et al., 2017). The dataset provides 
daily surface soil moisture with a spatial resolution of 0.25°, cover‐
ing the period from 1978 to 2016. Due to the limitation of micro‐
wave remote sensing, the soil moisture data represent only the thin 
topsoil layer, that is a few centimeters in depth (<5 cm) (Liu et al., 
2012). Because of the frequent gaps in the daily data, we averaged 
the daily data to monthly using the available data points within each 
month to mitigate the missing data issue (Dorigo et al., 2017). The 
resulting monthly data were extracted to each county to analyze 
the relationship between pregrowing season soil moisture and the 
excessive rainfall and extreme drought impacts on crop yield.

2.1.8 | Water storage data

The Gravity Recovery and Climate Experiment (GRACE) satellite mission, 
launched in 2002, collects measurements of the changes in Earth's grav‐
ity field, which can be used to derive the changes in the total land water 
storage (Swenson, 2012). The GRACE water storage data provide an in‐
tegrated sum of changes in all vertical water components (surface water, 
groundwater, soil moisture, etc.) (Tapley, Bettadpur, Ries, Thompson, & 
Watkins, 2004). The monthly GRACE land water storage dataset used 
in this study was obtained from https://grace.jpl.nasa.gov/data/monthly-
mass-grids/, produced by solutions of three differently institutions: 
GeoForschungsZentrum Potsdam (GFZ, version RL05.DSTvSCS1409), 
Center for Space Research (CSR, version RL05.DSTvSCS1409) at 
University of Texas at Austin, and Jet Propulsion Laboratory (JPL, version 
RL05.DSTvSCS1411). The land water storage is expressed as anomalies 
relative to the 2004–2009 time‐mean baseline. The data are available 
monthly from 2002 to 2017, at a spatial resolution of 1°. We used the 
average value of three solutions because the averaging can effectively 
reduce the noise in the data (Sakumura, Bettadpur, & Bruinsma, 2014). 
The water storage anomalies were extracted to each county to analyze 
the relationship between pregrowing season water storage and the ex‐
cessive rainfall and extreme drought impacts on crop yield.

2.2 | Define extreme climate conditions

Here, we used “standardized anomaly” (also known as standard score 
or z‐score) to define the degree to which climate departs from its 
“mean” state. Standardized anomaly can be calculated as the depar‐
ture of climate of a given year (yt) from its multiyear mean state (y), 
normalized by the standard deviation (σ).

(1)
y=

yt− ȳ

𝜎

ftp://prism.oregonstate.edu/
https://www.nass.usda.gov/Publications/AgCensus/2012/Online_Resources/Custom_Summaries/2012_land_use_practices_by_county.xlsx
https://www.nass.usda.gov/Publications/AgCensus/2012/Online_Resources/Custom_Summaries/2012_land_use_practices_by_county.xlsx
https://www.nass.usda.gov/Publications/AgCensus/2012/Online_Resources/Custom_Summaries/2012_land_use_practices_by_county.xlsx
http://stream.princeton.edu/POLARIS/PROPERTIES/
http://www.rdcep.org/research-projects/ggcmi
http://www.rdcep.org/research-projects/ggcmi
https://www.esa-soilmoisture-cci.org/
https://grace.jpl.nasa.gov/data/monthly-mass-grids/
https://grace.jpl.nasa.gov/data/monthly-mass-grids/
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We calculated standard anomaly of both growing season maximum 
temperature and total precipitation from 1981 to 2016 for each county, 
following Equation (1). Extreme drought (extreme dry) and excessive 
rainfall (extreme rainfall or extreme wet) conditions were defined as 
precipitation anomaly lower than −2σ and larger than +2.5σ, respec‐
tively (Figure S2a). The most extreme drought and rainfall conditions 
were defined as precipitation anomaly <−2.5σ and >+3.5σ, respectively. 
The uneven σ thresholds for extreme drought and extreme rainfall were 
chosen to ensure drought and excessive rainfall are equally represented 
in terms of rarity, because the precipitation distribution has a longer tail 
toward high precipitation. The extreme drought and extreme rainfall 
conditions defined this way account for roughly 1% of all county‐year 
samples (0.97% for extreme drought and 1.12% for extreme rainfall) 
during the study period (Figure S2a). Accordingly, moderate drought 
and moderate excessive rainfall conditions were defined as precipi‐
tation anomaly>−2σ and <2.5σ, respectively. Precipitation anomaly 
closer to zero is considered to be more like normal conditions (i.e., mean 
climate). Since this definition only considered precipitation, the identi‐
fied drought and excessive rainfall were referred to as meteorological  
events.

