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INTRODUCTION

Cystic echinococcosis (CE), a zoonotic disease caused by 
Echinococcus granulosus at the larval stage, causes significant 
economic losses to the cattle industry and has a great impact 
on human health [1,2]. Human infections are associated with 
the oral intake of parasite eggs. The eggs hatch in the digestive 
tract, penetrate the intestine walls, enter the blood circulation, 
and eventually settle mostly in the liver and lungs. This disease 
has been recognized for more than 2,000 years, and is endem-
ic in cattle-producing areas, including China. E. granulosus is 
typically transmitted between dogs and its second host, hu-
man beings. The detection of infection is difficult in the begin-
ning, as the growth of hydatid cysts is slow with almost no 
symptom for many years [3]. In the late stage of infection, a 
fluid-filled bladder-like structure with inner germinal layer is 
detected in the abdomen of the patient, mostly in the liver. 

The complete excision of the fluid-filled bladder-like structure 
is often difficult and the risk of recurrence is high [4]. The lack 
of early diagnosis and effective treatment regimens for CE may 
result in organ malfunction and sometimes even death. There-
fore, the diagnosis of CE is important to improve the progno-
sis of patients with CE. During infection, Echinococcus has the 
ability to evade the immune system and successfully reside in 
the human body; the mechanism involved in the parasite es-
tablishment, growth, and persistence is still largely unknown 
[5,6].

Exosomes are 30-150-nm membranous vesicles released by 
most cell types, and could be detected in all body fluids, in-
cluding urine, blood, milk, saliva, amniotic fluid, sperm, and 
follicular fluid [7]. Exosome biogenesis involves the inward 
budding of multivesicular bodies. After fusion with the plasma 
membrane, the multivesicular bodies release exosomes into 
the extracellular environment. Exosomes contain a variety of 
molecules such as proteins, nucleic acids, and lipids [8], all of 
which reflect their origin. The cargo molecules vary depending 
upon the parent cells, and the selectively packaged functional 
biomolecules, including enzymes, cytoskeletal proteins, and 
lipids, could alter the recipient cell [9,10]. Exosomes were orig-
inally considered as containers to remove unwanted molecules 
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from their parent cells, and subsequent studies demonstrated 
their antigen- presenting ability [11]. These vesicles are thought 
to play crucial roles in intercellular communication between 
cells and in many pathological conditions such as various 
types of cancers and autoimmune diseases [12]. Exosomes are 
potentially useful for the diagnosis of diseases such as cancer 
[13-15]. The release of exosomes has been demonstrated in 
many parasitic infections. Protein analysis of the exosomes de-
rived from Plasmodium falciparum has led to the identification 
of biomarkers of infection [16]. Toxoplasma gondii exosomes 
could modulate the activation of macrophages and trigger cel-
lular and humoral immune responses associated with protec-
tion against parasite infection [17,18]. Schistosome-derived exo-
somes play an important role in host-parasite interaction and 
may serve as useful tools in the development of therapeutics 
and vaccines [19]. The characteristics of exosomes isolated 
from hydatid fluid of sheep have been recently elaborated [20]. 
The research on the exosomes derived from patients with CE 
is of clinical significance. In this study, we performed pro-
teomic analysis of the exosomes isolated from patients with 
CE and healthy donors for the better understanding of CE 
pathogenesis.

MATERIALS AND METHODS

Blood collection
Two to five ml of peripheral blood were collected from 3 

patients with CE at the General Hospital of Ningxia Medical 
University, with informed consent (Table 1). Peripheral blood 
samples were also collected from healthy donors.

Isolation and purification of exosomes
Exosomes were isolated and purified from serum using Exo-

Quick kit (SBI, California, USA), a proven alternative to ultra-
centrifugation [21-23], according to the manufacturer’s instruc-
tions. Briefly, serum samples were centrifuged at 3,000×g for 
15 min to remove cells and debris. Add appropriate volume of 
ExoQuick exosome precipitation to supernatant of serum and 
mix well by inverting. Refrigerate 30 min at 4˚C, and centrifuge 
mixture at 1,500×g for 30 min. After centrifugation, the exo-
somes may appear as a beige or white pellet at the bottom of 
vessel. Spin down residual ExoQuick solution by centrifugation 
at 1,500×g and aspirate supernatant. Resuspended exosome 
pellet in sterile 1×phosphate-buffered saline (PBS) and either 
stored at -80˚C or directly used.

