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Abstract

People with hemiparesis after stroke appear to recover 70–80% of the difference between their 

baseline and the maximum Upper Extremity Fugl–Meyer (UEFM) score, a phenomenon called 

Proportional Recovery (PR). Two recent commentaries explained that PR should be expected 

because of mathematical coupling between the baseline and change score. Here we ask: if 

mathematical coupling encourages PR, why do a fraction of stroke patients (the “non-fitters”) not 
exhibit PR? At the neuroanatomical level of analysis, this question was answered by Byblow et al. 

– non-fitters lack corticospinal tract (CST) integrity at baseline – but here we address the 

mathematical and behavioral causes. We first derive a new interpretation of the slope of PR: it is 

the average probability of scoring across remaining scale items at follow-up. PR therefore breaks 

when enough test items are discretely more difficult for a patient at follow-up, flattening the slope 

of recovery. For the UEFM, we show that non-fitters are most unlikely to recover the ability to 

score on the test items related to wrist/hand dexterity, shoulder flexion without bending the elbow, 

and finger-to-nose movement , supporting the finding that non-fitters lack CST integrity. However, 

we also show that a subset of non-fitters respond better to robotic movement training in the 

chronic phase of stroke. These persons are just able to move the arm out of the flexion synergy and 

pick up small blocks, both markers of CST integrity. Non-fitters therefore raise interesting 

questions about the CST function and the basis for response to intensive movement training.

1. Introduction

The Proportional Recovery (PR) Rule was first observed in the context of upper extremity 

(UE) movement using the Fugl-Meyer (FM) Score 1, a widely used impairment-based 

measure in stroke rehabilitation research, and then confirmed in larger samples (e.g. 2–4). 

Samples of patients were evaluated at one week and a follow-up (typically three or six 

months) and most (the so-called “fitters”) recovered on average 70–80% (depending on the 

study) of the difference between their baseline and UEFM score and the maximum UEFM 

score (Figure 1A). The rule is:
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ΔS = m T − So (1)

where ΔS is the mean change in score for all subjects with a baseline score of So, T is the 

maximum score (66 for the UEFM), and m ≈ 0.7 ― 0.8 is the slope. Other subjects, termed 

“non-fitters”, achieved substantially less recovery than that predicted from the PR Rule 

(Figure 1A). The PR Rule has subsequently been shown for measures of lower limb 

impairment, visuospatial neglect, aphasia, and success at reaching pellets in a rodent stroke 

model (reviewed in 5), leading to the possibility that it reflects a fundamental biological 

mechanism of recovery.

Predictions of stroke recovery are multifactorial and highly variable 6, so the finding of such 

a regularity, especially one driven by a single impairment-based input and present for a wide 

variety of outcome measures, is striking and even mathematically suspicious, or in the words 

of Hawe et al. 5, “ too good to be true”. Indeed, Hawe et al. 5 and Hope et al. 7 recently used 

statistical analysis and simulation to demonstrate that a PR-like relationship arises even if 

outcomes are unpredictable and recovery is random. Mathematical coupling between ΔS and 

So (since ΔS = m(T − So)), high variability of So compared to Sf, and ceiling effects all 

contribute to PR. These phenomena are known in statistical theory and difficult to correct 5.

But if mathematical coupling encourages PR, then why does PR not arise for a particular 

subset of stroke patients – the “non-fitters” – who recover less than that predicted by PR? At 

the neuroanatomical level of analysis, this question has already been elegantly answered: 

lack of corticospinal tract (CST) integrity strongly predicts non-fitters 3,4,8–11. The first to 

demonstrate this were Byblow et al. 3 who used motor evoked potentials (MEPs) and found 

that individuals who at baseline evaluation did not have an MEP response (i.e. who were 

“MEP-”) were highly likely to be the non-fitters. Stinear et al. 4 confirmed this predictive 

value of MEP in a larger sample.

Here, we sought to gain mathematical and behavioral insight into the rule breakers of PR by 

analyzing the rule in terms of the way the UEFM score is constructed – as a sum of 

subscores on a series of test items – and determining how the ability to score on those items 

at follow-up mathematically influences PR. We also queried the effect of rehabilitation for 

fitters and non-fitters by analyzing data from robotic UE training.

