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Protein chains contain only L-amino acids, with the exception
of the achiral glycine, making the chains homochiral. This
homochirality is a prerequisite for proper protein folding and,
hence, normal cellular function. The importance of D-amino
acids as a component of the bacterial cell wall and their roles in
neurotransmission in higher eukaryotes are well-established.
However, the wider presence and the corresponding physiolog-
ical roles of these specific amino acid stereoisomers have been
appreciated only recently. Therefore, it is expected that enantio-
meric fidelity has to be a key component of all of the steps in
translation. Cells employ various molecular mechanisms for
keeping D-amino acids away from the synthesis of nascent
polypeptide chains. The major factors involved in this exclu-
sion are aminoacyl-tRNA synthetases (aaRSs), elongation
factor thermo-unstable (EF-Tu), the ribosome, and D-amino-
acyl-tRNA deacylase (DTD). aaRS, EF-Tu, and the ribosome
act as “chiral checkpoints” by preferentially binding to L-a-
mino acids or L-aminoacyl-tRNAs, thereby excluding D-amino
acids. Interestingly, DTD, which is conserved across all life
forms, performs “chiral proofreading,” as it removes D-amino
acids erroneously added to tRNA. Here, we comprehensively
review D-amino acids with respect to their occurrence and phys-
iological roles, implications for chiral checkpoints required for
translation fidelity, and potential use in synthetic biology.

All biological macromolecules consist of building blocks of a
particular “handedness” or chirality. Consequently, every bio-
macromolecule itself becomes chiral in nature, deriving its chi-
rality from its constituent building blocks. The concept of chi-
rality is more than 150 years old and was put forth by Louis
Pasteur in 1848 through his seminal work on tartaric acid that
paved the way for the discovery of “molecular chirality” (1, 2).
The importance of absolute chiral specificity in biological sys-
tems strongly came to the fore after the discovery of tragic
adverse effects of the drug thalidomide, which was used to treat
morning sickness in pregnant women. Thalidomide exists as an
enantiomeric mixture of (R)- and (S)-forms, of which the (R)-
enantiomer is a sedative and the (S)-enantiomer is teratogenic.

Even though the (R)-form of thalidomide was administered,
due to spontaneous racemization, it led to about �10,000 cases
of children being born with abnormal limbs (3, 4).

Macromolecules such as nucleic acids contain only D-ribose,
and proteins are made of only L-amino acids with the exception
of achiral glycine. It is well-known that functional proteins can-
not be made with a mixture of L- and D-amino acids; indeed, it
was substantiated that D-amino acids are detrimental for the
secondary structure of proteins mainly consisting of L-amino
acids (5). It still remains elusive as to why and how only L-amino
acids were selected for peptide/protein synthesis during the
prebiotic era. The scientific consensus holds that the selection
of L-amino acid is merely a chance event. However, in the past
few decades, many interesting hypotheses have been put for-
ward to explain this bias of nature. One such explanation is
provided by the parity-violating energy difference model (6, 7).
It proposes that there exists a small energy difference between
enantiomers, which eventually leads to an excess of one type of
enantiomer over the other (8). Certain studies have shown that
some of the D-amino acids are adsorbed onto one of the crystal
surfaces of materials like calcite, thereby allowing only L-amino
acids to be used for peptide synthesis (9). Another interesting
proposition is that L-amino acids are more compatible with the
pre-existing D-ribose RNA, because RNA displays a preference
for L-amino acids in a nonenzymatic aminoacylation reaction
(10 –13). Further evidence for homochirality preference is pres-
ent in the form of asymmetric amplification in autocatalysis,
wherein the product enhances the usage of only one type of
enantiomer, thereby eliminating the other (14). If fortuity had
not played a role, an orchestration of several complex factors
might have led to the origin of homochirality in the living sys-
tems, but to what extent each of the physio-chemical factors has
contributed to homochirality still needs to be evaluated.

Despite the multitude of selection bias against using D-amino
acids for proteins, they have been retained within the biological
systems and have been implicated in important biological pro-
cesses. This clearly indicates that D-amino acid retention has
conferred a selective evolutionary advantage to the biological
processes they are involved in. Thus, dynamic balancing mech-
anisms operate to ensure the retention of D-amino acids, which
allows the system to take selective advantage and at the same
time ensure homochirality of proteins by keeping them at bay
from the translational apparatus.

The focus of this review will be on the occurrence of D-amino
acids, their importance in different biological processes, and
how various components of the translational machinery, such
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as aminoacyl-tRNA synthetase (aaRS),3 elongation factor
thermo-unstable (EF-Tu), ribosome, and D-aminoacyl-tRNA
deacylase (DTD), are fine-tuned to ensure that D-amino acids
are preferentially excluded from the global translation pro-
cesses. This review brings together the multiple facets of D-a-
mino acids from their presence in different biological systems
to their use in synthetic biology approaches by keeping the cen-
tral focus on how the protein synthesis machinery avoids them.

D-Amino acids in biological systems

D-Amino acids are an important part of biological systems
and are involved in many crucial processes. Studies on bacteria
half a century ago established D-amino acids as an integral part
of the cell wall and several antibiotics (such as valinomycin,
actinomycin, vancomycin, and gramicidin) and very recently in
the dispersal of biofilm (15–19). The peptides that cross-link
the sugar moieties of the peptidoglycan layer contain D-amino
acids, which are added by muramyl ligases; MurD and MurF are
specific to D-Glu and D-Ala, respectively (20). The presence of
D-amino acids makes the peptidoglycan resistant to enzymatic
degradation (21, 22), whereas in case of antibiotics, the amino
acids are incorporated by nonribosomal peptide synthetases
and polyketide synthases (23). The widespread presence of D-a-
mino acids over and above the bacterial cell wall started becom-
ing apparent in the 1980s with the advancements in analytical
techniques. By the late 1990s, the universal presence of D-amino
acids across all domains of life had been established, and a few
examples are presented in Table 1 (18). The occurrence of D-a-
mino acids in archaea was first reported in 1999 (24). However,
the significance of the presence of these D-amino acids in
archaea is not yet fully deciphered. Surprisingly, D-amino acid
oxidase in mammals was discovered by Hans Krebs as early as

1934, although the occurrence of D-amino acids in mammals
was not discovered until more than 50 years later (25, 26). These
anecdotal observations are to emphasize the presence and the
metabolism of D-amino acids and their by-products, which
have largely remained unexplored for decades.