Transmission electron microscopy (TEM)
Exosome samples were subjected to phosphotungstic acid 

negative staining. About 25 µl of exosome sample was dropped 
on a carbon-coated grid. After 2 min, the grid was incubated 
with 2% phosphotungstic acid for 2 min, and its edges were 
dried with a filter paper. The exosomes were visualized with 
TEM (HITACHI-H7650, Tokyo, Japan).

Nanoparticle tracking analysis (NTA)
The exosome size distribution analysis and quantification 

were performed with a zeta view instrument (Particle Metrix) 
and the corresponding software.

Western blot analysis
In total, 20 µg of exosomes was separated by 12% SDS-

PAGE, and the protein bands were transferred onto polyvinyli-
dene fluoride (PVDF) membranes (Millipore, Bedford, Massa-
chusetts, USA). After 2 hr of incubation in 5% skim milk in 
PBST (0.1% Tween 20 in PBS, PH 7.3), the membranes were 
incubated overnight at 4˚C with primary antibodies: anti-CD9 
(1/1,000) or anti-CD63 (1/300). Primary antibodies against 
CD63 and CD9 were purchased from Abcam (Cambridge, 
Massachusetts, USA). Anti-GAPDH were obtained from BIOSS 
(Beijing, China). The membrane was subsequently incubated 
with a horseradish peroxidase (HRP)-conjugated goat anti-
mouse antibody (Abcam) as secondary antibody (1/3,000). 
The membranes were developed using an enhanced chemilu-
minescence western blot detection system. The electrophoresis 
of unstained gel was performed using TGX Stain-FreeTM Fast-
CastTM Acrylamide Kit (Bio-rad, Hercules, California, USA).

Liquid chromatography-tandem mass spectrometry  
(LC-MS/MS) analysis

The tryptic peptides were dissolved in 0.1% formic acid (sol-
vent A) and loaded onto a home-made reversed-phase analyti-
cal column. The gradient included an increase in solvent B 
(0.1% formic acid in 98% acetonitrile) from 6% to 23% over 
26 min, 23% to 35% in 8 min, and then to 80% in 3 min, fol-
lowed by a hold at 80% for the last 3 min at a constant flow 
rate of 400 nl/min on EASY-NLC 1000 UPLC system.

The peptides were subjected to nanospray ionization (NSI) 
source followed by tandem mass spectrometry (MS/MS) on Q 
ExactiveTM Plus (Thermo, Massachusetts, USA) coupled online 
to an ultra-performance liquid chromatography (UPLC) sys-
tem. The electrospray voltage applied was 2.0 kV and the m/z 
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scan range were 350 to 1,800 for full scan. Intact peptides were 
detected in the orbitrap at a resolution of 70,000. Peptides 
were selected for MS/MS using normalized collision energy 
(NCE) setting as 28, and the fragments were detected in the 
orbitrap at a resolution of 17,500. A data-dependent proce-
dure that alternated between one MS scan followed by 20 MS/
MS scans with 15.0 sec dynamic exclusion was employed. Au-
tomatic gain control was set at 5E4.

Gene ontology (GO) annotation
GO annotation was performed using the UniProt-GOA da-

tabase (www.http://www.ebi.ac.uk/GOA/). The intensified 
protein IDs were converted to UniProt ID and subjected to 
GO mapping. The identified proteins that were not annotated 
with UniProtGOA, were subjected to InterProScan based on 
the GO function using the protein sequence alignment meth-
od. The proteins were classified with GO annotation into 3 
categories, namely, biological process, cellular component, 
and molecular function.

Domain annotation 
The functional description of the identified protein domain 

was annotated with InterProScan (a sequence analysis applica-
tion) based on the protein sequence alignment method. Inter-
Pro domain database was used. InterPro (http://www.ebiac.
uk/interpro/) is a database that integrates diverse information 
about protein families, domains, and functional sites, and is 
freely available to public via web-based interfaces and services. 
Central to the database are diagnostic models, known as sig-
natures, that are used to search protein sequences and investi-
gate their potential functions. InterPro is useful in the large-
scale analysis of whole genomes and meta-genomes as well as 
to characterize individual protein sequences.

Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway annotation

The KEGG database was used to annotate protein pathways. 
We used the KEGG online service tool called KEGG Automatic 
Annotation Server (KAAS) to annotate proteins. The annota-
tion result was mapped on KEGG database online service tool 
KEGG mapper.

