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Abstract

Computational methods that produce accurate protein structure models from limited experimental 

data, e.g. from nuclear magnetic resonance (NMR) spectroscopy, hold great potential for 

biomedical research. The NMR-assisted modeling challenge in CASP13 provided a blind test to 

explore the capabilities and limitations of current modeling techniques in leveraging NMR data 

which had high sparsity, ambiguity and error rate for protein structure prediction. We describe our 

approach to predict the structure of these proteins leveraging the Rosetta software suite. Protein 

structure models were predicted de novo using a two-stage protocol. First, low-resolution models 

were generated with the Rosetta de novo method guided by non-ambiguous nuclear Overhauser 

effect (NOE) contacts and residual dipolar coupling (RDC) restraints. Second, iterative model 

hybridization and fragment insertion with the Rosetta comparative modeling method was used to 

refine and regularize models guided by all ambiguous and non-ambiguous NOE contacts and 

RDCs. Nine out of 16 of the Rosetta de novo models had the correct fold (GDT-TS score >45) and 

in three cases high-resolution models were achieved (RMSD <3.5 Å). We also show that a meta-

approach applying iterative Rosetta+NMR refinement on server-predicted models which employed 

non-NMR-contacts and structural templates leads to substantial improvement in model quality. 

Integrating these data-assisted refinement strategies with innovative non-data-assisted approaches 

which became possible in CASP13 such as high precision contact prediction will in the near future 

enable structure determination for large proteins that are outside of the realm of conventional 

NMR.
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Introduction

A current focus in structural biology has been the development of advanced integrative 

modeling techniques that can determine structures of proteins and their interactions from 

limited experimental data1,2. Those methods are called in when classical structural biology 

techniques such as X-ray crystallography and nuclear magnetic resonance (NMR) 

spectroscopy fail to obtain complete and unambiguous data at atomic-detail. NMR can 

obtain such data for small proteins under physiologically conditions but loses quickly 

resolution and sensitivity when the protein under study becomes large (>20 kDa). The 

classical approach of collecting short-range inter-proton distance measurements by nuclear 

Overhauser effect spectroscopy (NOESY) becomes difficult due to peak line broadening and 

low signal-to-noise ratio. Low-resolution and sparse NMR datasets thus call for 

computational methods that can translate them into accurate structural models. At the same 

time these methods add atomic-detail information to the model which may not be present in 

the NMR data, e.g. sidechain positions.

The Rosetta program3 offers a unique platform of integrative modeling tools and has been 

designed to make use of different types of NMR data. For example, chemical shifts (CSs)4–6 

and residual dipolar couplings (RDCs)7 can be used to guide the search and assembly of 

small peptide fragments with known conformations from which Rosetta builds a protein 

structure de novo. Using only this kind of backbone NMR data, which is available at an 

early stage of the NMR structure determination process, this method, called ‘CS-Rosetta’, 

was able to correctly model the structure of proteins up to 25 kDa8. Incorporation of sparse 

NOEs from selectively ILV-labeled deuterated proteins and improvements to the 

conformational sampling algorithm were shown to increase the application limit to 40 kDa9. 

Moreover, the CS-Rosetta method was extended to include sparse contact information10 and 

structural templates11 from homologous proteins with guidance from chemical shift-based 

alignments. With the impressive advancement in coevolution- and deep-learning-based 

contact prediction methods12, evolutionary couplings (ECs) become now increasingly 

available as new type of distance restraints to supplement sparse NMR data13 and facilitate 

de novo protein structure prediction in Rosetta14,15.

The aforementioned CS-Rosetta studies used expert-collected experimental NMR datasets 

with high completeness in the sense that chemical shift assignments were available for 

almost all residues. In addition, two or more RDC datasets and one to two NOEs per residue 

were used9. The data provided in CASP13 comprised simulated data and one real NMR 

dataset. The number of NOE restraints was comparable to that one in previous CS-Rosetta 

studies but datasets contained a considerable number of NOEs with high ambiguity as well 

as incorrectly assigned NOEs. Furthermore, in order to simulate realistic difficulties in the 

data collection process, e.g. line broadening due to internal protein motions, residues were 

removed from the peak list, and hence, the assignment became incomplete; RDCs, CS-

