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Abstract
Human pluripotent stem cells (hPSCs) are important resources for cell-based
therapies and pharmaceutical applications. In order to realize the potential of
hPSCs, it is critical to develop suitable technologies required for specific
applications. Most hPSC technologies depend on cell culture, and are critically
influenced by culture medium composition, extracellular matrices, handling
methods, and culture platforms. This review summarizes the major technological
advances in hPSC culture, and highlights the opportunities and challenges in
future therapeutic applications.
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Core tip: This review summarizes recent developments in cell culture systems for human
pluripotent stem cells, including signal transduction requirements at different
pluripotency stages, advances in extracellular matrices and handling methods,
establishment of chemically defined conditions, and various cell culture platforms for
specific purposes.

Citation: Liu W, Deng C, Godoy-Parejo C, Zhang Y, Chen G. Developments in cell culture
systems for human pluripotent stem cells. World J Stem Cells 2019; 11(11): 968-981

WJSC https://www.wjgnet.com November 26, 2019 Volume 11 Issue 11968

https://www.wjgnet.com
https://dx.doi.org/10.4252/wjsc.v11.i11.968
http://orcid.org/0000-0001-6997-2412
http://orcid.org/0000-0001-6551-9741
http://orcid.org/0000-0002-4324-3593
http://orcid.org/0000-0001-5220-0491
http://orcid.org/0000-0003-0921-8244
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
mailto:guokaichen@umac.mo


Manuscript source: Invited
manuscript

Received: March 26, 2019
Peer-review started: March 28, 2019
First decision: April 16, 2019
Revised: August 21, 2019
Accepted: August 27, 2019
Article in press: August 27, 2019
Published  online:  November  26,
2019

P-Reviewer: Grawish ME, Tanabe S
S-Editor: Ma RY
L-Editor: Wang TQ
E-Editor: Wu YXJ

URL: https://www.wjgnet.com/1948-0210/full/v11/i11/968.htm
DOI: https://dx.doi.org/10.4252/wjsc.v11.i11.968

INTRODUCTION
Human pluripotent stem cells (hPSCs), including mainly human embryonic stem cells
(hESCs) and induced pluripotent stem cells (hiPSCs), have the capacity to differentiate
to all cell types in the human body[1-4]. Since they were first derived in 1998, hESCs
have provided an unparalleled model to understand human embryogenesis, and has
sparked a revolution in regenerative medicine[1,5]. Based on hESC culture conditions,
hiPSCs were first derived in 2007, which again created an unprecedented opportunity
to  generate  patient-specific  hPSCs  for  disease  modeling  and  therapeutic
applications[3,4].  Because  of  their  enormous potential,  hPSCs have  garnered vast
interest in both basic research and clinical applications[6]. Unlike somatic cell types,
pluripotent stem cells only transiently exist in the first few days of embryogenesis,
and there is no natural environment that is capable of maintaining pluripotency in
vivo for extended periods of time, so hPSCs in the lab are all artifacts of in vitro cell
culture conditions[1]. It is commonly recognized that cell culture quality is a major
limiting  factor  of  hPSC applications.  In  the  past  20  years,  cell  culture  is  a  main
research focus in the hPSC field, and many technological improvements have been
made to realize the potential of hPSCs.

In order to maintain their pluripotency, hPSCs require proper combinations of
extrinsic signal stimuli to establish a stem cell niche in cell culture systems[7]. Suitable
methods and culture platforms are required to sustain cell  survival and promote
specific functions in various applications. hPSCs are traditionally cultured as a 2-
dimensional (2D) monolayer on mouse embryonic fibroblast feeder cells (MEFs) in
medium supplemented with either fetal bovine serum (FBS) or components extracted
from serum[1,2]. This traditional culture is sufficient for hPSC maintenance and general
characterization but cannot satisfy the needs of numerous potential applications, such
as cell  therapy and gene targeting. At the same time, new knowledge from basic
research  also  leads  to  new  questions  and  challenges  for  further  technology
development in cell culture[8-10]. This review will discuss five areas in hPSC culture
development that includes: (1) Stage-specific signaling requirements; (2) Essential
extracellular matrix; (3) Handling methods; (4) Defined culture composition; and (5)
Culture platforms (Figure 1).