2. Preliminary Observations

We digitized reported data from 214 subjects enrolled in two studies 2,3 for analysis here. 

The inclusion criteria for both studies were (see Table S1 for more detail): (1) first ever 

ischemic stroke: anterior circulation2 /monohemispheric3 (2) assessments within 2 weeks of 

stroke (3) no severe cognitive or communication impairment (4) no severe mobility and 

daily activity impairment (premorbid Barthel Index of ≥ 192 ) (5) no homonymous 

hemianopia or blindness, no visuospatial neglect or complete somatosensory loss3 (6) no 

evidence for cerebellar stroke. Only 7% out of 4082 consecutive stroke inpatients met the 

above criteria in the Winters et al.2 study (36% were unwilling to participate, died, or 

trasferred to other centers). However, in a latter study, Stinear et al. 4 conformed the same 
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result for a wider stroke population which included people with recurrent stroke and 

intracerebral hemorrhage.

The second preliminary observation has to do with identifying non-fitters. It is not possible 

to reliably identify non-fitters using their baseline UEFM alone 2,10–12. Individuals with 

lower initial UEFM are not necessarily the non-fitters, as can be seen in Figure 1A. 

However, importantly for our analysis here, it is possible to identify non-fitters when they 

reach the chronic stage of recovery using an UEFM threshold of about 40. 99% of patients 

with a chronic UEFM score less than 40 in the chronic stage are non-fitters, as seen in 

Figure 1B. That is, fitters nearly always recover to an UEFM greater than 40. We will use 

this observation below in several analyses.

3. Interpreting the PR Rule in Terms of Scale Construction

We first analyze PR for scales that are calculated by summing subscores on a set of items 

(such as the UEFM score). We show that PR arises robustly for such scales (as expected 

because of mathematical coupling 5,7), and that the slope has a probabilistic interpretation 

related to scale construction. We also show that the local slope is not constant for previously 

reported UEFM PR data, consistent with this probabilistic interpretation. Finally, PR is 

broken (producing non-fitters) when a substantial number of scale items are discretely more 

difficult to score on at follow-up for some patients. Finally, we identify the specific UEFM 

test items that non-fitters have the lowest probability of being able to perform.

Constructing an Outcome Measure

Assume we evaluate recovery at two time points (baseline and follow-up) using a measure 

that is composed by adding subscores on a set of items. Assume each item can be scored 0 

(cannot perform) or 1 (performs well). Then, T is the maximum total score a patient can 

achieve on the T measure. Assume a patient has achieved a score So at baseline by scoring a 

1 on items 1 to So. Then, there are T―So items left for him/her to score 1 on at the follow-

up, assuming patients don’t regress on items (i.e. they will score a 1 on any item at follow-

up that they scored 1 on at baseline).

Now, assume that at the follow-up the subscore for each remaining item i is a random 

variable ti that takes the value 1 with probability pi and the value 0 with probability 1 ― pi. 

We assume that the pi are functions of (T―So) (the number of remaining items = the 

number of points the patient has left to achieve following the baseline assessment, if items 

are scored 0 and 1). For example, we expect that patients who are better recovered at 

baseline will have a higher probability of scoring well on the remaining items at the follow-

up. We will call (T―So) the “item recovery probability function” (IRPF) since pi is the 

probability of scoring 1 on the remaining item given a score of i So at baseline. Then, the 

increase in score at follow-up is also a random variable:

ΔS = t1 + t2 + …tT − S0 (2)

Now, imagine designing an outcome measure – what should one design the IRPF’s look 

like? A common strategy in scale design is to observe a sample of patients at baseline and 
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then follow them; this appears to be how the UEFM scale was developed 13. Based on 

observations and some theoretical basis for a patient’s evolving capabilities (such as a 

progression out of abnormal synergies for the UEFM scale 13), one then designs a set of test 

items such that there is a finite probability that some fraction of subjects will be able to do 

each item at follow-up. Ideally, these probabilities will vary across items, creating a range of 

items from easy to difficult. Indeed, in one formal approach to scale development, Rasch 

Analysis, scales are designed so that the probabilities of achieving items are spaced across 

the range of ability measured over a sample of recovered subjects 14. When Rasch analysis is 

applied to the UEFM scale, it shows that the UEFM items span a range of difficulties and 

can be rank-ordered in terms of those difficulties 15.