derived torsion angle restraints and NOEs were available for only part of the protein. It is an 

interesting question how sparse and ambiguous NMR data are best incorporated into 

modeling methods, to which extent they can improve the accuracy of the predicted structural 

model and whether they can provide higher accuracy than so-called ‘free modeling’ 

techniques which omit the use of experimental data.
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In CASP13, we employed a two-stage approach adopted to the ambiguity level of the 

restraints: initial fold-level modeling guided by unambiguous data followed by iterative 

model hybridization and refinement using all NMR data. Our results show that with this low 

amount of NMR information Rosetta can generate models that have the correct fold and are 

in some cases very close to the native structure. In our analysis after CASP13, we further 

explored the possibility of combining NMR-assisted modeling with state-of-the-art free 

modeling techniques which have seen considerable improvements in the last CASP 

assessment. The main driving forces seem to be the increasing availability of structural 

templates16–18 and the high precision of contact predictions which have become possible 

due to new technologies like deep convolutional neural networks that allow efficient use of 

coevolution information19–22. As those new modeling techniques are made available to 

users, e.g. in the form of a public webserver, they can be easily incorporated into the NMR 

structure prediction protocol. Here, we demonstrate that models submitted by modeling 

servers can be easily recombined and hybridized with Rosetta and refined with NMR data to 

yield structure predictions with better accuracy than Rosetta-NMR models and the original 

server predictions. We therefore suggest a ‘meta-approach’ to NMR structure prediction 

which supplements sparse experimental data with complementary restraints, e.g. from 

homolog templates and predicted contacts. This meta-approach can be a constructive way to 

determine the structures of challenging protein targets which till now were outside of the 

realm of solution state NMR.

Materials and Methods

Overall structure prediction protocol

As in previous CASP contact-assisted experiments23,24, a two-stage modeling approach 

consisting of initial fold-level modeling and subsequent model refinement was employed 

(Figure 1).

The provided NMR data comprised simulated 1H-1H-NOE and 1H-15N-RDC data for 11 out 

of 12 protein targets as well as one real experimental 1H-1H-NOE dataset for one protein 

target. In addition, ϕ/ψ dihedral angle ranges (with ±30° uncertainty) which had been back-

calculated from the simulated or real chemical shifts (CSs) were provided by the organizers. 

The NMR data were sparse and ambiguous, i.e. many NOE cross-peaks could be assigned to 

more than one possible pair of H-atoms. In addition, the NOE dataset contained a 

considerable fraction of false positive (FP) contacts arising from incorrect peak assignments 

because NOEs had been extracted from NOESY-NMR spectra simulated with realistic peak 

line widths and signal-to-noise ratio. Thus, denoising and optimal use of the ambiguous data 

along the modeling pipeline was important.

In the first modeling stage, only non-ambiguous NOEs and RDCs were used. In the 

following refinement stage, starting from these fold-level models, ambiguous data were 

included (Figure 1a). These NMR data were further supplemented by evolutionary coupling 

(EC) distance restraints which were provided by the CASP organizers and had been 

computed with the MetaPSICOV method25.
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Parallel to calculations with this full set of restraints (i.e. dihedral, NOE, RDC and EC 

restraints), a second independent prediction using only dihedral and RDC restraints was 

made for every target, except N1008 for which no RDCs had been measured. Purpose of this 

minimal restraint set was to test the efficacy of backbone-only data for NMR structure 

prediction. The best-scoring model made with the full set of restraints was submitted as 

Model 1, whereas the RDC-only model was submitted as one of the remaining four models, 

usually Model 2.

Proteins larger than 200 residues in length for which domain boundaries could be 

unambiguously identified based on the NOE contact map were parsed manually into 

domains. These domains were modeled and refined separately, and afterwards recombined 

to the full-length model with RosettaCM26. This strategy was applied to targets N0989 (246 

residues) and N1005 (326 residues). Similarly, the heterodimeric target N0980 was predicted 

by first modeling and refining its two subunits (N0980s1 and N0980s2) separately, and 

afterwards assembling them with RosettaDock27.