STAGE-SPECIFIC SIGNALING REQUIREMENTS FOR HPSC
PLURIPOTENCY
After almost four decades of research, people have realized that mammalian PSCs
could be maintained at distinctive developmental stages. hPSCs at each stage require
a specific and different combination of growth factor stimulations. Three stages of
pluripotency have been reported in hPSCs, including primed, naïve, and extended
pluripotency. However, most hPSCs are derived and maintained as primed PSCs.

The pluripotency stages are defined according to the differentiation potential and
developmental  timing  during  mouse  embryogenesis.  In  mouse  embryogenesis,
primed ESCs are derived from post-implantation epiblasts[11], and naïve ESCs come
from the inner cell  mass of  preimplantation blastocysts[12,13],  both of  which show
limited ability to contribute to the extraembryonic placental tissues in vivo. Recently,
extended pluripotent stem cells (EPSCs) have been reported with extended ability to
contribute to both extraembryonic and embryonic tissues[14,15].  Human and mouse
PSCs share similar growth factor signal stimulations that are required to maintain
PSCs at each specific stage. The hPSC pluripotency stages are determined according
to signal requirements and corresponding gene expression.

Primed ESC stage - common hESC culture
Thomson et al[1] first established hESCs from the inner cell mass (ICM) of blastocysts in
MEF  feeder  cell  culture  with  FBS.  In  the  following  20  years,  researchers  have
endeavored  to  understand  the  essential  signals  from  FBS  and  feeder  cells  that
promote pluripotency (Table 1). Many cell culture systems have been established to
maintain hESCs. FGF, TGF-β family, and insulin master the three essential signaling
pathways for hPSC survival and pluripotency, and they have been combined together
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Figure 1

Figure 1  Five areas in human pluripotent stem cell culture development. hPSC: Human pluripotent stem cell.

as the most common extrinsic stimuli to derive and maintain hESCs and hiPSCs[16-18].
FGF family members, with FGF2 as the main effector, activate the ERK pathway to
promote cell survival, proliferation, and pluripotency[19-21]. TGF-β family members,
including TGF-β, Activin, and Nodal, induce SMAD2/3-dependent transcription to
sustain pluripotency[16,17,22].  Insulin is a promiscuous factor present in most hESC
media, and is required for cell survival, metabolism, and pluripotency[17,18]. Insulin can
be replaced by insulin-like growth factor (IGF),  which activates the IGF receptor
pathway to support hESCs[23].  Based on the hESC culture conditions, Tesar et al[11]

derived primed mouse ESCs (mESCs) from post-implantation epiblasts, which are
also called mouse epiblast stem cells (mEpiSCs). These primed mESCs exhibit similar
growth factor preference as hESCs. If without specification, hESC culture condition
usually refers to conditions that can sustain primed hPSCs and primed mPSCs.

In addition to the growth factors ruled by the three mentioned pathways, other
signaling pathways are also reported to support pluripotency. For example, FLT3,
heregulin, heparin, heparan sulfate, S1P, and PDGF promote hESC pluripotency, and
all  are found to promote ERK pathway activation[24-29].  Beneficial  effects  are also
observed with other factors such as pipecolic acid and GABA, but their molecular
mechanisms remain unknown[30].