Similarly, extreme heat (>+2.5σ) and extreme cold (<−2σ) con‐
ditions were defined based on standard anomaly of the growing 
season maximum temperature. Alternatively, extreme dry and ex‐
treme wet conditions can be defined by a given percentage (e.g., 
the 1% head and tail) of all county‐year samples after sorted by 
their precipitation standard anomaly. Through this procedure, we 
were able to identify the county‐specific extreme drought and ex‐
treme rainfall years based on the local climate condition of each 
county. This ensures that the identified extreme years represent 
statistically significant climate departures relative to the local cli‐
matology at each county.

2.3 | Calculate intensity of daily precipitation
For each county, we calculated the mean and standard deviation (σ) 
of daily precipitation from 1981 to 2016 during the growing season 
period. With the mean and standard deviation calculated for each 
county, daily precipitation can be categorized to different intensi‐
ties based on its deviation to the mean amount. For example, nine 
intensity categories can be defined relative to the mean daily rainfall 
amount following the standard anomaly approach as: <0σ, 0−0.5σ, 
0.5−1σ, 1−1.5σ, 1.5−2σ, 2−2.5σ, 2.5−3σ, 3−3.5σ, and >3.5σ. The 
“>3.5σ” category represents the most intensive heavy rain. We cal‐
culated the contributions of each rainfall intensity to the total grow‐
ing season precipitation for each county and each year (Figure S3).

2.4 | Quantify extreme climate impacts on 
crop yield

By identifying the county‐specific extreme years, the impact of ex‐
treme climate year on crop yield for a given county can be quan‐
tified by comparing the crop yield of the extreme year with that 
expected from the county's long‐term yield trend (i.e., linear trend). 

Specifically, the yield difference between the extreme year and the 
expected yield (Yieldi), divided by the trend yield (Yieldtrend) gives 
the yield percentage change (Equation 2). This yield percentage 
change reflects the yield departure from their long‐term trend as a 
result of climate variability. Therefore, it can be used as a measure to 
quantify the extreme climate impact, by assuming that the crop yield 
departure under those extreme dry and wet conditions is attribut‐
able to extreme climate.

The crop yield percentage change can be calculated for each 
county from 1981 to 2016. After obtaining the yield percentage 
changes as well as their corresponding precipitation anomalies for 
each county, the average yield impacts of extreme climate (i.e., at 
the national level) can be obtained by aggregating all county‐year 
samples that experienced extreme conditions (with precipitation 
anomaly of <−2σ and >+2.5σ for extreme drought and extreme 
rainfall years, respectively) to a weighted average yield percent‐
age change (by county's harvest area). Also, the average crop 
yield response to precipitation spanning from extreme drought 
to extreme rainfall conditions can be obtained by aggregating 
county‐year samples that fall into the corresponding precipitation 
anomaly bins at an interval of 0.5σ (Figure 1a). The yield percent‐
age change for each bin is the weighted average value (by county's 
harvest area) of county‐year samples within that bin. Similarly, the 
average yield response to temperature (Figure S4), and the av‐
erage loss ratio across precipitation gradient (Figure 1b) can be 
obtained accordingly. The resulting crop yield response to maxi‐
mum temperature shown in Figure S4 closely resembles the non‐
linear temperature effects found in (Schlenker & Roberts, 2009), 
suggesting the robustness of our method. For individual county, 
the average extreme climate impact can be calculated as the av‐
erage yield percentage change over the identified extreme years, 
weighted by their harvest area.