In eukaryotes, D-amino acids play divergent roles (e.g. as
nitrogen sources and neurotransmitters), which are primarily
confined to the central nervous system. The conservation of
D-amino acid racemases, D-amino acid transaminases, and D-a-
mino acid oxidases in all eukaryotes (from yeast to mammals) is
suggestive of the importance of D-amino acids. D-Amino acids
have been reported in cellular fluids of shellfish and contribute
to more than 1% of the cellular pool (27). The skin of amphibi-
ans contains an array of peptides with D-amino acids, which are
quite similar to the hormones in the higher eukaryotes. The
discovery of enkephalin—a pentapeptide involved in the regu-
lation of nociception by virtue of its binding to opioid recep-
tors—in 1975 set the stage for the identification of many such
peptides in other animals (28). These peptides bind to different
types of opioid receptors with high affinity and usually have a
sequence of Tyr-X-Phe-Asp/Glu-Val-Val-Gly (wherein X cor-
responds to a D-amino acid). In the case of mammals, D-Ser was
first identified in 1992 in the frontal brain area of rats and later
in the peripheral tissues (29). D-Ser acts as an important neuro-
modulator of the N-methyl-D-aspartate (NMDA) receptor,
which is involved in learning, memory, and synaptic junction.
D-Ser acts as a co-agonist for the NMDA receptor, and a
decrease in its levels has been implicated in pathological condi-
tions such as schizophrenia (30). However, increased levels of
D-Ser and D-Ala have been observed in the case of Alzheimer’s
disease (26, 31, 32). Similarly, high levels of D-Asp in testis offer
reproductive advantages and aid in neuroendocrine functions
(33, 34). Surprisingly, D-Asp was also found to be incorporated
in proteins but was later established to be produced by sponta-
neous isomerization of its antipode, which increases with aging.
Proteins that contain D-Asp are degraded by D-aspartyl endo-
peptidase (35).

Like all other organisms, the importance of D-amino acids
has also been noted in plants. D-Ser plays an important role in
the development of the pollen tube in Arabidopsis and tobacco,

3 The abbreviations used are: aaRS, aminoacyl-tRNA synthetase; EF-Tu,
elongation factor thermo-unstable; ATD, Animalia-specific tRNA deacyl-
ase; DTD, D-aminoacyl-tRNA deacylase; NMDA, N-methyl-D-aspartate;
TPA, three-point attachment; aa-tRNA, aminoacyl-tRNA; AlaRS, TyrRS,
AspRS, and TrpRS, alanyl-, tyrosyl-, aspartyl-, and tryptophanyl-tRNA
synthetase, respectively; EF-1�, elongation factor-1�; pt-tRNA, pepti-
dyl-tRNA; nPAA, nonproteinogenic amino acid; PTC, peptidyltrans-
ferase center; NTD, N-terminal domain; D-Tyr3AA, D-tyrosyl-3�-amino-
adenosine; GP-motif, Gly-cisPro motif; PDB, Protein Data Bank.

Table 1
Occurrence of D-amino acids in different organisms and their physiological importance

Amino acid Organism Function Reference

D-Ala, D-Ser, D-Asp, D-Asn, D-Glu, D-Gln Bacteria Cell wall (component of peptidoglycan) 129
D-Leu, D-Met, D-Phe, D-Tyr Bacteria Regulate the formation of peptidoglycan 130
D-Leu, D-Val, D-Phe Bacteria Part of gramicidin and gramicidin S 131–134
D-Met, D-Leu Staphylococcus aureus Biofilm inhibition 15
D-His S. aureus Staphylopine (metallophore: metal-scavenging peptide) 135
D-Ala, D-Ser, D-Asp Archaea Membrane-bound and free form 24
D-Ala Phyllomedusa sauvagei (frog) Dermorphin (part of heptapeptide that binds to opioid

receptors)
136, 137

D-Met P. sauvagei (frog) Deltropin (part of heptapeptide that binds to opioid
receptors)

136, 137

D-Trp Conus radiatus (fish-hunting snail) Contryphan (part of octapeptide; one of the
constituents of venom)

138

D-Cys Photuris lucicrescens (firefly) Part of D-luciferin (natural substrate of luciferase) 139, 140
D-2,3-diamino-propionic acid, D-Ser Bombyx mori (insect) Involved in metamorphosis 139
D-Ala Aquatic crustaceans and bivalve mollusks Involved in maintaining cellular osmolarity 141
D-Asp Mammals (nervous system/endocrine

system/reproductive system)
Modulates NMDA receptor, Regulates secretion of

hormones like vasopressin, oxytocin, prolactin, and
testosterone

26, 33

D-Ser Mammals (brain) Co-agonist of NMDA receptor 29, 30
D-Ser Arabidopsis thaliana Crucial for pollen tube development 36
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and D-Ser racemase plays an indispensable role in signal trans-
duction (36). Apart from the D-amino acids synthesized in
plants, degradation of the soil bacteria also contributes to the
total D-amino acid pools in copious quantities (37, 38). It has
also been noted that D-Ala assimilation in wheat plants for use
as a nitrogen source was 5-fold higher than that of NO3

� (39).
Accumulating evidence suggests that some D-amino acids, such
as Val, Ile, and Lys, enhance the growth of Arabidopsis (40).
From the above accounts, it is clear that irrespective of the life
form, all organisms do contain some if not all D-amino acids,
which play important physiological roles in their growth and
survival. It is therefore important to understand the challenges
that D-amino acids pose in maintaining homochirality of the
proteome, given their physiological importance, and in a few
instances, their concentrations are comparable with that of
L-forms (29).