Besides the beneficial factors, some growth factor pathways need to be suppressed
to maintain primed pluripotency in hESCs. Exogenous BMP signal from serum or
serum products leads to the exit of self-renewal[31]. The inhibition of BMP pathway
promotes hESC pluripotency even without addition of TGF-β in medium containing
knockout serum replacement (KOSR)[20]. At the same time, WNT inhibition is also
beneficial for cell pluripotency, while WNT activation leads to cell differentiation[32].
Multiple groups reported earlier that hESC pluripotency was promoted by WNT
pathway activators, such as WNT3A, LiCl,  and BIO[22,30,33],  but those observations
could  be  artifacts  from  differential  culture  background,  coming  from  different
medium composition. Presently, WNT activators are usually used to induce hPSC
differentiation to mesoderm or neural crest lineages[34-36].

Based on the knowledge of hESC culture conditions, various primed stage hPSCs
have  been  derived  from different  sources.  In  addition  to  the  inner  cell  mass  of
embryos[1], hESCs are also derived from a single cell of an 8-cell blastomere without
embryo destruction[37]. In recent years, patient-specific nuclear transfer-ESCs (hNT-
ESCs) have been created through somatic cell nuclear transfer (SCNT) to caffeine-
treated oocytes[38]. At the same time, hiPSCs are generated directly from somatic cells
through somatic reprogramming by defined factors[3,4]. No matter the sources, the
hPSCs derived under hESC conditions always reflect characteristics that resemble
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primed mouse ESCs.

Naïve hPSC stage
Immediately after the derivation of hESCs, researchers noticed that hESCs required a
different growth factor regulation from preimplantation blastocyst-derived mESCs[39].
Smith  and  colleagues  show  that  mouse  ESCs  can  be  maintained  by  leukemia
inhibitory factor  (LIF)  in media containing FBS,  by LIF and BMP4 in serum-free
media, or by the dual inhibition of MEK and GSK3 (2i) in serum-free cultures[40-42].
These cells are called naïve mESCs in contrast with primed mESCs, because the naïve
mESCs represent an earlier developmental stage. The naïve mESC conditions cannot
be  used  to  maintain  primed  hPSCs  and  mESCs.  Examples  include  BMP4,  ERK
inhibitor, and GSK3 inhibitor, all of which induce the differentiation of primed hPSCs.

Naïve mESCs contribute to blastocyst chimeras more effectively, demonstrating a
unique epigenetic signature with genome-wide DNA hypomethylation, and with the
silent-X chromosome reactivated in female cells[43]. Compared to primed mESCs, naïve
mESCs exhibit more genomic consistency and differentiation potentials. Naïve hPSCs
could presumably gain similar  advantages,  yet  hPSC pluripotency could not  be
maintained by mouse naïve conditions. It is reported that key genes such as ESRRB,
KLF2, and BMP4 are not expressed in human naïve epiblasts[44]. By overexpressing
KLF4, naïve hPSCs can be maintained under mouse 2i conditions with an additional
PKA inhibitor[45].  This suggests that additional signal modulation is  necessary to
maintain hPSCs at the naïve stage.

In  the  past  5  years,  major  efforts  have  been  devoted  to  developing  culture
conditions to maintain naïve hESCs. Six combinations of extrinsic stimuli are reported
to maintain naïve hPSC, which are summarized in Table 2[46-51].  Similar to mouse
culture, all naïve conditions require MEK and GSK3 inhibitors (2i), and LIF is applied
in five of the six media. All the conditions include additional supplements besides
base medium, such as KOSR, B27, N2, and TeSR1 supplements[52]. Interestingly, four
conditions also contain FGF2 that is not required in mESC culture. At the same time,
various  additional  small  chemicals  are  used  to  modulate  pathways,  such  as
LCK/SRC, Raf, FGFR, HDAC, and PKC. These additional factors help induce gene
expression that are beneficial  to naïve pluripotency. Currently,  there remains no
consensus concerning which pathways are essential for the maintenance of naïve
hPSCs. It is conceivable that a more unified culture system will be developed in the
near future.