Analysis of subcellular localization
We used WoLF PSORT, a subcellular localization predication 

software, to predict the subcellular localization of proteins. It is 

an updated version of PSORT/PSORT II used for the predica-
tion of eukaryotic sequences. CELLO, specific for protokaryon 
species, was used for subcellular localization predication.

GO analysis for functional enrichment
Proteins were classified by GO annotation into 3 categories, 

namely, biological process, cellular compartment, and molec-
ular function. For each category, a 2-tailed Fisher’s exact test 
was used to test the enrichment of the differentially expressed 
proteins and specific proteins against all the identified pro-
teins. GO analysis with a corrected P<0.05 was considered 
significant.

Pathway enrichment analysis
Encyclopedia of Genes and Genomes database was used 

with 2-tailed Fisher’s exact test to evaluate the enrichment of 
differentially expressed proteins and specific proteins against 
all the identified proteins. The pathway with a corrected 
P<0.05 was considered significant. These pathways were classi-
fied into hierarchical categories according to the KEGG website.

Protein domain enrichment analysis
For each category of proteins, InterPro (a resource that pro-

vides functional analysis of protein sequences by classifying 
them into families and predicting the presence of domains 
and important sites) database was used and a 2-tailed Fisher’s 
exact test was employed to investigate the enrichment of dif-
ferentially expressed proteins and specific proteins against all 
the identified proteins. Protein domains with a corrected 
P<0.05 were considered significant.

RESULTS

Characteristics of CE-exo and HD-exo
The results of TEM analysis showed that CE-exo and HD-exo 

exhibited a round or cup shape in a size range of 50 to 150 nm 
and were surrounded by a membrane bilayer, consistent with 
the features of exosomes (Fig. 1A). NTA results revealed a mean 
diameter of 124.3 nm and a concentration of 9.8E+11 particles/
ml for CE-exo, whereas the mean diameter and concentration 
for HD-exo were 119.0 nm and 1.4E+11 particles/ml, respec-
tively (Fig. 1B, C). Thus, the concentration of CE-exo was high-
er than that of HD-exo, indicating that patients with CE release 
more exosomes than healthy individuals.
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Proteomic similarities and differences between CE-exo 
and HD-exo

Unstained SDS-PAGE gel showed similar protein content 
for CE-exo and HD-exo (Fig. 2A). The results of western blot 

analysis revealed the expression of the typical exosomal mark-
ers CD9 and CD63 for both exosome types (Fig. 2B). A total 
of 373 proteins were identified, and 49 of these were specifi-
cally expressed in CE-exo. Among these 49 specific proteins, 

Fig. 1. Characteristics of CE-exo and HD-exo. (A) Transmission electron microscopies of CE-exo and HD-exo. (B) Nanoparticle tracking 
analysis results showing concentration and diameter of CE-exo and HD-exo. (C) Concentration of CE-exo and HD-exo captured by 
nanoparticle tracking analysis. Exosomes isolated from the serum of patients infected with cystic echinococcosis. Exosomes isolated 
from the serum of healthy donors.

B C 

Fig. 2. Protein analysis of CE-exo and HD-exo. (A) SDS-PAGE and Coomassie Blue stained. (B) Expression of CD9 and CD63 analyzed 
with Western blot using antibodies against CD9 and CD63. GAPDH was used as a normalizing control.
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there were 4 parasitic proteins. Maximum specificity was ob-
served for tubulin alpha-1C chain (XP_024347583.1), a pro-
tein present in multiple exosomes [24]. We also found 3 other 
parasite proteins, including histone H4 (XP_024345389.1) in-

volved in nucleosome formation, Tubulin beta chain (XP_ 
024348768.1) involved in the formation of exosomes, and 
GTP-binding protein SAR1b (XP_024348189.1) involved in 
the transport of exosomes. There also were Other 45 human-

Table 1. Clinical features of patients with CE	

Patient No. Age/Sex Cyst location Cyst No. Cyst size (cm) Previous surgery
Pharmacological 

treatment

CE01 55/F Liver 1 16×19 No No
CE02 43/M Liver 2 7×6 

6×6 
No No

CE03 50/M Liver 1 12×10 No No

M, male; F, female.	

Fig. 3. Differentially expressed proteins in CE-exo. (A) Distribution of differentially regulated proteins. (B) Subcellular localization of down-
regulated proteins and (C) up-regulated. (D) GO enrichment of differentially regulated proteins.
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originated proteins exclusively present in CE-exo which may 
contribute to understanding of the interactions between para-
site and host (Supplementary Table S1).