2.5 | Compare observed yield response with 
simulated response from crop models

The observed crop yield percentage change (yield anomaly divided 
by expected yield of trend), harvest area, and bins of precipitation 
anomaly of each county were aggregated to 0.5° grid box to match 
the spatial resolution of crop model simulation. Specifically, if the 
center point of a county falls into a given 0.5° grid box, this county 
belongs to that grid box, so do their crop yield, harvest area, and 
precipitation anomaly bins. When one grid box contains more than 
one county, an area‐weighted averaged value of those counties was 
used for crop yield and precipitation (by harvest area of each county) 
at that grid box, while the sum was used for of harvest area at that 
grid box. The averaged responses of the observed and simulated 
crop yield were computed based on the 0.5 grid box, using the same 
area‐weighted aggregation approach as the observed county crop 
yield data.

(2)Yield percentage change=
(

Yieldi− Yieldtrend
)

∕ Yieldtrend×100%
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3  | RESULTS

3.1 | The impacts of extreme drought and excessive 
rainfall on maize yield

Figure 1a shows the maize yield response to growing season precipi‐
tation anomaly, ranging from normal to extreme dry (<−2σ) and ex‐
treme wet (>2.5σ) conditions (see Method for definitions), over 1981 
to 2006 in the United States. The maize yield percentage change is 
calculated as the detrended yield anomaly divided by the expected 

yield from the long‐term trend. The aggregated yield change from 
county‐year samples that experienced extreme dry and extreme wet 
conditions represents the impacts of extreme drought and excessive 
rainfall. The up to 5% positive yield anomaly observed under normal 
precipitation conditions was a result of favorable climate conditions 
for maize growth with minimal environmental stress. However, when 
precipitation deviated from normal toward drier and wetter condi‐
tions, the positive effect diminished and was replaced by yield losses 
that increased as extreme conditions intensify. The percentage of 
county samples exhibiting negative yield response also increased 

F I G U R E  1   Impacts of extreme drought and excessive rainfall on maize production in the United States from crop yield (a, c) and crop 
insurance loss data (b, d). (a) Maize yield response to growing season precipitation anomaly from 1981 to 2016. Each bar shows the yield 
change weighted by harvest area from county samples in the corresponding precipitation range. The percentages shown on top are the 
averaged impacts of extreme drought (<−2σ, red) and extreme rainfall (>2.5σ, blue) on maize yield. (b) Crop insurance loss ratio for maize 
from 1989 to 2016 caused by drought, heat, excessive rainfall, and cold weather along precipitation anomaly. (c) Temperature interactions 
in the extreme drought and excessive rainfall impacts. Extreme drought samples (Dry [all]) are separated into drought with (Dry + heat) 
and without extreme heat (Dry − heat). Excessive rainfall samples (Rain [all]) are separated into extreme wet with (Rain + cold) and without 
extreme cold (Rain − cold). The extreme heat (>+2.5σ) and extreme cold (<−2σ) conditions are defined based on standard anomaly of the 
growing season maximum temperature. The percentage of the separated sample to the total sample is denoted by n. (d) Crop insurance loss 
ratio caused by drought and excessive rainfall in different months during extreme dry and extreme wet years. Values reported on top are 
the maize growth stage and its percentage from crop progress report, the monthly climatology of precipitation and max temperature from 
1981 to 2016, weighted by harvest area. Error bars in panels a, c, and d denote the 95% confidence interval estimated from 1,000 times of 
bootstrap

(a) (b)

(c) (d)
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under more extreme conditions (Figure S2b). The extreme dry and 
extreme wet conditions, despite accounting for ~1% of county‐year 
samples each (Figure S2a), caused substantial damage, reducing 
maize yield on average by −32.2 ± 2.0% and −16.6 ± 2.7%, respec‐
tively, relative to their yield trend (Figure 1a). In particular, the most 
extreme rainfall (>3.5σ) caused yield reduction (−34.1 ± 7.9%) com‐
parable to that (−36.6 ± 8.0%) of the most extreme drought (<−2.5σ). 
Further analysis revealed that under extreme wet conditions, the 
growing season precipitation was dominated by the most intensive 
heavy rain (>+3.5σ, see method), which contributed ~30% of total 
precipitation, more than any other rainfall intensities (Figure S3). 
These heavy rain events and associated adverse weather (e.g., hail 
and wind, Table S1) could cause direct physical damage to crops.