It is important to point out that naïve pluripotency requires different maintenance
signals, which sometimes have opposite effects on primed hPSCs. For example, the
FGF and ERK pathway is inhibitory to naïve pluripotency, while it also promotes
primed pluripotency.  At  the  same time,  BMP4 and WNT signals  promote  naïve
hPSCs, but induce differentiation of primed hPSCs. Such phenomena demonstrate
that hPSCs at each stage require distinctive signals for exiting pluripotency as well as
for cell fate determination.

Extended pluripotency
Recently, two new mouse cell culture conditions have been reported to sustain ESCs
with extended pluripotency. These cells can contribute to not only embryonic, but also
extraembryonic lineages, giving them the name of extended pluripotent stem cells
(EPSCs)[14,15]. Surprisingly, these two conditions only share GSK3 inhibition. Deng and
colleagues showed that mouse EPSCs are maintained by the EPS-LCDM medium,
which contains the combination of LIF, CHIR99021 (GSK inhibitor), dimethindene
maleate (M2 muscarinic receptor inhibitor), and minocycline hydrochloride (PARP
inhibitor)[15].  With the help of  WNT inhibitor  (IWR-endo-1)  and ROCK inhibitor
(Y27632), EPS-LCDM can be used to maintain human EPSCs. In contrast, Liu and
colleagues reported a different formula to maintain EPSCs, which includes inhibitors
of various pathways including MEK, GSK3, p38, JNK, SRC, and Tankyrase[14]. More
work is necessary to determine whether the two EPSCs are at similar developmental
stages, and what central regulation is shared by these two conditions.

Naïve hPSC and hEPSC cultures allow better cell survival after individualization
than primed hPSCs, which is beneficial for applications such as gene targeting and
expansion.  They  also  provide  alternative  model  systems  to  understand  human
embryogenesis, and more studies are needed to explore their potential. However,
currently  most  studies  and  applications  use  primed  hESC  conditions,  so  the
remainder of this review will focus on the technology development related to primed
hPSCs.

CELL ADHESION FOR CELL SURVIVAL AND EXPANSION
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In order to maintain hPSC pluripotency, a stem cell niche requires not only growth
factor signals but also cell adhesion. Without the support of exogenous adhesion
proteins,  hPSCs  either  die  or  differentiate[17,53].  In  original  hESC derivation,  cell
adhesion signals are provided by MEF feeder cells and their secreted extracellular
matrix (ECM)[1]. Matrigel was later found sufficient to support hESC survival and self-
renewal without feeder cells[53]. Matrigel is isolated from mouse Engelbreth-Holm-
Swarm teratocarcinoma cells, so it is not ideal for hPSCs that have applications in
clinical therapies[54,55]. The establishment of feeder-free culture permits the possibility
to  optimize  ECM  and  medium  composition  in  parallel,  and  greatly  accelerates
technology development.

Matrigel is a mixture of mainly laminin and collagen, which can activate integrin
signaling.  Various  integrin-activating  ECM  proteins  and  their  recombinant
derivatives can support hPSCs, which include laminin, vitronectin, fibronectin, and
inter-α-inhibitor[33,56-59].  Recombinant  vitronectin  and  laminin  domains  can  be
produced in bacteria or in a cell free system, and they are becoming popular choices
for cell culture that needs defined recombinant ECM components[17,56,59].

Besides cell-ECM interaction, cell-cell interaction mediated by E-cadherin is another
key component of hPSC niche. E-cadherins facilitate hPSC expansion in the form of
colonies[60]. Recombinant E-cadherin is produced as a fusion protein that contains N-
terminal E-cadherin and C-terminal IgG-Fc domains.  This protein sustains hPSC
survival and self-renewal in the absence of integrin-stimulating ECM[61].  When E-
Cadherin and laminin are combined to create an artificial matrix, the clonal expansion
of hPSCs is significantly improved in comparison to single-component matrices[62].
These data suggest that integrin- and E-cadherin-mediated adhesions provide the
principle ECM cues in hPSC niche.