Figure 2A shows a set of theoretical IRPFs with the number of test items T = 33, matching 

the UEFM scale. The lower curves represent more difficult items. The probabilities increase 

with increasing baseline score (i.e. decreasing remaining items to score on), capturing the 

intuition that patients who are better recovered at baseline have a higher chance of scoring 

on items at follow-up.

Simulating Recovery

Given a set of IRPFs, we can simulate recovery. To produce a total score equal to that 

possible with the UEFM scale (i.e. 66 pts), we assumed the 33 items could be scored a 0 or a 

2. We used a uniform initial distribution of baseline scores Sofor 120 patients. Their 

predicted recovery exhibited a PR-like behavior (Figure 2A, right column).

How dependent is the PR-like behavior on the shape of the IRPFs? We ran the simulation 

with several types of IRPFs: pi = a random constant that varied with item number i but not 

So (Figure 2B); = random number that varied i with and So (Figure 2C); and pi= min 

(e
−x
T + b, 1) (i.e. nonlinear decay in recovery probability) (Figure 2D). In each case, we 

obtained a PR-like rule (Figure 2 right column), as would be expected due to mathematical 

coupling.

Bending PR: The Local Slope

We can gain insight into why PR rises robustly for a wide range of IRPFs by estimating the 

slope of the PR curve. Returning to the case when only scores of 0 and 1 are possible, the 

mean increase in score from Equation (2) is:

ΔS = t 1 + t 2 + …t T − So

= p1 + p2 + …pT − So

=
(p1 + p2 + …pT − So

)(T − So)
T − So

= p(T − So)(T − So)

(3)
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p(T − So) is the average item recovery probability across the remaining items for which the 

subject has not yet scored 1. Equation 3 potentially restates the PR Rule of Equation 1, but 

proportionality will hold exactly only if p(T − So) is constant across So. If p(T − So) is not 

constant, then the local slope of the relationship is:

m = p(T − So) + ∂ p
∂(T − So) (T − So) (4)

Equation 4 can be solved assuming a constant m, resulting in a family of functions shifted 

by an arbitrary constant. Thus, an infinite number of p(T − So) curves produce an exact PR 

rule. Can we gain insight into scales that would not be expected to produce an exact PR?

First, note that if the IRPFs vary smoothly across So, p(T − So) will also vary smoothly. In 

this case, even if p(T − So) is not constant, one still gets a PR-like relationship, with the local 

slope varying according to Equation 4 (Figure 3).

If p(T − So) is (first-order) unsmooth, then ∂ p
∂(T − So)  jumps, causing the instantaneous slope 

(So) to jump (Figure 3C). But, slope discontinuities are masked by the stochastic nature of 

the IRPFs (Figure 3D).

It is well established in statistics that it is difficult to discern local slope variations with noisy 

data and/or a limited sample size. Further, global linear regression, which is the only method 

that appears to have been applied to detect PR, is ill-suited for detecting non-linearity 16. We 

therefore suggest that the proportionality of PR, besides arising from mathematical coupling, 

is also an approximation that arises partly because of the smoothness of the average IRPF, 

and partly because global linear regression cannot detect local slope variations.

We used local linear regression to estimate if the local slope of PR varies for different 

impairment levels.The local slope is the slope of a line fitted to a subset of the data, where 

the subset of data is selected as the data points (i.e. patients) that fall in a window of size 20 

along the x-axis. We shifted the window along the x-axis to estimate the slope for different 

data subsets.

Figure 4 shows that the local slope estimate varies from 0.0 to 1.0, in a similar pattern for 

two different data sets, and is not constant as would be expected for exact proportionality 

across impairment levels (Equation 3). Note that the local slope estimated in the windows 

over impairment level of 46–66 (i.e. initial UFEM<20) is smaller (Figure 4C). This is 

consistent with the expectation that average recovery probability p(T − So) will decrease with 

decreasing initial score So– i.e. subjects with lower baseline scores have a lower probability 

of scoring on remaining items at follow-up (resulting in a lower local slope). Also, the global 

regression slope closely matches the local slope for the patients who are less impaired at 

baseline – these subjects have smaller recovery variance (partly due to a ceiling effect), 

which drives the global regression.
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Breaking PR: Non-Fitters

What are the mathematical conditions needed to create non-fitters who break the PR rule, 

given the various statistical factors working positively toward creating an appearance of PR? 