The significant yield loss under extreme drought and extreme 
rainfall conditions is further supported by crop insurance loss data 
with specified cause of loss. Here, the insurance loss ratio is de‐
fined as the ratio of payments made on crop insurance policies to 
the total premium paid for crop insurance policies, with larger val‐
ues representing greater losses. The loss ratios for both “Drought” 
and “Excessive rainfall” increased significantly as precipitation 
departed from normal conditions (Figure 1b). Notably, under ex‐
treme conditions, the loss ratio for Excessive rainfall became even 
larger than Drought. In addition, the increase in loss ratios for 
“Heat” and “Cold weather” that were accompanied with drought 
and excessive rainfall revealed the close coupling of precipitation 
extremes and temperature.

Such interaction with temperature is particularly important for 
the extreme drought impact. Extreme drought coupled with extreme 
heat (temperature >2.5σ, 39% of extreme drought county‐year sam‐
ples) resulted in yield reduction (−37.2 ± 2.9%) much greater than that 
without extreme heat (−25.8 ± 2.6%) (Figure 1c). This is because high 
temperature not only exacerbates water deficiency through increas‐
ing atmospheric water demands, that is vapor pressure deficit (Lobell 
et al., 2013), but also adds additional heat stress that can greatly sup‐
press yield (Schlenker & Roberts, 2009) (Figure S4). Unlike drought, 
the damage of extreme rainfall seemed to primarily arise from exces‐
sive water instead of temperature interaction, since there was no clear 
evidence for a greater yield reduction of extreme rainfall coupled with 
extreme cold (temperature <−2σ, 8% of extreme rainfall county‐year 
samples) than that without extreme cold (Figure 1c).

Drought and excessive rainfall have varying impacts depending 
on the time of their occurrence relative to the crop growth stage 
(Daryanto, Wang, & Jacinthe, 2016; Evans & Fausey, 1999; Kanwar, 
Baker, & Mukhtar, 1988). Crop insurance data revealed that for ex‐
treme drought impact, July stood out as the month with the largest 
loss ratio (~1.5) (Figure 1d), because it coincided with a critical stage 
of grain filling (85% of maize in silking stage) and the hottest month 
of the growing season (29.6°C). These results indicate that a drought 
during the reproductive stage of maize, co‐occurring with heat, can 
cause the most damage. For the excessive rainfall impact, the larg‐
est loss ratio was found in June (1.08) and to a less extent in July 
(0.95) (Figure 1d). June corresponded to the early vegetative stage 
when most of maize was either planted (48%) or emerged (50%), 

which was also the wettest month of the growing season (110 mm), 
whereas July corresponded to the reproductive stage (silking, 85%). 
Field evidence suggests that both stages are susceptible to excessive 
moisture, especially the former period (Carter, Halverson, Rogers, & 
Musgrave, 1990; Kanwar, 1988).

3.2 | The regional patterns of extreme drought and 
excessive rainfall impacts

The impacts of extreme drought and excessive rainfall varied con‐
siderably across space (Figure 2a,b). Extreme drought led to consist‐
ent negative yield anomalies in most regions (in 94% of county‐year 
samples). The 12 major maize‐producing states in the United States 
(Figure 2c–n) that produced 88% of maize over the last 10 years 
were severely affected by extreme drought, with yield reduction 
ranging from −45.7 ± 3.2% (Illinois) to −12.2 ± 5.9% (Nebraska). 
Irrigated states (e.g., Nebraska, Kansas, Oklahoma, and Texas) gener‐
ally were less affected by extreme drought than nonirrigation states 
(e.g., Illinois, Wisconsin, and Missouri, Figure S5).