Based on hPSC niche composition, specific peptides have been identified to sustain
hPSC culture[10,63]. The most popular peptides are RGD domain-based peptides, which
activate  integrin  pathways.  These  peptides  are  sufficient  for  hPSC survival  and
expansion, and the efficiency is similar to that of matrigel and vitronectin[63,64]. Such
peptides can be chemically produced in large scale, and are very attractive materials
for tissue engineering and technology development. The recombinant proteins and
peptides  can  be  conjugated  to  various  matrices  to  construct  a  synthetic  ECM
environment. With improved hPSC handling methods, hPSCs are more tolerant to
various materials, which greatly expand the choices of ECM materials for different
culture platforms and applications.

HANDLING METHODS
Compared to naïve hPSCs and hEPSCs, primed hPSCs are more prone to cell death
after  dissociation.  Most  hPSC culture  manipulations  involve cell  dissociation or
individualization.  Efforts have been focused on promoting cell  survival  in hPSC
handling methods that are essential for various applications.

In regular maintenance, hPSCs proliferate quickly and are usually passaged every
4-7 d. Traditionally, hPSCs are manually split,  or dissociated with collagenase or
dispase, and cells are collected as clumps[1,2]. Collagenase and dispase cause minimal
disruption of  hPSC niches,  and cells  survive well  as  aggregates of  uneven sizes.
Unfortunately, such a dissociation method is not suitable for gene targeting or other
experiments that require individualized cells. After hPSCs are individualized with
trypsin/EDTA[65], most cells die within 24 h after passaging, and fewer than 1% of
hPSCs can survive clonally without exogenous intervention. After individualization,
the  loss  of  cell  adhesion  activates  the  Rho-associated  protein  kinase  (ROCK)
/Actinomyosin axis that leads to increased actin-myosin contractility and cell death.
Cell survival of individualized cells is significantly improved by the inhibition of
ROCK, myosin heavy chain (MYH), and actin proteins[66,67]. Vitamin B3 is sometimes
used in hPSC expansion, and it was recently found that nicotinamide promotes cell
survival by inhibiting ROCK activity[68]. Interestingly, even though caspase cascades
are  activated  by  dissociation,  caspase  inhibitors  could  not  rescue  cell  survival.
Researchers typically use ROCK inhibitors and the MYH inhibitor blebbistatin to
facilitate single cell clonal formation and expansion[66,67,69].

Dissociation reagents are also important for the cell survival after dissociation.
TrypLE and accutase are recombinant proteases that have gentler effects on cells than
traditional trypsin/EDTA, which greatly improves cell survival after dissociation,
whether or not ROCK inhibitors are present[70,71]. hPSCs can also be dissociated as
small  aggregates with enzyme-free EDTA/PBS or citric  acid solutions[72,73].  After
attaching to ECM coated surfaces, these small aggregates quickly re-establish colonies
and can achieve good survival ratios even without ROCK inhibitors. This enzyme-free
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method does not digest  the ECM, and does not need enzyme neutralization and
removal. It provides some unique advantages in clonal hPSC expansion over enzyme-
based dissociation methods[72].

Cryopreservation is  the essential  final  stage of  hPSC culture.  It  has long been
problematic  to  efficiently  revive hPSCs after  cryopreservation.  When hPSCs are
harvested using dispase or collagenase, fewer than 5% of colonies could be recovered.
In order to achieve good cryopreservation in these conditions,  hPSCs need to be
individualized,  and  later  recovered  in  the  presence  of  ROCK  inhibitors  or
blebbistatin[74,75]. However, when enzyme-free PBS/EDTA is used to dissociate cells,
hPSCs can be efficiently cryopreserved even without ROCK inhibitors[72].