Stereochemistry of amino acids

There are 22 proteinogenic amino acids that are genetically
encoded, whereas many other physiologically relevant nonpro-
teinogenic amino acids have been identified in different biolog-
ical systems. Along with the differences in side chain chemistry,
amino acids exist as two stereoisomers (L- and D-), which allows
them to perform a multitude of physiological/cellular func-
tions. The stereochemistry of amino acids plays an important
role; for instance, D-Ser binds to the NMDA receptor and helps
in neurotransmission, whereas L-serine lacks binding to the
NMDA receptor (30). Thus, stereochemistry in combination
with side chain chemistry plays a critical role in determining the
physiological effect and roles of different amino acids.

A protein made up of only D-amino acids will be a structural
mirror image of its L-amino acid counterpart and will act on
substrates with opposite chirality (of the original substrate), as
demonstrated using the HIV protease (41). The Ramachandran
plot for D-amino acids can be easily generated by simply flipping
the sign of � and � values (positive values become negative and
vice versa). The resultant map will appear inverted at the origin
(the first quadrant will flip with the third, and the second quad-
rant will flip with the fourth) (Fig. 1) (5, 42, 43). D-Amino acids
are generally found in small peptides or cyclic peptides. How-
ever, a few small peptides such as gramicidin S, which are syn-
thesized using nonribosomal protein synthesis, have a combi-
nation of L- and D-amino acids. A peptide that is artificially
made of an LD or a DL combination of enantiomers is likely to
generate a sharp turn (hairpin or � bend), which in turn con-
tributes to the great compactness of these oligopeptides. The
cyclization of these oligopeptides is mainly due to their hetero-
chiral nature (44). Having D-amino acids as a part of oligopep-
tides renders structural and enzymatic stability, thereby mak-
ing them indispensable for their respective physiological roles.

The problem of enantiomeric discrimination

The cellular milieu is a composite mixture of optically active
biomolecules, such as amino acids, sugars, and lipids. The
molecular basis of many biological processes involves protein-
ligand interactions, wherein most proteins are specific to only
one stereoisomer of their respective ligand/substrate and inert
to its antipode. Very often, both the isomers are present in the

system, and proteins encounter the problem of discriminating
between these similar yet different molecules. Nevertheless,
how proteins achieve such molecular-level chiral discrimina-
tion is intriguing. Easson and Stedman (45) and Ogston (46)
independently tried to explain the mechanism of this discrim-
ination using the “three-point attachment” (TPA) model.
According to the TPA model, proteins recognize the chiral cen-
ter of the ligand/substrate by specifically attaching/fixing to
three distinct atoms/points of the ligand, which would be dif-
ferent for L- and D-isomers (45, 46). This model was validated by
pre-existing examples of protein-ligand interactions. Using
high-resolution crystal structures of isocitrate dehydrogenase
(in complex with L- or D-isocitrate), Mesecar and Koshland (47)
highlighted the ambiguity of the TPA model and modified it to
a “four-location” model. According to the four-location model,
the three complementary sites on the protein that interact with
the three sites of the ligand are not sufficient for selection, and
rather a fourth constraint in the form of restricted ligand entry
or fourth point of contact allows a stricter enantiomer selection
(Fig. 2). Thus, the TPA model is a subtype of the four-location
model (48). However, it is important to note that these interac-
tions need not be attractive forces only, but can possibly be a
combination of both attractive and repulsive forces.

Maintaining enantiomeric fidelity during translation of
the genetic code

The process of information transfer in biological systems is
tightly regulated. At the cellular level, replication, transcrip-
tion, and translation are under strict surveillance to avoid
errors. Similarly, the protein synthesis machinery employs
checkpoints at every step to avoid infiltration of D-amino acids
into the growing polypeptide chain. Transfer of information
from the nucleic acid world to the protein world relies on the

Figure 1. Ramachandran plot for proteins with L- and D-chirality. Shown
in blue is the structure of HIV protease (PDB entry 4HVP), and shown in red is
the modeled structure of the same protein with inverted chirality. A Ram-
achandran plot showing the dihedral angles is color-coded according to the
cartoon.
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following molecular factors: aminoacyl-tRNA synthetase,
which generates aminoacyl-tRNA (aa-tRNA); EF-Tu, which
shuttles the aa-tRNA to the ribosome; the ribosome, which
eventually attaches the amino acid to the growing polypeptide
chain; and finally DTD, which is involved in decoupling D-a-
mino acid from D-aminoacyl-tRNAs. Each of these factors con-
tributes to the overall enantiomeric fidelity.

Aminoacyl-tRNA synthetases

aaRSs are one of the ancient housekeeping enzymes that
appeared during the early evolution of the translational
machinery and act as a bridge between the RNA and protein
worlds. aaRSs dictate the genetic code by specifically adding
amino acids to the tRNAs (49). In most systems, there are 20
synthetases, which correspond to 20 amino acids (50 –52). The
accuracy of translation largely depends on the fidelity of these
enzymes. Usually, the anticodon-binding domain of an aaRS
recognizes the cognate tRNA (using the tRNA anticodon),
except for alanyl-tRNA synthetase (AlaRS) and seryl-tRNA
synthetase, wherein the acceptor arm G3�U70 and the variable
arm are recognized, respectively (53–55). Compared with the
amino acid, tRNA is a large molecule and provides a huge area
of contact for recognition by the synthetases. Therefore, aaRSs
face an enormous challenge of choosing the correct amino acid
from a pool of similar-looking amino acids, with differences as
small as a methyl group (e.g. Gly and Ala or Ser and Thr), lead-
ing to errors. Ten of the 20 synthetases are known to mischarge
a wrong (noncognate) amino acid on tRNAs, which can even-
tually lead to mistranslation, which is abrogated by the editing

domains (56 –58). These editing domains are either covalently
linked to the aminoacylation domain (cis) or exist as an inde-
pendent module (trans) (59 –61). Apart from the generic prob-
lem of amino acid mis-selection, there exists the problem of
stereochemistry (D- and L- forms) of the amino acids. Because
D-amino acids are an inherent part of the cellular milieu across
life forms, it becomes imperative for aaRSs to also distinguish
the stereochemistry of amino acid.