The impact of excessive rainfall was more spatially variable and the 
yield response could either be negative or positive depending on the 
region (Figure 2b). Negative yield anomaly was observed for only 53% 
of county‐year samples. When including only county samples that ex‐
hibited negative yield anomaly, the averaged excessive rainfall impact 
would become much larger (−30.0%, Figure S6) compared to that in‐
cluding all counties (−16.6%, shown in Figure 1). This implies that the 
positive impact in some counties could cancel out the negative impact 
of other counties, leading to a reduced impact when averaged at re‐
gional or national scales. Spatially, the most negatively affected areas 
were northern states (in the Midwest), including Iowa (−32.2 ± 4.1%), 
Minnesota (−35.7 ± 9.7%), and Missouri (−31.3 ± 3.7%), where maize 
yield decrease could even exceed that caused by extreme drought. 
In contrast, states in the southern US still showed positive yield even 
under extreme rainfall conditions. The similar mixture of negative and 
positive yield responses was reported in China (Chen, Liang, Liang, Liu, 
& Xie, 2019; Chen, Liang, Liu, Jiang, & Xie, 2018), suggesting the com‐
plexity of excessive rainfall whose impact on crop yield varies in sign.

3.3 | Comparing extreme climate impacts between 
observations and simulations

The negative yield response to drought was well reproduced by the 
ensemble median of 12 AgMIP global crop models (Figure 3). This 
well‐reproduced drought impact was partially contributed by mod‐
els’ good performance in simulating the maize yield response to tem‐
perature (Figure S9) because of the high occurrence of drought and 
heat, as well as the strong direct relationship between drought stress 
and biomass (van der Velde et al., 2012). However, most crop models 
cannot capture the observed nonlinear yield response to precipita‐
tion and the yield reduction under excessive rainfall; instead, they 
showed either a reduced yield increase or increasingly higher yield 
with precipitation even under extreme wet conditions (Figure S7), 
and underestimated the percentage of negative yield response than 
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observations (Figure S10). These results were robust to the forcing 
data used to drive the model simulations (alternative forcing WFDEI.
GPCC results are shown in Figure S8). Only a few models (CLM‐
Crop, pDSSAT, PEGASUS) showed yield decrease under the most 
extreme rainfall but with a much smaller magnitude. The inability of 
current models to simulate maize yield damage by excessive rainfall 
may lead to yield overestimation under wet conditions and thus bias 
models’ future predictions.

4  | DISCUSSION

4.1 | The large‐scale explanatory factors for the 
regionally varying impacts

The regionally varying responses of the extreme drought  and ex‐
cessive rainfall impacts could be explained by large‐scale factors  

related to mean climate conditions (growing season mean pre‐
cipitation and temperature), soil (drainage characteristics) (Trnka 
et al., 2014), and agricultural practices (maize harvest area) 
(Figure 4). The spatial variation of the extreme drought impact 
across states was primarily regulated by precipitation (r = −0.67, 
p < 0.05, Figure 4a) and to a less extent by temperature (r = −0.17, 
p > 0.05, Figure 4b). Drought produced a much larger yield loss in 
wet areas than in dry areas, while there was only a weak tendency 
toward greater yield loss in hotter regions. The lack of impact in 
very dry areas is because maize is irrigated in those regions and 
thus less sensitive to rainfall deficiency. As expected, the drought 
impact decreased with a higher irrigation fraction (Figure S12). 
Since wet areas are typically rainfed, the impact was larger there 
due to the susceptibility of rainfed maize to rainfall variability, and 
such variability was particularly large under wet climate than dry 
climate (Figure S13).

F I G U R E  2   The impacts of extreme drought and excessive rainfall on maize yield from 1981 to 2016 at the county level (a, b) and in major 
maize production states (c–n). The extreme climate impact for any individual county on the map is the yield percentage change averaged 
from extreme years during the period, weighted by their harvest area (see Method for definitions). The bar chart in c–n is the same as Figure 
1a but for different states

(a)
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For excessive rainfall impact, temperature played a more rele‐
vant role (r = −0.34, p < 0.05, Figure 4f) than precipitation (r = −0.14, 
p > 0.05, Figure 4e). Excessive rainfall is more likely to cause dam‐
age in cold states while benefiting the crop in warm states. Since 
evaporation is much slower in cold states than in warm states, the 

excessive rain water in cold states is more likely to cause waterlog‐
ging (flooding/ponding/saturated soils) over an extended period that 
harms crop growth. However, high temperature in warm states could 
alleviate such adverse effects and make excessive rainfall beneficial 
to crops through fulfilling their water demand and mitigating heat 