With the emergence of  new genome recombination technologies,  increasingly
hPSCs are being used in gene targeting that requires individualization and clonal
expansion. For these purposes, TrypLE, accutase, and enzyme-free dissociation are
usually used to harvest cells, and cells are often treated with ROCK inhibitor during
electroporation and plating[76,77]. If antibiotics, such as puromycin and neomycin, are
applied to  select  positive clones,  ROCK inhibitor  usually  needs to  be present  to
improve clonal hPSC expansion.

CULTURE CONSISTENCY, FROM SERUM TO CHEMICALLY
DEFINED CONDITIONS
Even though growth factors and ECM are vital for hPSC maintenance, they are only a
small part of cell culture components. Cell culture systems also include other equally
important factors, such as water, nutrients, salts, vitamins, lipids, air, and temperature
control[78]. Optimal culture composition is essential for cell survival, pluripotency, and
therapeutic applications.

Most medium nutrients, salts, vitamins and water are provided through various
basic  media  such  as  DMEM/F12.  Additional  medium  components  are  usually
supplied in the form of fetal bovine serum (FBS), KOSR, or defined mixture such as
B27 supplement[52,79]. At the same time, MEF feeder cells are often used to provide
unspecified beneficial factors[18].  FBS and KOSR contain undefined components of
animal origins, and even B27 has bovine serum albumin (BSA) as a major component.
These supplements pose major obstacles for hPSC applications. First, the exposure to
animal  cells  and animal  products  leads to risk of  immune rejection to hPSCs by
contaminated animal components. This would make the hPSC product unsuitable for
therapeutic applications. Second, secretion from feeder cells or serum components
often lead to complications when trying to interpret a phenomenon or molecular
mechanism.  Third,  the  uncertainty  of  undefined  composition  also  leads  to
complications in large-scale production which can cause a significant batch to batch
variation.  It  is  more  desirable  to  have  a  robust  culture  system  with  defined
composition while free of animal products.

Many defined cell culture systems have been developed to culture primed hPSCs.
Individual labs and international collaboration have been involved in defining the
components  in  cell  culture  media[16,23,26,33,80].  In  2010,  the  International  Stem Cell
Initiative systematically evaluated a few popular defined hPSC media, and mTeSR1
and STEMPRO demonstrated a more consistent ability to main hPSCs[18].  Besides
FGF2, all these media contain BSA. Albumin is a principal serum protein, and makes
up 3.5 to 5.0 g/dL in serum. Most cell culture contains albumin[81,82]. Even though BSA
can be replaced by human serum albumin or recombinant albumin, the sheer amount
of the albumin in medium significantly affects consistency which relies on the quality
of albumin in each production batch. Chen et al[18] showed that the essential role of
albumin is to block the toxicity of antioxidant 2-mercaptoethanol that is traditionally
added  into  hPSC  culture.  When  2-mercaptoethanol  is  removed  from  medium,
albumin is no longer required for hPSCs. Based on this finding, E8 medium was
developed to  sustain  hPSC pluripotency  with  eight  essential  components[17].  E8
components include growth factors (insulin, FGF, and TGFβ), nutritional support
(DMEM/F12 base medium), antioxidants (selenium, vitamin C, and transferrin) and
pH modulator (NaHCO3).  The E8 medium formula has a significantly simplified
composition,  which  is  a  good  platform  to  understand  hPSC  physiology.  When
albumin  is  no  longer  necessary,  E8-based  culture  system  can  facilitate  hPSC
production for therapeutic applications, and hPSCs can be cultured in E8 medium for
>50 passages without any signs of karyotypic abnormalities while maintaining their
pluripotency. hESCs and hiPSCs maintained in E8 medium have been efficiently
induced into many somatic cell types and tissues under adherent and suspension
culture conditions[83-86].

When  researchers  use  albumin-free  media,  many  cellular  treatments  and
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manipulations need to be reevaluated. First, as a carrier protein, albumin is a strong
adsorbent  and  blocker,  so  the  concentrations  of  small  chemicals  used  for  cell
manipulations need to be re-examined in albumin-free condition. Second, it is found
that stem cells are more sensitive to suboptimal conditions or environmental changes
in albumin-free medium, such as toxins, small chemical treatments, and medium
acidosis[87].