Working with our simulator, we found that if we set recovery probabilities for a substantial 

number of items to a low value for a specific set of subjects with a baseline score below 

some score (i.e. we made a set of items extremely difficult for those low-level subjects, 

Figure 5A and C), then those subjects recovered poorly in the simulation, and they appeared 

as non-fitters (Figure 5B and D).

To quantify how substantial the IRPF discontinuities have to be to produce a visible non-

linearity, we simulated the situation were P% of the IRPFs, starting with the most difficult 

items, exhibited a jump decrease by D% at So = 20, varying P and D (Figure 5). Large 

values of D mean those items are nearly impossible for a subset of patients to score on at 

follow-up. We analyzed the R2 and nonlinearity of the resulting PR-like rule, where we 

defined nonlinearity NL as the root mean square deviation of a third-degree polynomial fit to 

the data away from a linear fit 17,18. Nonlinearity became visually obvious when NL 

approached ~0.4 (Figure 5B).

Achieving an NL=0.4 required at least ~50% jumps in at least ~50% of the items (Figure 5B 

and E). R2 values were always above 0.8 for simulations with NL = 0.4 (Figure 5F), 

confirming that linear regression statistics were poor at signaling the emerging nonlinearity 
16.

Very Difficult UEFM Items for Non-Fitters

Given that very difficult items can “break” PR, what are the very difficult items for the non-

fitters of the UEFM at follow-up? As observed above, 99% of patients with a UEFM score 

less than 40 in the chronic stage are non-fitters. We used UEFM measurements from 319 

chronic stroke patients reported in several studies 19–26 to rank-order items from low to high 

probability of scoring on that item (either a 1 or 2), using the estimated probabilities at 

UEFM = 40 to create the rank ordering. We found that individuals with chronic UEFM < 40 

(i.e. non-fitters) had the lowest probabilities on the items that required distal coordinated 

movement (Figure 6). These “very difficult” items tested the ability to move distal joints 

(wrist circumduction, wrist stability, forearm pronation/supination, wrist flexion/extension, 

Grasp A – i.e. “pretend you are holding the handle of a brief case”, and Grasp B – i.e. 

abducting the thumb to grasp a piece of paper;), to actively flex the shoulder through the 

extreme of its range of motion (shoulder flexion from 90180 degrees) without bending the 

elbow, and to make repeated high speed targeted reaching movements without vision (i.e. the 

finger-to-nose movement item of the UEFM test). The two remaining wrist/hand items were 

easy/medium, but the easy one only required mass flexion of the hand, and the medium one 

required flexion of the wrist, without requiring control over other joints or active extension 

of the fingers or wrist. That is, “in-synergy” UEFM items were relatively easy for these non-

fitters to achieve, in contrast to the items requiring distal coordinated movement (Figure 6).
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Summary

To summarize, we derived a new interpretation of the slope of PR: it is the average 

probability of scoring across remaining scale items at follow-up. The proportionality of PR, 

besides arising from mathematical coupling, is also an approximation that arises because of 

the smoothness of the average IRPF, and because global linear regression cannot detect local 

slope variations. The local slope estimate varies substantially in a consistent pattern for two 

different published UEFM recovery data sets – a result not predicted by mathematical 

coupling, but understandable from the scale construction perspective. Finally, what is 

required to overcome these mathematical phenomena that encourage the appearance of PR is 

that a patient must exhibit discretely lower probability of scoring on a substantial subset of 

test items at follow-up. We showed that UEFM non-fitters are most unlikely to score on test 

items related to wrist/hand dexterity, extreme active shoulder range of motion, and finger-to-

nose speed at follow-up. This is consistent with the idea that non-fitters lack sufficient CST, 

since CST is thought to be the neural substrate for these types of hand and arm movements 
27,28.