Amino acid recognition in the active site of the enzyme
is achieved by using multiple recognition points. In all of the
aaRSs, the amino group is very strongly selected for by means of
a conserved polar (Asp/Asn/Glu/Gln) residue. The carbonyl
oxygen of the amino acid is fixed in an orientation that is com-
patible with the activation of the amino acid to form aminoacyl-
adenylate, and perhaps this underlying principle is conserved
across all synthetases. The specificity factor for the aminoacy-
lation domain is defined by the mode of side-chain picking,
which is based on physico-chemical parameters. If the amino
group and the carbonyl oxygen are fixed, the orientation of the
side chain of a D-amino acid would be opposite to that of an
L-amino acid, which forms the basis for steric exclusion by a
majority of the synthetases that are meant to activate amino
acids with smaller side chains, as indicated by the four-location
model. Similarly, if the amino group and the side chain are
fixed, then there will be a steric incompatibility of the carboxyl
group with the incoming ATP. The third possibility is the fixa-
tion of the carboxyl group and the side chain, which makes the
amino group incompatible for binding, thereby sterically
excluding the D-amino acid. On the contrary, synthetases that
activate amino acids with a bigger side chain have relatively
large pocket sizes, allowing the accommodation of both L- and
D-isomers without a strict steric exclusion (i.e. because of
weaker selection/rejection of the fourth position suggested by
the four-location model) (Fig. 3). Incidentally, the first synthe-
tase to be identified activating a D-amino acid on a tRNA was
tyrosyl-tRNA synthetase (TyrRS) (62, 63). The kinetics of acti-
vation and the discrimination capacity of TyrRS put the error
rate at 1 in 14 (i.e. 1 of every 14 tRNAs is charged erroneously
with D-amino acid). Later studies have shown that TrpRS,
PheRS, and AspRS also face the problem of discrimination
between L- and D-stereomers (64). These synthetases with weak
enantioselectivity can generate D-aa-tRNAs, which can poten-
tially enter the translation machinery, leading to (mis)incorpo-
ration of D-amino acids into the growing polypeptide chain, or
remain as accumulating dead-end products, depleting the free
tRNA pool. Both the misincorporation and depletion scenarios
are deleterious to the cell; hence, the cells face the challenge of
enantioselectivity, which is taken care of by specific check-
points downstream of aaRS.

Elongation factor

Once the tRNAs are aminoacylated by aaRSs, the aa-tRNAs
need to be shuttled to the ribosome. The delivery of aa-tRNAs is
performed by dedicated proteins, EF-Tu in bacteria and elon-
gation factor-1� (EF-1�) in archaea and eukarya (henceforth,
“EF-Tu” will imply and encompass both EF-Tu and EF-1�) (65).
This delivery is energy-dependent, wherein the elongation fac-
tor is activated by binding to a GTP molecule, which forms a

Figure 2. Models for enantioselectivity of proteins. A, L- and D-stereoiso-
mers of amino acid; C� represents the chiral center. B, TPA model: A, B, and C
are three points on the ligands that interact with A�, B�, and C� of the protein,
and hence only ligand i can bind, and not ii. In this model, the entry/approach
of the ligand is assumed to be fixed (i.e. here it is shown from above the
binding plane). C, four-location model. As per this model, the fourth site is
essential and decides the entry of the ligand. D� and D� fix the entry of the
ligand. However, D� and D� will bind ligands with opposite chirality (adapted
from Refs. 46 and 47). This research was originally published in Nature. Ogs-
ton, A. G. Interpretation of experiments on metabolic processes, using iso-
topic tracer elements. Nature. 1948; 162:963. ©Springer Nature; and Nature.
Mesecar, A. D., and Koshland, D. E., Jr. A new model for protein stereospeci-
ficity. Nature. 2000; 403:614 – 615. ©Springer Nature.
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ternary complex with aa-tRNA (EF-Tu�GTP�aa-tRNA); the aa-
tRNA release to the ribosome is coupled to the hydrolysis of
GTP to GDP (66). The binding of aa-tRNAs to EF-Tu is opti-
mal, such that it is bound neither very strongly nor loosely to
avoid problems in the delivery to the ribosome. A stronger
binding might hinder effective ribosomal delivery, and if bound
loosely, the substrate will dissociate before reaching the target
site (i.e. the ribosome). Structural and biochemical studies have
shown that EF-Tu binds to the tRNA, whereas the amino acid is
accommodated in the amino acid– binding site, which is large
enough to accommodate amino acid as big as tryptophan (67).
The mechanism by which EF-Tu achieves optimal binding with
such a huge variation in amino acid side chains is an interesting
puzzle, which was explained using the concept of “thermody-
namic compensation” by Uhlenbeck and co-workers (68). They
have shown that the binding affinity of the smaller amino acids
is weak, which is compensated by a relatively stronger binding
to the tRNA, and in the case of larger amino acids, the stronger
binding affinity for the side chain is compensated by a relatively
weaker affinity for tRNA. The compensation mechanisms
ensure that the overall binding affinities of all of the different
aa-tRNAs to EF-Tu are similar and fall within a narrow range
(0.37–7 nM) of Kd values (69).