Fold-level modeling

The Rosetta de novo structure prediction protocol28,29, referred to as RosettaAbInitio, was 

used for initial fold-level modeling (Figure 1a) generating 10,000 models for each target. 

The fragment library for the RosettaAbInitio protocol contained 200 3mer and 9mer peptide 

fragments per residue position which were selected with the Rosetta Fragment Picker30 

guided by PSIPRED31 and Jufo9D32 secondary structure predictions and the CS-derived 

dihedral angle restraints. Non-ambiguous NOEs, ECs and RDCs were included in the 

scoring function with weights that were adjusted such that the sum of the restraint scores 

was approximately equal to the Rosetta energy.

After fragment assembly, ‘centroid’ (i.e. coarse-grained representation in Rosetta) models 

were converted to all-atom models and subjected to a short optimization in both internal and 

Cartesian space using the RosettaFastRelax33 protocol.

One hundred models with the lowest combined Rosetta energy and restraint score were 

selected for the subsequent refinement stage. In order to maintain structural diversity in the 

model pool a minimum mutual distance between models corresponding roughly to a TM-

score34 of 0.75 was enforced in the selection step. Furthermore, a penalty was applied to 

models which were dissimilar to the ‘reference’ model, i.e. the lowest energy representative 

from the three largest model clusters, by more than 25% GDT-HA.

Model refinement

Initial fold-level models were recombined and refined using an iterative version of the 

RosettaCM26 protocol (Figure 1b) which was originally developed for comparative 

modeling. Structural optimization was accomplished by extracting and recombining 

secondary structure segments from a pool of low energy models together with fragment 

insertion. At each refinement step, 480 to 720 new models were generated and the best 100 

models were selected based on the sum of their Rosetta energy and NMR restraint score for 

the next iteration. The minimal mutual model distance was gradually lowered in subsequent 

selection steps. Refinement was continued until the model pool was converged in terms of 
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the pairwise GDT-HA or the maximum refinement step which was possible within the time 

constraint of the CASP experiment was reached.

After the final refinement step, the models with the lowest Rosetta all-atom energy and 

restraint score were visually inspected. If convergence was reached the top-scoring model 

was selected and submitted as Model 1. If these models varied significantly, they were 

clustered. Models usually fell within two to three clusters and the models corresponding to 

the cluster centroids were selected for submission.

Incorporation of server-models into Rosetta+NMR refinement

As small adjustment to the described two-stage protocol, we explored in our analysis after 

CASP13 whether the use of template information can improve our structure predictions 

(Figure 1c). We chose to include the submitted models of five publicly available servers 

which had the best performance in the previous CASP12 experiment (Robetta35, I-

TASSER36,37, QUARK38, RaptorX-Contact39, RaptorX-TBM40) into the RosettaCM 

refinement stage. Those models leverage other types of restraints than NMR data which is 

why we consider their incorporation a ‘meta-approach’ to NMR structure prediction (Figure 

1c). Models were recombined and refined with NMR data through 20 rounds of RosettaCM. 

The model with the lowest combined Rosetta energy and restraint score after the last 

refinement step was deemed the final model and compared to the experimental reference 

structure.

Incorporation of NMR restraints

Contacts inferred from non-ambiguously assigned NOE cross-peaks were used as ‘strong’ 

restraints with a flat-bottom bounded penalty function and applied during all stages of the 

modeling protocol. Only contacts between residues which were more than five sequence 

positions apart were kept in order to avoid over-constraining and distorting the local model 

geometry.

The applied NOE penalty function grows quadratically outside of the lower (lb) and upper 

(ub) bound, and linearly at distances larger than 0.5 Å beyond the upper bound which was 

set to the simulated NOE distance plus an additional 1.5 Å padding. The lower bound was 

set to 1.5 Å.

In the low-resolution phase of the RosettaAbInitio and RosettaCM protocols in which the 

protein adopts a coarse-grained representation and the sidechain is treated by a single 

‘centroid’ atom, sidechain-sidechain NOEs were mapped onto the centroid atom as 

described previously9. The upper bound of the mapped restraint was increased to ub,map = ub 

+ h where h is the number of methyl groups involved in the restraint (0, 1 or 2). During full-

atom modeling, sidechain-sidechain NOE restraints involving groups of equivalent or non-

stereochemically assigned protons were evaluated after applying a r−6 distance averaging.