Functional enrichment analysis and subcellular 
localization of the differentially regulated proteins

The results of proteomic analysis revealed 8 proteins (fold 
change>1.5) that were differentially regulated in CE-exo. In-
cluding 5 proteins that were overexpressed in CE-exo and 3 
proteins that were downregulated in CE-exo (Fig. 3A; Table 2). 
All the 3 downregulated proteins were localized in the extra-
cellular region (Fig. 3B). While, the localization of the 5 upreg-
ulated proteins differed (Fig. 3C); for instance, polymeric im-
munoglobulin receptor (PIGR) was localized in the plasma 
membrane, while platelet basic protein, immunoglobulin 
heavy variable 3-30-5, and serum amyloid A-4 protein were 
present in the extracellular and cytoplasmic regions. GO en-
richment analysis of the differentially expressed proteins 
showed that the top 3 biological processes included “positive 
regulation of cell division,” “regulation of cell division,” and 
“cell chemotaxis.” The top 3 cellular components included 
“whole membrane,” “secretory vesicle,” and “secretory granule” 
(Fig. 3D). Furthermore, the differentially regulated proteins 
were enriched in the amyotrophic lateral sclerosis pathway 
(data not shown).

Enrichment of the proteins exclusively expressed in CE-exo
The enrichment analysis of the proteins exclusively ex-

pressed in CE-exo revealed the top 3 biological processes, in-
cluding “platelet aggregation,” “actin filament-based process,” 
and “regulated exocytosis”. The top 3 cellular compartments 
included “actin cytoskeleton,” “extracellular exosome,” and 
“extracellular vesicle”, while the top 3 molecular functions 
were “adhesion molecule binding,” “actin binding,” and “cyto-
skeletal protein binding” (data not shown). Furthermore, 

KEGG pathway enrichment analysis revealed the proteins that 
were significantly enriched in 17 pathways (data not shown). 
The top 5 pathways included “hsa04510 adhesion pathway,” 
“hsa04810 regulation of actin cytoskeleton pathway,” “hsa04611 
platelet activation pathway,” “hsa04530 tight junction path-
way,” and “hsa04670 leukocyte transendothelial migration 
pathway.”

DISCUSSION

CE diagnosis is mainly dependent on microscopical exami-
nation and serological tests, which may not detect the disease 
at early stages. It is noteworthy that the number of confirmed 
patients with CE is far lower than the number of serologically 
positive individuals, and the exact reason underlying this ob-
servation is unclear. One possibility is that some people may 
contract E. granulosus once, but the parasites may fail to surviv-
al against host immune responses. The related reactions in-
volved in this process are still unknown. Echinococcus is a mul-
ticellular parasite, and the interactions between the host and 
the parasite are complex. The fluid-filled hydatid cyst parasite 
growing in the host internal organs is surrounded by a 2-lay-
ered wall. The inner germinative layer is encompassed by an 
acellular parasite-derived laminated layer, which exists as a 
physical barrier. The development of E. granulosus may be ac-
companied with an interchange of material between the host 
and the parasite. The release of exosomes by E. granulosus has 
been recently identified [20], but whether these released exo-
somes could pass through the thick outer membrane is un-
known. In this study, we identified 49 proteins that were ex-
clusively expressed in CE-exo, including 45 huaman proteins 
and 4 E. granulosus-derived proteins. This observation implies 
that the exosomes derived from E. granulosus could enter the 
human circulation and may participate in the communication 
between E. granulosus and the host. The majority of the 45 hu-

Table 2. Proteins differentially regulated in exosomes isolated from patients infected with Echinococcus granulosus	 	

Protein accession Protein description Regulated type Gene name Peptides Unique peptides