F I G U R E  3   Maize yield response to 
precipitation anomaly from simulations 
of 12 global crop models participated in 
the AgMIP (green solid line and shaded 
area) compared with observed response 
(black solid line). Green solid line shows 
the multimodel median response and 
the shaded area shows the models 
interquartile range. The AgMIP global 
crop model data are from the historical 
simulations of 1981 to 2010 without 
irrigation, driven by AgMERRA with 
default setting. Same figure for individual 
model response is shown in Figure S7. 
Same figure for simulations driven by 
WFDEI.GPCC is shown in Figure S8

F I G U R E  4   The relationship of the large‐scale climatic, edaphic, and agricultural factors with the (a–d) extreme drought and (e–h) 
excessive rainfall impacts on maize yield across states. Each dot represents the averaged impact of extreme drought or excessive rainfall 
in one state. Precipitation and temperature are the growing season mean climate from 1981 to 2016 of each state, weighted by harvest 
area. Soil saturated hydraulic conductivity is the weighted value up to depth of 30 cm. Harvest area of each state is the averaged county 
harvest area from 1981 to 2016. The solid line is the best‐fit line and shaded area is the 95% bootstrap confidence interval (n = 1,000). R is 
the correlation coefficient, with an asterisk denoting significance at 95%. Same figure but at the county level is provided in Figure S11 which 
showed qualitative similar results

(a) (b) (c) (d)

(e) (f) (g) (h)
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stress. We only observed a weak tendency of larger yield loss in wet‐
ter regions than in drier regions (Figure 4e).

Soil was another key factor in determining the excessive rain‐
fall impact (r = 0.34, p < 0.05, Figure 4g) but less important for the 
extreme drought impact (Figure 4c). Large yield loss was found in 
states (e.g., Iowa, Minnesota, and Missouri) with poor‐drained soil 
(i.e., low saturated hydraulic conductivity, Ksat, and high clay frac‐
tion), while states with well‐drained soil (i.e., high Ksat, and low clay 
fraction) were more likely to show positive yield response (Figure 4g 
and Figure S14). Hence, the northern states most affected by ex‐
cessive rainfall are due to the combined effects of cool climate and 
low‐efficient drainage of soil. In contrast, southern states, even with 
poorly drained soil (e.g., Texas) were not affected negatively by ex‐
treme rainfall presumably because of the mitigation effect of high 
temperature.

In addition to the effect of soil properties on drainage, applica‐
tion of artificial drainage (i.e., tile drainage) is deemed to be important 
(Sugg, 2007) because it could mitigate the excessive rainfall induced 
crop yield loss. But our analysis showed that tile drainage was not a 
major factor determining the regional variations in excessive rainfall 
impact. In fact, there was a negative relationship between the percent‐
age of tile drainage and the excessive rainfall impact (r = −0.48, Figure 
S15a), where greater yield loss occurred in states with high percentage 
of tile drainage (e.g., Iowa). This can be explained by the fact that states 
with poorly drained soil tended to build more tile drainage (r = −0.20, 
Figure S15b), otherwise, the yield loss would be even worse without 
additional artificial drainage. However, for states with a small percent‐
age of tile drainage, the yield loss by excessive rainfall could either be 
large because of lack of artificial drainage (e.g., Missouri) or nonexis‐
tent because of well‐drained soils (e.g., Colorado). This indicates that 
with confounding effects from soil property and climate, the expected 
effect of tile drainage could not be easily revealed in the data.

Agricultural practices could also play a role. It seemed that bigger 
maize production states suffered more from climate extremes than 
smaller production states (Figure 4d,h). This might be due to bigger 
maize production states with a larger harvest area also had a higher 
seeding density especially in recent decades (Figure S16), which may 
lead to a greater yield sensitivity to drought (Lobell et al., 2014). 
Therefore, a greater yield loss is expected to occur when these re‐
gions are hit by extreme drought. However, the causes for the larger 
impact of excessive rainfall in bigger maize production states are not 
clear and require further investigation.