Ambiguous NOE contacts were incorporated in the second refinement stage: as sigmoidal 

restraints between Cβ atoms (Cα in case of glycine) in centroid phases and as groups of 

nested bounded restraints when the protein was in full-atom representation. A sigmoidal 

restraint was created for every residue pair with sequence separation of six or higher 
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belonging to one or more ambiguous contacts in the NOE peak list. A weighting factor was 

applied for each restrained residue pair which was set inversely proportional to the 

ambiguity level (i.e. inverse of the group size) of the ambiguous NOE. The final weight was 

the sum of this ratio over all ambiguous NOEs which a particular residue pair had been 

assigned to. Only the highest scoring 3L/2 (L is the sequence length) restraints were used. 

The sigmoidal scoring function was centered at a Cβ-Cβ distance of 8 Å and offset by a 

value of −0.5 such that the restraint score fell with the range from −1 (satisfied) to 0 (non-

satisfied).

For full-atom modeling, ambiguous NOE contacts were represented as a group of nested 

bounded restraints with a penalty function set up as described above. Only the lowest 

scoring restraint from this group was considered in calculating the total NOE restraint score.

Like ambiguous NOEs, the MetaPSICOV-predicted EC contacts were incorporated as 

sigmoidal restraints between Cβ atoms (Cα in case of glycine) centered at a 8 Å distance 

and weighted by their confidence score. Only the L most confident restraints (L is the 

sequence length) with a sequence separation more than five residues were used.

Simulated amide-backbone RDCs were added as additional pseudo-energy to the restraint 

score. The RDC score was thereby calculated as sum of squared errors between simulated 

and model-predicted RDC values after computation of the molecular alignment tensor by 

singular value decomposition (SVD).

CS-back-calculated dihedral angle ranges were used as ϕ/ψ angle restraints in the fragment 

selection process and scored with a periodic bounded penalty function which had a 

periodicity of 2π and grew quadratically outside of the specified dihedral angle range. A 

detailed description of the Rosetta restraint file format and application of each NMR 

restraint type can be found in supporting Method S1.

Results

Rosetta modeling translates limited NMR data into accurate structural models

An aim of the NMR-assisted structure prediction experiment in CASP13 was to investigate 

whether modeling techniques can leverage limited and ambiguous NMR data for protein 

structure modeling and whether NMR data improve the prediction accuracy. In order to 

mimic realistic conditions typically found in NMR studies of larger (>20 kDa) and dynamic 

proteins, the NMR datasets were sparse and contained erroneous NOEs. In addition, NMR 

data assignments covered only part (~50%) of the protein.

With our strategy of translating the provided NMR data into structural restraints after 

discarding contacts with minimal sequence separation (|i-j| ≤ 5) the average number of NOE, 

RDC and ϕ/ψ restraints per residue was 2.2, 0.8 and 0.5, respectively (Figure S1a). These 

are far fewer restraints than needed for experimentally driven NMR structure calculations 

which typically require 40–50 NOE contacts per residue. Moreover, a considerable fraction 

of NOE contacts were false positives (FP-NOEs) due to assignment errors or missing NOE 

peaks which were accounted for in the simulation by peak line broadening and low signal-
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to-noise ratio. By comparison with the reference structure, we estimate that NOE contacts 

had an average precision of 83% for the 12 modeling targets (Figure S1b). Importantly, only 

approximately half of the residues in the protein chain had at least one true positive (TP) 

NOE contact assigned (Figure S1c). RDC and ϕ/ψ angle restraints were available for 43% 

and 49% of the residues on average. Surprisingly, the precision of the MetaPSICOV EC 

contact restraints (computed as fraction of residue-residue pairs with a Cβ-Cβ distance <8 Å 

among the top-L scoring |i-j| ≥ 6 contacts) was clearly better (93%) than for the simulated 

NOE restraints reflecting the great improvement in the computational contact prediction 

methods.

Our submitted models agreed with the NMR restraints nearly as good as the native structure. 