4. How Do Non-Fitters Respond to Rehabilitation?

One possible implication of PR is that rehabilitation therapy does not matter because 

patients follow the PR prediction despite varying amounts of therapy 3,29. However, Hawe et 

al. 5 highlighted that there is substantial variability in UEFM recovery even for the fitters. 

The number of fitters displaying ≈70% recovery is near chance levels. Non-fitters have even 

greater variability of recovery (Figure 1), leading us to hypothesize that they are particularly 

responsive to the varying amounts of movement training they receive during rehabilitation.

To test this hypothesis, we returned to an analysis of UEFM response to robotic UE therapy 

in the chronic phase of stroke 30. We grouped patients based on UEFM scores at study entry 

that fell into three zones: [0–21], [22–40], or [41–66]. Interestingly, these groups correspond 

to poorly recovered non-fitters, better recovered non-fitters, and fitters, respectively in the 

acute phase studies (Figure 7A, data taken from 2,3). Here we make the assumption that 

people who qualified for a robotic therapy study in the chronic phase and had an UEFM 

score < 40 would have been classified as non-fitters had they been tracked from the acute 

phase. It may be that there is a different pattern of upper extremity recovery that has not yet 

been identified for the type of patient who would not have qualified for PR studies, but then 

qualified for a chronic robotic therapy study (see Supplemental Material). However, in 

examining the inclusion/exclusion criterion for the chronic robotic therapy studies, we found 

they were similar to the PR studies (Table S1, Supplemental Material). Where the criteria 

deviated (such as not requiring a first-ever anterior circulation stroke), a recent study 

examining a broader, more clinically relevant sample of patients with stroke, including those 

with intracerebral hemorrhage and previous stroke found the same pattern of upper 

extremity PR (the pattern of fitters and non-fitters) and the same predictive value of MEP 4. 

Thus, we feel the assumption that participants with chronic UEFM score < 40 would have 

been classified as non-fitters is reasonable, although it should be verified in future research.

For each group we calculated the mean reported change in UEFM score due to robotic 

rehabilitation. Non-fitters with mean baseline UEFM scores in the range [22–40] enefited 

Senesh and Reinkensmeyer Page 7

Neurorehabil Neural Repair. Author manuscript; available in PMC 2020 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



significantly more from rehabilitation delivered in the chronic phase after stroke (Figure 7B, 

ANOVA, p < 0.001, with follow-up t-tests, Group 1–2 comparison p = 0.001, Group 2–3 

comparison p = 0.015; Group 1–3 comparison p=0.03).

We sought to test this finding using data from a larger number of studies. We therefore 

analyzed the rehabilitation response of non-fitters using results from a set of randomized 

controlled trials of robotic and conventional rehabilitation therapy reported in a systematic 

review 31. We considered the studies that enrolled persons in the chronic phase after stroke, 

leaving 18 trials (i.e. 21,32,41–48,33–40). We sorted results from these studies into groups with 

reported mean UEFM scores at study entry that fell into three zones: [0–21], [22–40], or 

[41–66]. These groups again correspond to poorly recovered non-fitters, better recovered 

non-fitters, and fitters, respectively (Figure 7A, data taken from 2,3).

For each group we calculated the mean reported change in UEFM score due to rehabilitation 

of any kind (i.e. robot or control therapy).

Participants with mean baseline UEFM scores in the range [22–40] (i.e. the better-recovered 

non-fitters) again benefited significantly more from intensive movement practice in the 

chronic phase after stroke (Figure 7C, ANOVA, p < 0.001, with follow-up t-tests, Group 1–2 

comparison p < 0.001, Group 2–3 comparison p = 0.0013; Group 1–3 comparison p=0.56).

Note that the distribution of patients becomes increasingly bimodal as recovery progresses, 

with the better recovered fitters in the “bottom of the well” of this distribution (Figure 7A). 

Thus, the better-recovered non-fitters are somewhat scarce: they are ~12% of all stroke 

patients enrolled in the PR trial data we scanned, and 45% of the non-fitters.