It should be clear from the compensation mechanism that
the binding of D-amino acids in the amino acid– binding pocket
of the EF-Tu will decide its ability to participate in peptide
synthesis. The affinity of D-aa-tRNAs to EF-Tu is found to be
25-fold less when compared with its L-aa-tRNAs (70, 71).
Remarkably, the 25-fold difference in binding affinity is suffi-
cient to discriminate the stereoisomers, and thus EF-Tu shows
a biased preference for the L-amino acids. The difference in
affinity for the stereoisomers is likely to arise from the ability of
the EF-Tu to strongly select the amino acid by specifically pick-
ing up the amino group and the carbonyl oxygen, thereby
restricting the orientation of the side chain (Fig. 4). It should
also be noted that differences in binding affinities of amino
acids and tRNAs aid in resampling of weakly bound mischarged
aa-tRNAs, which are eventually corrected by the proofreading

domains of aaRSs, thus contributing to the overall fidelity of
translation (72).

Ribosome

Ribosomes are the information-decoding centers, wherein
amino acids are coupled together by a peptide bond in a specific
order depending on the mRNA sequence and aa-tRNAs act as
the substrates (66, 73–82). Before the release of aa-tRNA from
EF-Tu, the ribosome checks the pairing of codon (in mRNA)
and anti-codon (of the tRNA), in the case of a cognate pairing,
following which hydrolysis of GTP (EF-Tu– bound) to GDP is
induced, thus leading to the release of aa-tRNA in to the A-site
(83, 84). Once the aa-tRNA is accommodated in the A-site, the
amino group of the amino acid mounts a nucleophilic attack on
the carbonyl carbon of the peptidyl-tRNA (pt-tRNA), which is
lodged at the P-site. As a result, a peptide bond is formed
between the A-site amino acid (of aa-tRNA) and the P-site pep-
tidyl moiety (of the pt-tRNA), with a concomitant deacylation
of tRNA and the translocation of the mRNA by a codon,
thereby preparing the ribosome for the next round of polypep-
tide elongation (85, 86). The newly formed peptidyl moiety of
pt-tRNA will now have one amino acid more than the earlier
pt-tRNA (87, 88). In this plethora of events of peptide synthesis,
how D-aa-tRNAs are treated by the ribosome is of specific inter-
est and is essential for tweaking the ribosome for making non-
canonical peptides.

Since the past decade, researchers have been trying to exploit
the power of the ribosome to create novel polymers and also to
understand the mechanistic basis of protein folding using
unnatural amino acids. In the process, the use of D-amino acids
to generate variations in peptides has led to the understanding
of how D-aa-tRNAs are treated by the ribosomal machinery.
One of the early studies includes the demonstration that D-a-
mino acids, if charged on initiator tRNA, can efficiently initiate
peptide synthesis. All D-amino acids can participate in the
translation initiation process but with variable efficiencies, with
D-Tyr, D-Phe, and D-Cys being the maximum �25% (89). How-
ever, methionyl-tRNA synthetase does not mischarge D-Met;

Figure 3. Amino acid selectivity of tyrosyl-tRNA synthetase. A, L-Tyr captured in the TyrRS amino acid– binding pocket; amino group, carbonyl oxygen, and
the side chain hydroxyl groups help in substrate selectivity (PDB entry 1J1U). B, D-Tyr modeled in the TyrRS amino acid– binding pocket. C, overlap of D- and
L-Tyr, clearly depicting the mode of amino acid binding and also explaining the weak enantioselectivity of TyrRS.
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hence, the possibility of a D-amino acid acting as the initiator
amino acid is not physiologically relevant but nonetheless
opens up new scope for making N-terminal protease-resistant
peptides. Apart from initiation, the effect of D-amino acids dur-
ing elongation has also been well-studied. One of the early stud-
ies has shown that D-Tyr-tRNA is a poor substrate for peptide
elongation, as the number of GTPs hydrolyzed for the forma-
tion of one dipeptide is 1.4 and 4 molecules per L- and D-Tyr-
tRNA, respectively. Moreover, the rate of peptide bond forma-
tion with D-Tyr-tRNA is �30-fold slower when compared with
that with L-Tyr-tRNA (71, 90). However, these studies were
limited to only D-Tyr, and later on with the advent of flexizyme
(a synthetic ribozyme-based aminoacylation system), the effect
of all of the 19 D-amino acids on the elongation step was studied
(91). Every amino acid varies in its ability to get incorporated
into the growing polypeptide chain. Based on this property,
amino acids are divided into three groups, Group I (Ala, Ser,
Cys, Met, Thr, His, Phe, and Tyr), Group II (Asn, Gln, Val, and
Leu), and Group III (Arg, Lys, Asp, Glu, Ile, Trp, and Pro).
These three groups have respective elongation efficiencies of
�40, 10 – 40% and no detectable incorporation (91). However,
the consecutive addition of D-amino acid (including a few non-

proteinogenic amino acids (nPAAs)) by using a natural system
is still a challenge and clearly establishes that ribosome acts as a
checkpoint for the incorporation of D-amino acids.

The mechanistic basis of why elongation using D-amino acids
is very slow and also how the ribosomal machinery prevents the
infiltration of D-amino acids was recently addressed through
crystal structures of the ribosome in complex with 73ACCA76

(which mimics the 3� CCA terminal of tRNA) linked to D-Phe
with an amide bond and with puromycin linked to 74CC75, an
L-aa-tRNA analogue (92). Both of the substrates were captured
in the A-site of the ribosome, which mimics the prepeptide
bond conformation along with a free initiator tRNA in the
P-site (Fig. 5). The tRNA is perfectly oriented in place with
the CCA end of tRNA making the canonical interaction with
the G2553 nucleotide of the A loop of 23S rRNA, which is
essential for proper positioning of the substrate in the A-site
cleft (86, 93). The amino acid side chain component is accom-
modated in the large A-site cleft, which is a highly conserved
feature across different ribosomes from different forms of life.
However, what is strikingly different is the orientation of the
amino group of the D-amino acid compared with that of the
L-analogue, which is lodged in the A-site. The amino group of