The number of NOE contacts made in the submitted Model 1 was comparable to the 

contacts made in the reference structure, and, importantly, a considerable number of TP-

NOEs was made (Table S1). Excluding the two targets with the lowest GDT-TS score 

(N0989, N0981-D3) the average recall (i.e. number of TP-NOEs satisfied in the model vs. 

the native structure) was ca. 89%, and the average precision (i.e. number of TP-NOEs vs. 

number of all satisfied NOEs in the restraint set) was 86%. In addition, Rosetta models 

showed good RDC Q-factors41 (Table S2); the average RDC Q-factor was 43% (excluding 

targets N0989 and N0981-D3).

Model accuracy was significantly improved in regions with rich NOE contact information, 

and a clear inverse correlation between model-to-reference structure Cα-atom distance 

deviation and number and location of TP-NOE restraints was observed (see Figure S2 and 

S3). However, we also found cases with accurate backbone structure predictions despite 

limited or missing NOE contact information (e.g. for targets N0968s1 and N1008) showing 

that Rosetta modeling can supplement sparse data. Importantly, modeling was not misguided 

by erroneous NOE data; no significant correlation between model accuracy and number and 

location of FP-NOEs could be found.

Accuracy of Rosetta models and comparison to other methods

Our modeling strategy consisted of a two-stage approach (Figure 1): fold-level modeling 

with RosettaAbInitio and structure refinement with RosettaCM. RosettaAbInitio calculations 

rarely arrived at accurate models; the average GDT-TS score of the ten best scoring models 

over all targets was 30.5. Enhanced structural resampling via iterative model hybridization 

and fragment insertion with the RosettaCM protocol proved very effective in refining initial 

RosettaAbInitio models. Starting from these, the GDT-TS improved for all 12 targets, in 

some cases significantly (N0981-D5, ΔGDT-TS = 36.3). The average increase in GDT-TS 

over all targets was 16.7. Figure S4 summarizes the improvement in GDT-TS and shows our 

submitted models for all targets.

Model accuracy in CASP13 was assessed on the level of the full-length protein as well as 

individual domains yielding 16 evaluation units for the investigated 12 monomeric targets. 

From our first submitted de novo models built with NOEs and RDCs, six out of 16 

evaluation units had GDT-TS scores >60 and nine had GDT-TS scores >45 (see Figure 2a), 

at which typically the native fold is correctly predicted (TM-score >0.5)42. Using 

exclusively RDCs as restraints for model folding and refinement was insufficient to yield 
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accurate models. Only for 1/16 and 5/16 evaluation units the GDT-TS score was >60 and 

>45, respectively (Figure 2a).

Because the accuracy of our RosettaAbInitio starting models was generally low (only for 

three targets the GDT-TS was >45), we explored in our post-CASP13 analysis a meta-

approach and tested whether the use of server-models as templates for structure refinement 

with RosettaCM would have improved our predictions. To this end, we chose the five 

submitted models of the Robetta35, I-TASSER36,37, QUARK38, RaptorX-Contact39 and 

RaptorX-TBM40 server, which are all available for public users, and hybridized and refined 

those models through 20 rounds of RosettaCM. The model with the lowest score after the 

last refinement step was deemed the final model. With this procedure, the number of 

predictions with GDT-TS >60 and >45 increased to eight and twelve out of 16 evaluation 

units (Figure 2a). Furthermore, the NMR restraints helped to consistently improve model 

accuracy, and for 13/16 evaluation units the GDT-TS score after NMR-restrained Rosetta 

refinement was higher than the GDT-TS of the best model among the original 25 server-

models (Figure 2b and Figure S5).

Comparing our approach with other methods, we find that Rosetta calculations produced 

more predictions with higher GDT-TS score than the ‘baseline’ method in the NMR-assisted 

category (group 459; a hybrid method of ASDP43 and CYANA44,45) operating on the same 

restraint set (NOEs, RDCs and ECs). In 11/16 and 14/16 cases, our NMR-restrained de novo 
models and NMR-refined server-models, respectively, had higher GDT-TS scores (Figure 

2c). Compared to the group with the best score by all metrics in the NMR-assisted category 