As described above, the lowest probability UEFM items for non-fitters are the ones that 

require hand and arm dexterity, consistent with lack of CST integrity. But perhaps these 

better-recovered, rehabilitation responsive non-fitters have return of CST integrity. From the 

perspective of abnormal synergies, a litmus test of CST integrity is the ability to flex the 

shoulder to 90 degrees while keeping the elbow fully extended 49,50– i.e. the test of “out-of-

flexion-synergy” movement on the UEFM. We plotted the probability of scoring a “2” on 

the test as a function of UEFM score, again for 319 chronic stroke patients in 19–26. Figure 

7D shows that this probability becomes non-zero in the UEFM range of better recovered 

non-fitters, consistent some return of CST function.

Return of CST function should also be associated with return of hand function. The UEFM 

coarsely grades hand impairment and does not test hand function, so we turned to the Box 

and Blocks Test (BBT). The BBT requires individuals to pick up small blocks and place 

them over a divider, and is thus a functional measure designed to be sensitive to the return of 

dexterity. We used published data from 140 subjects 23,26,51 with both BBT and FM scores 

to define the underlying relationship between these two motor scales. Using this relationship 

we found that the better recovered non-fitters would be expected to exhibit a small amount 

of hand dexterity on the BBT (Fig. 7E). Thus, the putative rehabilitation-responsive non-

fitters, who are known to be MEP- at baseline due to the work of Byblow et al., appear to be 

the patients in the chronic stage who can begin to move the arm out of synergy and pick up 

small blocks, both markers of some CST integrity.
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Discussion -- Point of View and Directions for Research

Mathematical coupling, as well as other statistical factors identified here, encourage the 

appearance of PR, and yet a fraction of stroke patients, the non-fitters, do not exhibit PR. We 

showed that the local slope of PR relates to test item difficulties. Thus, PR breaks when a 

patient has a discretely lower probability of scoring on a substantial fraction of test items at 

follow-up. For the UEFM, the lowest probability items are the ones that test wrist/hand 

dexterity, extreme active shoulder flexion, and high speed finger-to-nose movement, 

consistent with the finding that non-fitters lack CST integrity 3,4,8–11.

Winters et al.2 found that lack of finger extension within 72 hours post-stroke was the best 

behavioral predictor of non-fitters. The present results highlight that non-fitters continue to 

do poorly on tests of hand dexterity, but also arm coordination, and this is why they 

overcome the influence of mathematical coupling.

However, better-recovered non-fitters appear to exhibit significantly enhanced UEFM 

response to robotic UE movement training, given the assumption that people who qualified 

for a robotic therapy study in the chronic phase and had an UEFM score < 40 would have 

been classified as non-fitters had they been tracked from the acute phase (see Supplemental 

Material for an analysis of this assumption). A related result was recently noted in an 

analysis of reaching rehabilitation in a rat stroke model in the subacute phase (n = 123 rats) 
52. A subset of rats classified as non-fitters responded better to reaching practice. Fitters 

recovered the ability to recover food pellets regardless of whether they performed reaching 

practice. Thus, intensive movement practice mattered for the non-fitters but not the fitters.

In the context of the UEFM, what could explain the heightened responsiveness of better-

recovered non-fitters to movement practice? One possibility is that the UEFM scale is non-

linear, making it easier to score larger gains when starting from the middle range of the 

UEFM. Our analysis of the UEFM scale does not support this – it is more difficult to score 

on items when one starts from the middle range (see Figure 4). Further, the UEFM has a 

very small floor effect and the ceiling effect is also small 53,54 and unlikely to constrain 

recovery for people with scores in the range 40–50, since the UEFM can go up to 66 and is 

linearly related to BBT in the range 40–50 (and beyond see Figure 7E). Yet subjects in this 

range of 40–50 nonetheless showed relatively decreased rehabilitation response (see Figure 

7B and C). Another possibility is that individuals in the chronic phase of stroke experience a 

decay in their UEFM over time due to disuse of the UE. Thus, when people in the chronic 

phase of stroke were enrolled in the movement training studies analyzed here, they may have 

simply overcame that decay. Studies that tracked motor function after stroke for years have 

indeed sometimes found a decay in UEFM or other UE motor scores 55,56, but at other times 

have not 57,58. Neither of these alternate explanations account for the related finding from 

the rodent study, since the outcome measure there was not the UEFM (it was pellets 

retrieved) and the rats received rehabilitation soon after the induced stroke, not in the 

chronic stage.