Figure 4. Elongation factor in complex with L-Phe-tRNAPhe. A, crystal structure of a ternary complex, EF-Tu (surface representation in blue), GTP (shown as
spheres in the GTP-binding site), and L-Phe-tRNAPhe (tRNA shown in a wire and stick representation with amino acids as spheres) (PDB entry 1TTT). B, zoomed in
view of an amino acid (of L-Phe-tRNAPhe) bound in the amino acid– binding pocket of EF-Tu. C, stick representation of the amino acid– binding pocket showing
key interactions with the ligand (L-Phe).
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aa-tRNA (accommodated in the A-site) initiates a nucleophilic
attack on the carbonyl carbon of the pt-tRNA; prior to this, the
amino group makes an interaction with 2�-OH of the A76
nucleotide of pt-tRNA, which is essential for optimal position-
ing of the substrates for nucleophilic attack on carbonyl carbon
(pt-tRNA) and subsequent shuttling of protons (93). In the case
of D-amino acid– bound structure, the distance between the
amino group and the 2�-OH is greater than 3.5 Å, which is
unfavorable for the formation of a peptide bond. These differ-
ences in orientation are mainly due to the steric clash of the
amino acid with the universally conserved U2506 residue of the
peptidyltransferase center (PTC). Thus, U2506 acts as a chiral-
discriminating nucleotide by not allowing optimal orientation
of even the smallest D-amino acid in the PTC, which is beauti-
fully exemplified in the form of slow peptide bond formation
rates. The slow peptide bond formation rates can potentially
allow extremely rare incorporation of D-amino acids at random
locations; however, further probing is required to understand
why the incorporation of consecutive D-amino acids is a
challenge.

D-Aminoacyl-tRNA deacylase

DTD was the first trans-editing factor to be discovered way
back in 1967, when its biochemical activity on D-Tyr-tRNATyr

and D-Phe-tRNAPhe was demonstrated using crude extracts of
bacteria (94). Later studies have shown that DTD can act on
multiple D-aa-tRNAs irrespective of the amino acid side chain
(64, 95). Thus, DTD was demonstrated to proofread the erro-
neously generated D-aa-tRNAs by aaRSs (62–64, 94, 96). In con-
trast to EF-Tu and the ribosome, which show a preference for
L-aa-tRNA binding, DTD specifically binds to D-aa-tRNAs and
removes the D-amino acids from the tRNA, thus allowing the
tRNAs to recycle back for protein synthesis (70, 71, 97). DTD,
therefore, aids in the process of maintaining/enforcing pro-
teome homochirality and thus in proteome homeostasis. The
physiological relevance of DTD was demonstrated in Esche-

richia coli and Saccharomyces cerevisiae, wherein DTD knock-
out strains were found to be sensitive to D-amino acids, and the
same was observed in the case of DTD knockdown HeLa cell
lines. Interestingly, the expression of DTD in human tissues
directly correlates with the levels of D-amino acids present (98).

DTD is conserved across all bacteria and eukaryotes but is
absent in archaea. Surprisingly, a DTD-like fold is found as the
N-terminal domain (NTD) of the archaeal ThrRS, which proof-
reads L-Ser mischarged on tRNAThr (99, 100). However, the
sequence identity between E. coli DTD and Pyrococcus abyssi
NTD is �14%. It is quite interesting to note that NTD has no
sequence or structural homology with the canonical class II
editing domain of bacterial and eukaryotic ThrRS. The struc-
tural homology between DTD and NTD has led to a model for
the perpetuation of homochirality. During early evolution, a
DTD-like D-amino acid– editing module might have been cou-
pled to synthetases (which may have poor chiral discrimination
capacity, as explained earlier) either covalently and/or func-
tionally to avoid the infiltration of D-amino acids into proteins.
Later on, in bacteria and eukaryotes, this activity was retained
in the form of a DTD, whereas in archaea, it remained coupled
to ThrRS and fine-tuned to deacylate L-Ser-tRNAThr. Notably,
in the case of archaea and cyanobacteria, both of which lack
DTD, different D-aa-tRNA– editing modules exist, in the form
of DTD2 and DTD3, respectively (101, 102). DTD2 and DTD3
are functional homologs of DTD but share no sequence or
structural homology either with DTD or between themselves. It
is intriguing to note here that plants have both DTD and DTD2;
the physiological relevance of this functional redundancy is yet
to be deciphered. The universality of DTD function emphasizes
the essentiality of chiral proofreading in all three domains of
life.

Biochemical studies have shown that DTD proofreads mul-
tiple D-aa-tRNAs but does not act on even the smallest L-amino
acid (L-Ala). The structural basis for this absolute configuration

Figure 5. Chiral discrimination at the A-site of the ribosome. Shown is the structure of the ribosome showing the A-site in complex with the aa-tRNA analog
and the P-site with peptidyl-tRNA (taken from PDB entry 1VY4). The U2506 nucleotide of the 23S rRNA acts as a chiral discriminatory residue by allowing
L-aa-tRNA to optimally orient for peptide bond formation but not the D-aa-tRNA. A, complex (PDB entry 6N9E) with L-aa-tRNA analog (CC-puromycin; for the
sake of clarity, the hydroxy methyl of methyltyrosine is removed) shown in magenta. B, complex (PDB entry 6N9F) of D-aa-tRNA (ACCA-D-Phe) shown in yellow.
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specificity was unraveled by solving the co-crystal structure of
DTD with a substrate analog, namely D-tyrosyl-3�-aminoad-
enosine (D-Tyr3AA) (103). The crystal structure revealed no
side chain recognition of D-Tyr (D-Tyr3AA) beyond the �-car-
bon and was observed to be projecting out of the active site,
which readily explains why the activity of DTD is side chain-
independent (Fig. 6). Further structural analysis led to the iden-
tification of an invariant cross-subunit Gly-cisPro motif (GP-
motif) that imparted stereospecificity to the enzyme. The cis
conformation of the GP-motif orients its carbonyl oxygen
atoms parallel and projecting into the active site, which cap-
tures the amino and �-carbon of the substrate (D-aa-tRNA) and
hence is proposed to be involved in D-chiral selection. An intri-
cate analysis of the DTD active site by systematic modeling of a
methyl group, an amino group, and a hydrogen atom attached
to the chiral carbon has led to the proposition that DTD is an
L-chiral rejection module (104). The GP-motif essentially acts
as a “chiral selectivity filter” and does not allow even the small-
est L-amino acid to be accommodated in the active site.