Besides  albumin,  there  are  other  factors  that  could  also  affect  hPSC  culture
consistency. FGF2 is essential for pluripotency, but it is thermally unstable, which can
result in precipitation and conformational changes of proteins, so high concentrations
of FGF2 must be added in defined culture, and it needs to be replenished regularly.
FGF2  can  be  stabilized  by  heparin,  a  specific  point  mutation,  or  slow  release
mechanism to help resolve this issue[28,88], and mutant forms of FGF2 that are stable
against thermal denaturation have been established, such as K128N (Chen et al[89],
2016). It was also found that defined media produce different patterns of cellular
metabolism  compared  to  KOSR-containing  media.  Due  to  the  lack  of  lipid
components  from KOSR,  cells  in  E8  and  TeSR demonstrate  increased  oxidative
pentose phosphate pathway metabolism.

Although primed hPSCs can be maintained in E8 medium, there remains no similar
albumin-free condition capable of naïve hPSC and EPSC maintenance. The media for
the latter two hPSCs require albumin-containing supplements and additional small
molecule modulators. This remains not only an interesting biological question but
also a practical problem in the development of potential hPSC applications in the
future.

CULTURE PLATFORMS FOR SPECIFIC PURPOSES
As discussed in previous sections, traditional hPSC culture systems are established on
a 2D monolayer with suitable ECMs. However, conventional 2D monolayer culture
does not accurately replicate the in vivo physiological environment, and often fails to
meet the demands of research and therapeutic applications[90]. With the advances in
culture medium, ECM, and handling methods, various culture platforms have been
developed  to  utilize  hPSCs  beyond  the  usual  2D  monolayer[91].  ROCK/MYH
inhibitors promote cell survival and make hPSCs more tolerant to various treatments,
which facilitates the fast development of hPSC culture platforms. We will briefly
discuss biomaterial-free embryoid body culture as well as biomaterial-specific 2D and
3D platforms.

Biomaterial-free 3D embryoid body culture
When no ECM is supplemented to hPSCs, cells in suspension form embryoid bodies
through  E-cadherins.  Many  different  methods  have  been  developed  to  make
embryoid bodies[92,93].  When hPSCs are  harvested as  individualized cells,  ROCK
inhibitor greatly promoted cell survival during the formation of embryoid bodies
independent of the dissociation method.

The 3D suspension culture provides multiple advantages in large scale production,
storage, and differentiation[94,95]. Clinical applications often require 107-1010 or more
hPSCs. However, 2D culture cannot constantly produce uniform hPSCs in such large
quantities.  The embryoid bodies can be grown in stirred-suspension bioreactors,
spinner flasks,  or bag,  greatly increasing cell  culture capacity[96].  The suspension
culture can now produce more than 1013 hPSCs[97]. Bioreactors provide a homogenous
growth environment with real-time monitoring of oxygen level, medium acidosis, and
metabolite concentrations[98]. The shear stress and slowed growth rate are common
issues that need to be considered when cells are expanded.

The embryoid body structure mimics cell interaction in embryogenesis, and hPSCs
can spontaneously differentiate to cell types of three germ layers in the absence of
growth factors. Embryoid body can be used to evaluate pluripotency in vitro[99,100], and
it has become an attractive alternative to a traditional teratoma assay[101].  The 3D
culture can also be used for lineage-specific differentiation. In recent years, organoid
is becoming a powerful model to understand embryogenesis and lineage-specific
differentiation[102]. hPSC embryoid bodies can be adapted to organoid differentiation
for specific cell types[103,104].

hPSCs in suspension display altered metabolic status and slower cell proliferation.
Xu and colleagues utilized the altered hPSC physiology in suspension to develop the
spheropreservation method[105]. In suspension, hPSC embryoid bodies can maintain
cell viability and pluripotency at room temperature for several days. This allows the
cells  to  be  transported  at  room  temperature  without  cryopreservation.  It  is  a
convenient way to transport cells without conventional methods that require either
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dry ice for frozen cells or a 37 °C container for live cell culture vessels.