4.2 | Mechanisms and modeling of excessive 
rainfall impact

In terms of mechanisms of yield loss, excessive rainfall reduces crop 
yield through direct physical damage and other processes associ‐
ated with excessive soil water (as a result of waterlogging, pond‐
ing, flooding) that are detrimental to crops, especially under poor 
drainage conditions (Figure 5). The yield loss by excessive mois‐
ture can develop from: (a) root damage or restricted root develop‐
ment that affects plant water and nutrient uptake (Parent, Capelli, 

Berger, Crèvecoeur, & Dat, 2008; Wenkert et al., 1981); (b) nitro‐
gen deficiency due to leaching or denitrification (Jabloun, Schelde, 
Tao, & Olesen, 2015) and the development of toxic substances, 
both caused by lack of oxygen in the soil (Evans & Fausey, 1999; 
Kanwar et al., 1988); (c) delayed planting/harvest due to poor traf‐
ficability and damage to young plants (Urban, Roberts, Schlenker, & 
Lobell, 2015) (e.g., seed germination and emergence). Despite these 
direct effects of excess water, crop can also be harmed by the (d) 
adverse weather events accompanied with excessive rainfall such 
as heavy rain (Table S1), hail (Schlie, Wuebbles, Stevens, Trapp, & 
Jewett, 2019), and wind (Botzen, Bouwer, & Bergh, 2010) that result 
in lodging; and (e) increased susceptibility to disease, insects, and 
pathogens (Hardjoamidjojo et al., 1982; van der Velde et al., 2012). 
How well crop models simulate the crop yield impact of excessive 
rainfall depends on the accuracy of representation of these pro‐
cesses within the models and the general capability in simulating 
soil hydrology (e.g., soil water dynamics and water table depth) and 
biogeochemistry (e.g., soil nitrogen dynamics). The underestimated 
excessive rainfall loss by crop models in Figure 3 probably reflects 
the lack of representation of relevant processes in the model to ac‐
count for stresses related to excessive moisture (Rosenzweig et al., 
2002; van der Velde et al., 2012).

While currently very few models include complete representa‐
tion of these excessive soil water processes (Shaw, Meyer, McNeill, 
& Tyerman, 2013), there have been studies demonstrating that the 
crop yield response to excess water can be effectively improved by 
implementing empirical relationship of varying complexities, such 
as the stress‐day approach (Kanwar, 1988), damage function of root 
growth (Rosenzweig et al., 2002), or the three‐stage empirical rep‐
resentation of waterlogging (Shaw & Meyer, 2015). The continuous 
development of field‐level agronomic crop models against experi‐
mental data also paves the way for modeling these new processes, 
and the recent efforts to combine the strengths of agronomic crop 
models and global‐scale ecosystem/land surface models under a 
unified model framework could potentially benefit simulation of ex‐
cessive rainfall impact through improved soil hydrology and photo‐
synthesis processes (Peng et al., 2018). In addition, statistical crop 
models, as an independent tool to process‐based crop models, are 
also useful to assess the excessive rainfall impact (Lobell & Asseng, 
2017; Urban et al., 2015), although their ability depends on the spe‐
cific model configuration and training data (Li et al., 2019).

4.3 | Challenges in detection and attribution of 
excessive rainfall impact

This study provides, to our knowledge, the first assessment of the 
relative impacts of excessive rainfall and extreme drought on maize 
yield in the United States. It is still challenging to quantify the im‐
pact of excessive rainfall on crop yield, especially under nonextreme 
conditions, because crop yield is an outcome of various biotic and 
abiotic processes integrated during the growing season. Attribution 
of excessive rainfall impact on crop yield can be complicated by 
other confounding factors. Focusing on extreme conditions (e.g., 
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extreme wet or dry years) when crop yield significantly departs from 
its trend can improve detection and attribution of extreme climate 
impacts. However, doing so also makes the quantification inherently 
dependent on the definitions and occurrence of such events. A more 
“strict” definition of extreme event gave a larger impact on maize 
yield (Figure S6), because the impact is strongly dependent on the 
severity of extreme events. The anomalous dry years such as 1988 
and 2012, and wet year 1993 which caused exceptionally large dam‐
age, also have strong contribution to the quantified negative impacts 
of extreme drought and excessive rainfall. Since the occurrence of 
such events was rare in nature and highly variable across space 
(Figure S17) and time (Figure S18), their impacts could be influenced 
by the spatial and temporal domain in which they were quantified 
(Figure 2), especially for excessive rainfall as it could have both posi‐
tive and negative impacts on crops. Despite such dependency, our 
findings regarding the relationships between the excessive rainfall 
impacts that varied regionally and their climatic, edaphic, and agri‐
cultural factors in Figure 4 are robust to certain extreme years such 
as 1993 (Figure S19).