The Gly-cisPro motif in the active site of DTD, while ensur-
ing L-amino acid rejection, results in achiral glycine binding.
The structure of DTD in complex with the glycyl-3�-aminoad-
enosine (Gly3AA) in combination with biochemical activity of
DTD on Gly-tRNAGly has led to the understanding that binding
of glycine is a happenstance. This “misediting paradox” of DTD
on Gly-tRNAGly is resolved by EF-Tu in the cellular scenario,
which confers protection to the achiral substrate. Nevertheless,
this protection is not very strong, and even a �4 -fold increase
of DTD in in vitro biochemical assays could completely over-
come EF-Tu’s protection of Gly-tRNAGly. This was substanti-
ated in vivo, wherein in E. coli, overexpression of DTD was
shown to cause misediting of Gly-tRNAGly, manifesting itself as
cellular toxicity. DTD levels in the cells are kept low, and hence
it acts only on D-aa-tRNAs and not on Gly-tRNAGly, as is evi-
dent from the expression profile of DTD in various databases
(SGD, Flybase, etc.). However, the activity of DTD on Gly has
been recently shown to be not a design flaw but instead advan-

tageous, as it can proofread Gly-tRNAAla, a misacylation prod-
uct of AlaRS. Notably, unlike in the case of cognate Gly-tRNA-
Gly, EF-Tu does not offer any protection to the noncognate Gly-
tRNAAla, and the discriminator (N73) base of the tRNA has
been shown to play a crucial role in this differential DTD activ-
ity (105, 106). Bacterial DTD has robust activity on noncognate
Gly-tRNAAla and 1000-fold less on cognate Gly-tRNAGly, of
which a 100-fold difference is mainly attributed to the discrim-
inator base (N73) of tRNA. Very recently, a newer variant of
DTD has been identified and named Animalia-specific tRNA
deacylase (ATD). Interestingly, the GP-motif is in trans confor-
mation, owing to which, ATD can act on tRNAs charged with
smaller L-amino acids (e.g. L-Ala), suggesting the critical role of
the Gly-cisPro motif of DTD in L-chiral rejection (107).

With respect to catalysis, mutations in the conserved active-
site residues of DTD do not affect its deacylation activity. Sim-
ilar to NTD, the side chains have no role in either substrate
specificity or catalysis; instead, the 2�-OH of A76 (of tRNA) was
shown to be indispensable for its activity (108, 109). Taking
cues from NTD and on the basis of structure, a similar RNA-
based substrate-assisted catalysis mechanism was proposed for
DTD. The role of 2�-OH (of A76) in catalysis was convincingly
shown using modified tRNAs that harbored 2�-deoxy or 2�-de-
oxyfluoro at the 3�-terminal A76 position; the use of these mod-
ified substrates completely abrogates DTD’s activity (104, 110).
With RNA playing a central role in catalysis as well as in sub-
strate specificity, DTD has been proposed to be of primordial
origin and must have played a pivotal role in maintaining
“enantiomeric fidelity” starting from the early evolution of
translational machinery.

Synthetic biology approach for introducing D-amino
acids into polypeptide chains

Incorporation of D-amino acids into the polypeptide chain
enhances stability, alters its physicochemical properties, and
avoids degradation by proteases, and therefore such polypep-
tide chain could serve as better antimicrobial peptides. Keeping

Figure 6. Enantioselectivity mechanism of DTD. A, crystal structure of DTD in complex with D-Tyr3AA (PDB entry 4NBI). The active site is at the dimeric
interface (each monomer is colored differently). The ligand is shown in magenta, and the GP-motif is shown in green sticks. B, D-Tyr in the active site; the side chain
projects out of the pocket, and the GP-motif forms the base. C, L-Tyr modeled in the active site, clearly showing the side chain clash with the GP-motif.
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in view the upcoming challenges posed by multidrug-resistant
bacteria, the advent of antimicrobial peptides provides a pleth-
ora of polymers with novel characteristics that can be employed
against these resistant bacteria. Due to the presence of multiple
reactive groups, the chemical synthesis of peptides involves
complex protection and deprotection steps, which decrease the
overall yield of the product (111). On the other hand, enzymatic
synthesis of peptides is specific, involves a lesser number of
steps, easy product recovery, and does not involve the use of any
toxic compounds or solvents. The challenges in generating
these peptides are enormous and include overcoming the L-a-
mino acid bias of the entire translation system, guarded by
aaRS, EF-Tu, DTD, and the ribosome.

One of the initial challenges is to generate a system that can
allow the addition of any nonproteinogenic amino acid (D-a-
mino acid, N-alkyl-amino acid, �-amino acids, or any variation
on the side chain) onto the tRNA. In the context of D-amino
acids, only four synthetases (TyrRS, TrpRS, PheRS, and AspRS)
have been demonstrated to charge a D-stereoisomer on tRNA.
Using RNA-based selection/evolution approaches, a random
scaffold of an �45-nucleotide flexizyme with the ability to ami-
noacylate tRNA was first identified and named FX3 (112). Flex-
izyme is a ribozyme that is versatile/promiscuous in adding any
amino acid to any tRNA. The only prerequisite for the flex-
izyme is that the amino acid should be coupled to a leaving
group, such as cyano methyl esters or dinitro benzyl esters or
chlorobenzyl thioesters (113). The introduction of flexizyme
along with the purified recombinant protein– based translation
system has led to a major explosion in trials to incorporate
nPAAs (114).