(group 431), 3/16 of our de novo-predicted Models 1 had a higher GDT-TS. Incorporating 

server-models in Rosetta+NMR refinement is capable of achieving a comparable number of 

cases with superior GDT-TS (10/16) (Figure S6). It is a surprising result that our first 

submitted models are often not better than the best models from the non-assisted free 

modeling category (Figure 2d). This may reflect the big advancement in contact prediction 

methods which have pushed protein de novo structure prediction forward. In CASP13, the 

three contact prediction methods with the overall best performance achieved for this 

particular set of protein targets presented here (excluding N0981-D1, N0981-D4 and N0981-

D5 for which no predictions had been made), an average precision of 55%, 73% and 89%, 

respectively, evaluated on the top L, L/2 and L/5 long- (|i-j| ≥ 24) and medium-range (12 ≤ |i-

j| ≤ 23) contacts. The difference in model GDT-TS becomes more balanced when the free 

modeling predictions are compared to our NMR-refined server-models which shows that 

with adjustments to the protocol Rosetta can achieve equal performance.

Examples of models for which high accuracy was achieved are shown in Figure 3a–c. The 

Cα-RMSD from the native structure of the first submitted model for these three targets was 

below 3.5 Å (N1008: 2.06 Å, N0968s1: 2.88 Å, N0981-D5: 3.48 Å) enabling accurate 

sidechain placement. Furthermore, we submitted the best prediction for target N0957s1 

(GDT-TS = 56.0) among all predictors in the data-assisted and free-modeling categories.
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What went wrong: Importance of quaternary modeling and model bias from missing NMR 
data

Examples of unsuccessful structure predictions are given in Figure 3d+e. These include 

proteins with quaternary structure in which the target represents one subunit. Because of 

time limitations we did not pursue quaternary modeling for homo-oligomeric targets which 

is a notoriously difficult task when starting from de novo models and when interdomain 

contact information is insufficient. However, modeling of the oligomeric state becomes 

important when the protein is stabilized by interactions with neighboring subunits. This is 

the case for target N0989 where the N- and C-terminal domains make very little contacts 

with each other but are packed towards chain B and C (Figure 3d). Consequently, the 

Rosetta model of the monomer was predicted with a too compact, non-elongated 

conformation. The second example, N0981-D4, features an extended N-terminal helix that 

connects to the next domain and is stabilized by quaternary interactions. In our Rosetta 

model of the single domain (Figure 3e), the N-terminal helix is folded onto the central β-

sheet to maximize residue burial and because this helix was not restrained by NOE contact 

information.

For hetero-dimeric target N0980 modeling of the oligomeric state was carried out with 

RosettaDock starting from our de novo predictions of the two separate domains. This 

strategy turned out to be suboptimal because the small domain (N0980s2, chain B) was 

incorrectly modeled as compact globular protein, but adopts an elongated conformation 

wrapping around the larger domain (N0980s1, chain A) in the native structure. The ligand 

RMSD (computed on chain B after superimposition of chain A) of our submitted model was 

22.7 Å. A more suitable modeling strategy may involve simultaneous folding and docking of 

the smaller protein domain onto the larger domain which we explored in our post-CASP13 

analysis and which improved the ligand RMSD up to 12.8 Å (Figure S7).

The remaining targets with low model accuracy (N0981-D1, N0981-D2, N0981-D3) had 

poor quality fragments, especially N0981-D3 which had no 9mer fragment <1 Å to the 

native structure for 75% of its residues (compare with Figure S8). This target was difficult in 

several aspects. It had little regular secondary structure (≤46%) and an unusual β-sandwich 

topology with adjacent strands switching back and forth between two β-sheets.

Model accuracy of some targets suffered from missing NOE contact information leading to 

wrong domain orientations or loop conformations (compare with Figure S2 and S3). 

Examples of those regions in our submitted models include the long C-terminal loop in 

N0980s1, the N-terminal helix in N0981-D4 and the C-terminal β-sheet in N0968s2 which 

was flipped upside down. However, we also find instances in which high accuracy was 

achieved in regions having no or very little NOE contacts. For example, target N1008 used 

the fewest NOE contacts (0.65 per residue) with the lowest precision (~60%) but was 

predicted with 2.06 Å Cα-RMSD to the native structure.