Biomaterial-specific 3D platforms
3D scaffolds are increasingly used for hPSC maintenance and differentiation with the
assistance  of  natural  and  synthetic  materials[106].  These  materials  are  usually
biocompatible  and  biodegradable,  and  provide  various  biological  signals  and
mechanical  strength  for  specific  applications.  Many  natural  materials,  such  as
hyaluronic acid (HA) and alginate, are functional for hPSCs maintenance, but they are
difficult  to control  due to undefined polymer size and the potential  to influence
cellular signal transduction[107]. Synthetic polymers such as polyethylene glycol (PEG)
are readily polymerized, and can be functionalized with specific ligands. This allows
fine-tuning of the stem cell niche to meet the requirements of various applications.
PEG-based hydrogel  has been used to study the effect  of  N-cadherin peptide on
mESC growth and neural differentiation[108], and also shown to successfully support
the development of neural tube structure from single mESCs[109]. Many ligands have
been discussed in previous sections. With the proper choice of biomaterials, hPSCs
can be maintained, differentiated, and cryopreserved efficiently in 3D platforms[110].

Miniature culture systems
Besides large-scale production for therapeutic applications, new platforms have been
developed as miniature culture systems that can be used for basic research and drug
screening.

Microfluidic systems feature automatic operation, precise control of treatment
parameters, as well as integrated functional modules. It has been used to interrogate
the effect of cell patterning, physical factors, chemical factors as well as cell-cell and
cell-ECM interactions in hPSCs. Microfluidic chips were designed for analysis of
hPSC response to treatments as single colonies[111,112]. Similar systems have been used
to understand how growth factor signals could impact cell fate determination[113,114],
comparable to organ-on-a-chip platforms for cancer and somatic cells. Microfluidic
devices are powerful tools for research in cellular function, cell fate determination as
well as disease modeling.

Recently, gastruloid culture platforms were developed for pluripotent stem cells as
a multicellular in vitro model of the gastrulating embryo. Generation of geometrically
confined stem cell colonies significantly improves the reproducibility and quantitative
analysis  of  differentiation.  2D micropatterned hESC colonies  are generated on a
surface  coated  with  patterned  ECM  proteins  or  ligands[115].  The  pattern  can  be
precisely controlled in size, shape, and ligand. This platform not only improves the
reproducibility  of  differentiation,  but  also  provides  a  platform  for  microscopic
imaging and screening. Recently,  gastruloid culture has been used to study how
geometric  constrains  could  affect  cell  fate  determination  with  specific  spatial
distribution[116]. An important advantage of this system compared to the embryoid
bodies  platform  is  the  better  control  over  cell  number,  being  important  when
reproducing early developmental stages influenced by cell number and patterning.

CONCLUSION
In the past 20 years, hPSC culture technologies have evolved extensively on all fronts.
We can expect to see hPSCs at all three embryonic stages efficiently maintained very
soon. However, development of clinical therapies or disease models needs more than
just pluripotent stem cells. The next great challenge is to efficiently differentiate or
generate  specific  cell  types  from hPSCs in  cell  culture,  which will  require  more
complex signal transduction and medium composition for differentiation initiation,
cell fate specification, and maturation. In addition, the cell culture platform will be
involved in how differentiated cells could be used in various applications, which will
require  the  infusion  of  bioengineering  technologies  and  efficient  cell  handling
methods.  The  principles  of  hPSC  culture  technology  could  be  applied  to
differentiation and further applications.  More exciting cell  culture advances will
eventually help to realize the great potential of hPSCs just as people imagined when
the cells were first derived in 1998.
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