The second major hurdle in incorporating D-amino acids
into growing polypeptide chains is the low binding affinities of
EF-Tu toward D-aa-tRNAs. The reduced binding is mainly due
to the amino acid component, which has poor compatibility
with the EF-Tu amino acid– binding site (68, 115). The low
binding affinity of tRNA can be overcome by altering the tRNA
determinants (T�C arm), which are responsible for EF-Tu
binding, or by the use of a tRNA scaffold (tRNAGly/Gln) that has
higher affinity. Both strategies have been employed and shown
to enhance the binding of D-aa-tRNA to EF-Tu. A more recent
and interesting attempt was made using elongation factor P
(EF-P), which enhances the peptide formation between two
consecutive proline residues which is otherwise a very slow pro-
cess (116, 117). EF-P is a specialized elongation factor that binds
to the D-arm of tRNAPro and promotes peptide bond formation
(118). A chimeric tRNA that has determinants for strong EF-Tu
binding in the T-arm (tRNAGlu) and also for EF-P binding in the
D-arm (tRNAPro) was loaded with D-amino acids and used for in
vitro translation. This led to a �5-fold increase in D-amino acid
incorporation and could also introduce five consecutive D-a-
mino acids into the nascent peptide (119). Very recently, a mac-
rocyclic peptide made of 10 successive D-amino acids was syn-
thesized using the same system (120).

The ribosome plays a crucial role in a successful generation
of peptides using nPAAs. Earlier studies have clearly shown
that the peptide bond formation is slow due to the inappropri-
ate positioning of the nucleophile (aa-tRNA) and the electro-
phile (pt-tRNA), which is lodged at the P-site. To overcome this
incompatibility of PTC, mutations in the domain V of the 23S
rRNA were introduced using random mutagenesis, and these

Figure 7. Chiral checkpoints for maintaining the enantiomeric fidelity of proteome. The translation apparatus, which includes aaRS, EF-Tu, and ribosome,
has a preference for L-amino acids/L-aa-tRNAs but is porous to D-amino acids/D-aa-tRNAs as well. DTD specifically decouples D-aa-tRNAs and helps to recycle the
tRNAs, and it also aids in maintaining the homochirality of cellular proteome.
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were examined for their ability to use D-aa-tRNAs for transla-
tion. The WT ribosome introduces D-Phe and D-Met into the
dihydrofolate reductase protein with an efficiency of 5.2 and
9.6%, respectively, compared with the incorporation of L-Phe
and L-Met. One of the mutants of ribosome had higher effi-
ciency of incorporating D-Phe (22%) and D-Met (49%). These
mutations include 2447GAUA2450 to 2447UGGC2450, which is
close to the PTC, and 2457UGAUAC2462 to 2457GCUGAU2462,
which is close to the A-site; however, the mechanistic details
are yet to be understood (121, 122). The structure of the ribo-
some in complex with D-aa-tRNA analog has revealed that an
invariant U2506 does not allow optimal binding of the D-amino
acid in the A-site and thus acts as an important chiral gating
residue (92). Mutating U2506 would be the obvious choice to
reduce the chiral specificity of the ribosome, but mutation of
this particular residue abolishes the peptide bond formation
activity by �5000-fold (87). Currently, the mechanistic under-
standing of the ribosome PTC with respect to chiral selection is
limited and needs further structural and biochemical probing
for further engineering.

Overall, the synthetic biology approaches of making an alter-
native to aaRSs, tweaking the tRNA to improve the binding to
EF-Tu, and also introducing mutations in the ribosome (23S
rRNA) PTC have improved the efficiency of D-amino acid
incorporation. Despite the impressive progress in making non-
canonical peptides using the translational machinery, problems
such as contamination with L-amino acids and the yield are of
concern and are currently being investigated.

Conclusions

During early evolution, the protein world selected L-chirality.
What favored the selection of L-amino acids over D-amino acids
and led to biological systems fine-tuning the protein synthesis
machinery to use only L-amino acids is still debated. However, it
would be wrong to imagine that D-amino acids have been elim-
inated from the system; instead, D-amino acid pools have been
exploited to perform very important physiological roles, such as
maintaining cell wall integrity and utilization as a nitrogen
source, as neurotransmitters, and as defense molecules. In the
wake of the important roles assigned to D-amino acids, their
coexistence with L-amino acids becomes inevitable. Thus,
translation machinery has employed multiple checkpoints to
ensure the homochirality of the proteome. These checkpoints
mainly include aaRSs, EF-Tu, ribosome, and DTD, of which the
first three have a strong but not exclusive preference for L-a-
mino acid/L-aa-tRNAs and hence preclude D-amino acid entry
into the growing polypeptide chain. Unlike other factors that
discriminate based on binding affinity, DTD enzymatically
clears the D-aa-tRNAs from the cellular pool, thereby continu-
ously guarding the translation machinery against the threat of
D-amino acids and also recycling the tRNAs for faithful trans-
lation (Fig. 7). The conservation of DTD-like fold and DTD
function across domains of life and its primordial mode of
RNA-dependent action suggest the importance of chiral proof-
reading. Recent attempts to make novel peptides containing
D-amino acids have led to a major understanding of how tRNA,
EF-Tu, and ribosome can be tweaked to improve the in vitro
translation of D-amino acids. Accumulating evidence from the

past has shown that subtle changes in editing activity lead to
pathological conditions such as neurodegeneration, ataxia, and
mitochondrial encephalopathies (123, 124). The atomic details
of many of the editing processes are still unknown and are
essential to understand the physiological impact they create.
Very recently, it has been seen that errors during stress condi-
tions are tightly regulated, which in turn provides an advantage
to the respective system (125–128). In this context, cellular per-
turbances in the D-amino acid discrimination potential and
their relevance in disease manifestation remain to be explored.
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