Discussion

NMR data as limited as around two non-local TP-NOEs per residue and less than one RDC 

and dihedral restraint per residue were sufficient to generate protein models with the correct 
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fold. In some cases, even high-resolution models were achieved with Cα-RMSD better than 

3.5 Å from the native structure. Model accuracy was clearly superior in regions with more 

NOE contacts indicating that Rosetta can translate the contact information in biasing the 

model to the native structure.

Enhanced structural sampling which was accomplished in this study by iterative model 

hybridization and fragment insertion with RosettaCM was crucial to leverage the NMR 

restraints and improve model quality. Refinement made use of ambiguous contact 

information leading to significant improvements (~17 GDT-TS units on average) over 

RosettaAbInitio models generated with only non-ambiguous contacts. Use of template 

information in the form of server-models as input to NMR-guided RosettaCM refinement 

led to an additional increase in the average model GDT-TS score from 46.6 to 59.9 as 

observed in our post-CASP13 analysis. This amounts to half of the targets being modeled 

with higher accuracy than the best free modeling predictions. Encouraged by this result, we 

believe that a combination of NMR data with orthogonal structural information derived from 

e.g. template structures and predicted contacts (as outlined in Figure 1c) will be an important 

new driving force to make constructive progress in NMR structure prediction. This includes 

new areas of applications such as NMR-guided detection of templates11 or the use of ECs in 

assisting NMR data assignment/interpretation and NMR structure calculation13. In addition, 

computational models created by such meta-approaches will have the advantage that they 

can be experimentally validated e.g. by comparison against a set of NOE contacts hold out 

for cross-validation.

Alternative Rosetta structure prediction approaches tailored to sparse NMR data have 

employed the RASREC (resolution-adapted structural recombination)46 iterative modeling 

protocol. While conceptually similar to our RosettaCM refinement protocol, RASREC 

implements more kinds of optimization strategies which proceed in six stages and are 

adapted to the model resolution46. A large set of strategies is dedicated toward sampling 

nonlocal β-sheet topologies during the first stages. RASREC also generates new libraries of 

backbone fragments from previous model batches and guides new folding simulation 

trajectories by those of low-scoring models from earlier stages. The enhanced sampling 

procedure comes with increased computational costs. RASREC requires splitting the 

calculation over multiple (usually a few hundred) cores which communicate via MPI. It 

further entails an Archive framework which stores job status information as well as statistics 

about structural features and maintains the pool of low-energy models. RASREC and 

RosettaCM can integrate the same types of NMR restraints (e.g. NOEs, RDCs, CSs) and use 

them in a similar manner e.g. to score Monte Carlo sampling moves and decide which 

models should go into the next stage.

Additional bioinformatical or experimental contact restraints to assist sparse NMR data 

should be selected ideally from regions with incomplete or missing NMR assignment. This 

would help restraining those parts of the model and could resolve wrong domain orientations 

as described above. Next CASP experiments could also introduce other types of NMR data. 

For example, 1HN, 13Cα, 13Cβ, 13C’ and 15NH chemical shifts can be used directly in the 

fragment picking process which avoids errors in the backtranslation to torsion angle 
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restraints and could improve fragment quality. Paramagnetic NMR data, e.g. pseudocontact 

shifts (PCSs), may be used as additional source of long-range structural restraints.

Subsequent CASP experiments could also explore the possibility to model multiple 

conformational states and conformational transitions in proteins – a challenge which has not 

been examined in the current CASP but to which NMR provides very sensitive tools of 

detection. For example, information on protein dynamics and a detailed description of the 

structure of alternative conformational states can be inferred from relaxation dispersion and 

chemical exchange saturation transfer data. In this scenario, NOE contacts may be used with 

greater caution because part of the contacts may be incompatible with each other.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Overview of the modeling protocol employed in the CASP13 NMR-assisted structure 
prediction category.
(a) Overall flowchart: Initial fold-level modeling was done with RosettaAbInitio guided by 

non-ambiguous NOEs, evolutionary coupling restraints (ECs) and RDCs. The library of 

3mer and 9mer peptide fragments was created with the Rosetta Fragment Picker using CS-

derived ϕ/ψ dihedral angle restraints. Proteins with >200 residues were manually parsed into 

domains guided by non-ambiguous NOE contacts, and domains were modeled separately. 