P01833 Polymeric immuglobulin receptor Up PIGR 11 11
P0275 Platelet basic protein Up PPBP 5 5
P04040 catalase Up CAT 14 14
PoDP03 Immunoglobulin heavy variable 3-30-5 Up IGHV3-30-5 2 1
P35542 Serum anyloidA-4 protein Up SAA4 4 4
P04196 Histidine-rich-glycoprotein Down HRG 12 12
P22352 Glutathione peroxidase 3 Down GPX3 5 5
Q9BWP8 Collectin-11 Down COLECT11 4 4
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man-derived proteins present in CE-exo were associated with 
cytoskeleton structure, and some of these had anti-microbial 
activity. These proteins may be expressed in response to stimu-
lation from parasites and may provide a new insight into the 
interaction between the parasite and the host. The ubiquitous 
exosomes provided new methods to understand the establish-
ment and development of many diseases and contributed to 
diagnosis of many diseases [25-27]. In pancreatic cancer, the 
miRNAs from exosomes serve as powerful tools for early diag-
nosis, classification, and metastasis monitoring [28]. Exosome-
based diagnosis strategies have been developed for lung and 
ovarian cancers [29]. Nowadays, studies on exosomes isolated 
from parasites indicated that exosomes not only participated 
in the interactions between hosts and parasites, but also pro-
vided biomarkers for vaccination and diagnosis [30]. Pro-
teomic analysis of exosomes secreted from Schistosome con-
tained protein vaccine candidates [31]. Research on exosomes 
derived from lymphatic filariasis unearthed biomarkers of stage-
specific diagnosis [32]. Study on exosomes in sera from indi-
viduals infected with Schistosome provided a new tool for diag-
nosing schistosomiasis in patients with low parasite burden [33]. 
Hence, the 4 parasite-derived proteins may contribute as diag-
nosis candidates and may be useful to improve the accuracy of 
CE diagnosis.

The concentration of exosomes was shown to increase in re-
sponse to stress conditions [31]. Patients with diabetes had 
significantly higher levels of exosomes in their circulation than 
euglycemic control individuals [34]. The release of exosomes 
from human umbilical vein endothelial cells significantly in-
creases in response to ischemia [35]. As per our NTA results, 
the concentration of CE-exo was higher than that of HD-exo 
in the same amount of (250 µl) serum samples. Both humans 
and E. granulosus could release exosomes, which may contrib-
ute to the excess of exosomes in CE serum samples; however, 
the validity of this hypothesis and the role played by these 
exosomes in human body are unclear. More patient samples 
and further experiments are warranted in future studies.

Aside from these specific proteins, some other proteins were 
significantly enriched or downregulated in CE-exo. One of the 
upregulated proteins, PIGR, is a key participant in the forma-
tion and secretion of secretory IgA, which is critical for the im-
mune defense against microbial infection and colonization 
[36]. Studies have demonstrated that the deletion of PIGR re-
sults in an increase in the load of Helicobacter pylori [37], Giar-

dia muris [38], and Clostridium [39], and that the sIgA-mediat-

ed microbial sensing promoted notovirus and reovirus infec-
tion. The role of PIGR in CE is unclear and needs further ex-
ploration. The remaining upregulated proteins were involved 
in protective immune responses such as antigen recognition 
[40]. Thus, it may be speculated that these upregulated pro-
teins are expressed as a reaction from the host to cystic Echino-

coccus and may be useful for the treatment and prevention of 
CE. Histidine-rich-glycoprotein (HRG), one of the downregu-
lated proteins, exerts antibacterial and antifungal activities, 
and its expression is significantly inhibited in septic mice [41]. 
Moreover, the supplementary treatment with HRG was shown 
to improve their survival [42]. Consistent with our results, 
HRG was significantly downregulated in CE-exo, indicating 
that HRG may be potentially useful as a candidate molecule 
for the treatment or vaccination of CE. The other 2 downregu-
lated proteins performed protective functions. Collectin-11 is 
associated with protection against Schistosomiasis [43], while 
glutathione peroxidase-3 protects cells and enzymes from oxi-
dative damage [44]. These downregulated proteins may be re-
lated with the mechanisms by which the parasite evades the 
host immune system. These results suggest the new possibili-
ties of treatment and prevention of CE. The exosomes may 
emerge with dual characters. To further identify the functions 
of these proteins and exosomes, in vivo and in vitro experi-
ments are deemed necessary.

The 8 differentially regulated proteins were enriched in the 
amyotrophic lateral sclerosis pathway, but the exact relation-
ship between the pathway and infection is unclear. KEGG 
pathway enrichment analysis revealed 17 pathways that were 
related with the proteins exclusively expressed in CE-exo; most 
of these pathways were relevant to the host response to infec-
tions, including cell motility, cell proliferation, cell survival, 
platelet activation, leukocyte transendothelial migration, and 
inflammatory suppression, and are related to each other. Thus, 
the infection with E. granulosus induced changes in our body, 
and the role of exosomes is important and complex and de-
mands further studies.
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