Although the impact of excessive rainfall is most prominent 
under extreme wet conditions, it does not mean its impact is limited 

to those extreme conditions. Excessive rainfall can have a wide 
range of influence on crop yield even under nonextreme conditions. 
This was evidenced by the reduced maize yield under moderate wet 
conditions relative to normal conditions (Figure 1a) and the presence 
of excessive rainfall‐induced crop loss even under normal conditions 
from the insurance data (Figure 1b). In contrast to the strong and 
long‐lasting adverse impact of drought that usually leads to a signifi‐
cant county‐level yield drop, the adverse impact of excessive rainfall 
under nonextreme cases is often realized as lower‐than‐expected 
yield instead of a large yield departure. This weaker yield signal is 
partially because the occurrence of excessive rainfall and its impact 
are more localized than drought, involving local factors such as soil 
properties (Lobell & Asseng, 2017), topography, and water table 
depth. Excessive rainfall loss affected more counties than drought 
according to insurance data, but for each case, the affected area and 
the damage caused, on average, were smaller than that of drought 
(Figure S1). Such localized features make the excessive rainfall loss 
recorded in the crop insurance data (which is aggregated from in‐
dividual loss claim from farmers), not necessarily reflected in the 
county‐level crop yield data because the signal, if not large enough, 
gets diluted in the average yield of the whole county. Similarly, those 

F I G U R E  5   Schematic diagram of the main processes by which excessive rainfall affects crop growth and yield
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short‐duration excessive rainfall events that are not large enough to 
create a strong signal in growing season, could be underrepresented 
in our framework, and their impacts on crop yield, therefore, can be 
potentially underestimated. Nevertheless, crop insurance loss data 
that include all conditions of crop yield loss (i.e., from both nonex‐
treme and extreme climate conditions) can provide a more complete 
picture of the extent and degree of excessive rainfall impact, to com‐
plement the crop yield‐based analysis. However, uncertainties exist 
in the crop insurance loss data, especially for the cause of loss.

4.4 | Pregrowing season effects of soil 
water storage

Our analysis is primarily based on precipitation during growing 
season, it should be emphasized that water storage of soil pre‐
ceding the growing season may also play a role in the impacts of 
excessive rainfall and extreme drought on crops. By analyzing sat‐
ellite‐derived ESA soil moisture and GRACE water storage data 
(Methods), we found that higher pregrowing season soil moisture 
and water storage exacerbated the yield loss by excessive rainfall 
while it alleviated the loss by extreme drought in the subsequent 
growing season (Figures S20 and S21). The relationship was strong 
for the impact of excessive rainfall and appeared in more pregrow‐
ing season months (from January to April) than for the impact of 
extreme drought (only in April). These linkages indicate that the 
impacts of excessive rainfall and extreme drought reflect the dy‐
namic interactions among precipitation, soil water dynamics, and 
crop response.

Our results reveal that excessive rainfall, which has been 
largely under‐studied previously, can adversely affect maize yield 
as much as extreme drought, especially at regional scale. It is not 
only the major cause of crop damage currently in the United States 
for maize, but also has broad impacts for other staple crops (soy‐
bean and wheat, Figure S1), and will play a more important role in 
the future given the projected significant increase of extreme rain‐
fall (Prein et al., 2017). All these call for our improved understand‐
ing and modeling of excessive rainfall impact, which is pivotal not 
only to provide accurate predictions of climate change impacts on 
agriculture but also to develop effective management and adapta‐
tion measures (e.g., drainage or levee system, cultivars (Mäkinen 
et al., 2018)) to mitigate the crop yield loss.
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