After fold-level modeling, models were iteratively refined by hybridization and fragment 

insertion guided by all ambiguous and non-ambiguous NOEs, ECs and RDCs. (b) 
Improvement in model accuracy for target N0968s1 through an iterative refinement protocol. 

The protocol maintains a pool of low-energy models which are hybridized with RosettaCM 

and diversified through fragment insertion. The protocol stops when models are converged 

in terms of their pairwise GDT-HA or the final refinement step is reached. The bottom row 

demonstrates the improvement in the accuracy of N0968s1 models as the protocol proceeds: 
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(i) GDT-TS = 47.5, (ii) GDT-TS = 58.0, (iii) GDT-TS = 60.2, (iv) GDT-TS = 72.4. (c) 
Suggested meta-approach to NMR structure modeling by incorporating structural restraints 

retrieved from bioinformatical sources/databases (DB), e.g. predicted residue-residue 

contacts and structural templates. In our post-CASP13 analysis, we used the initial 

predictions of five different servers (Robetta35, I-TASSER36,37, QUARK38, RaptorX-

Contact39, RaptorX-TBM40) and refined them iteratively with Rosetta and NMR data 

leading to more accurate models than each individual technique. Model improvement is 

exemplified for target N0981-D5 for which the GDT-TS score increased by >15.
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Figure 2. Overview of model GDT-TS of Meilerlab models obtained with different restraint sets 
and comparison to other structure predictions in the NMR-assisted and free modeling category.
(a) GDT-TS of de novo predicted models created in CASP13 using only RDCs or NOEs, 

ECs and RDCs, respectively. In addition, the GDT-TS obtained when modeling started from 

server-models and employed an iterative refinement with NOEs, ECs, and RDCs, which was 

investigated in our post-CASP13 analysis, is shown. (b) Improvement of server-models 

through refinement with NMR data. The GDT-TS of the best model among all submissions 

of five different servers (Robetta35, I-TASSER36,37, QUARK38, RaptorX-Contact39, 

RaptorX-TBM40) (x-axis) is compared to the GDT-TS of our best-scoring model after 

hybridization and NMR-refinement of the respective server-models (y-axis). (c) Comparison 

of GDT-TS of the Meilerlab submitted Model 1 and NMR-refined server-models to Model 1 

created by the ‘baseline’ group (Group 459) in the NMR-assisted category. Gray triangles 

indicate an improvement of the GDT-TS. Targets for which the Meilerlab Model 1 was 

significantly less accurate (GDT-TS difference > 10) then Model 1 from Group 459 are 

labeled. (d) Comparison of GDT-TS of the Meilerlab submitted Model 1 and NMR-refined 

server-models to the best Model 1 in the regular unassisted modeling category.
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Figure 3. Examples of successful and difficult modeling cases.
High-resolution structure predictions could be made for three targets, (a) N1008 (Cα-RMSD 

= 2.06 Å), (b) N0968s1 (Cα-RMSD = 2.88 Å), and (c) N0981-D5 (Cα-RMSD = 3.48 Å), 

allowing accurate sidechain placement. The submitted Model 1 (red) is displayed as cartoon 

representation and compared with the experimental reference structure (blue). Sidechains in 

the protein core are depicted with sticks. The fraction of correct χ1 and χ2 rotamers in 

buried protein regions was (a) 74% / 37%, (b) 77% / 41%, and (c) 66% / 29%, respectively. 

Difficult modeling cases were proteins with quaternary structure which have interfaces to 

other protein copies or domains. (d) Left: experimental structure of the homo-trimeric target 

N0989. Chain A is shown as cartoon and is rainbow-colored. Chains B and C are shown in 

surface representation and colored light and dark gray, respectively. Right: The submitted 

model for the monomeric protein had a too compact, non-extended conformation. (e) Left: 

experimental structure of domain D4 of the homo-trimeric target N0981. The N-terminal 

helix (blue) is linked to another domain in the native assembly and stabilized by interactions 

with the two neighboring subunits indicated in light and dark gray, respectively. Right: The 

submitted model for N0981-D4 shows an incorrect orientation of the N-terminal helix 

because no NOE contact information was available to restrain this part of the structure.
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