Do a subset of non-fitters therefore defy the expectation of a poorer response to UE 

rehabilitative movement training that has been associated with higher amounts of CST 
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damage 59–61. Perhaps these non-fitters rely on cortical plasticity to make use of residual 

pathways 10 such as brainstem pathways 49,62,63 . Another possibility is that these subjects 

have some residual CST integrity. TMS-based assays of CST integrity might miss detecting 

small amounts of residual CST early after stroke, or, alternatively, some level of neural 

reorganization might need time to occur and allow a small amount of residual CST to 

become functional. Our findings regarding the emergence of out-of-flexion-synergy arm 

movement and hand manipulation in the rehabilitation-responsive, non-fitter population 

support this idea, as these are behavioral markers of CST integrity. Byblow et al. found that 

6 of the 11 initially MEP-participants recovered MEPs at later evaluations 3. Birchenall et al. 
64 also found recovery of MEP. In the Byblow et al. study, MEP-participants also showed 

some recovery if FA of the CST was small, suggesting residual CST without initial MEP. 

This finding is supported by a later study of Buch et al. 12 but not that of Doughty et al. 65. 

Stinear et al. 4 also showed that MEP-patients had greater UEFM recovery if they had lower 

lesion load to the CST, consistent with the results reported by Feng et al. 11.

We recently found that chronic stroke patients did not respond to robotic hand movement 

training if they lacked somatosensory integrity 66. Somatosensory integrity was indeed the 

strongest predictor of rehabilitation response in this context, stronger than CST integrity 67. 

This highlights the fact that damage to other tracts and systems play a key role in 

determining response to intensive hand movement training. Somatosensory integrity might 

be required to effectively carry the feedback necessary to drive CST-related plasticity. In this 

scenario, perhaps it is the initially MEP- but bettered-recovered and rehabilitation-

responsive non-fitters who have this somatosensory integrity.

If a small amount of CST, initially unresponsive to TMS, serves as the basis for an increased 

response to movement training, it is unclear why people with presumably a greater amount 

CST integrity – the lower level fitters (with chronic UEFM in the range 40–50) – have a 

relatively reduced response to intensive movement training. Perhaps fitters make progress 

through spontaneous limb use, making any applied training appear less effective. In contrast, 

the special population of non-fitters might need to learn to make use of their small amounts 

of residual CST by performing especially large amounts of dedicated, practice-based 

exploration 68,69. Work from our laboratory on robotic exoskeleton training is consistent 

with this idea, in that it found that people in the chronic phase of stroke who were MEP+, 

but with smaller rather than larger MEP, responded better to UE robotic movement training 
70. In any case, an important direction for future research is to determine how best to identify 

this putative special class of non-fitters as early as possible after stroke, since they may be 

the best candidates for intensive movement training, robotic or otherwise, if one is interested 

in selecting candidates who will have the largest UEFM change from the training.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Proportional recovery of the upper extremity Fugl-Meyer (UEFM) score after stroke. These 

plots combine data that we digitized from reported data of 214 subjects enrolled in two 

studies 2,3.Baseline scores were measured within 2 weeks post stroke and follow-up at 6 

months (chronic stage) A: For “fitters” (o), the average change in UEFM score is 

proportional to how many points a patient has left to recover (i.e. the maximum UEFM score 

of 66 minus the baseline UEFM score). “Non-fitters” (*) show decreased recovery. B: By 

plotting the same data another way (i.e. showing the relationship between chronic (follow-

up) UEFM score and baseline UEFM score), it is apparent that 99% of patients with a 

chronic UEFM score less than 40 (dashed line) in the chronic stage are non-fitters.
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Figure 2. 
Proportional recovery arises robustly from simulations using a variety of item recovery 

probability functions (IRPF’s). Left column: Examples of IRPFs, the functions that define 

the probability of scoring on an item at follow-up given the number of remaining items left 

to score on. Each line is the IRPF for a different item, for a test composed of 33 items scored 

0 or 2. Right column: Recovery results from simulating 120 patients. As can be seen, a 

variety of IRPFs produce a PR-like relationship, which is expected given mathematical 

coupling.
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Figure 3. 
Bending and breaking proportional recovery. Shown is the relationship of average item 

recovery probability function (IRPF, left column) and recovery (right column). In the top 

row, the average IRPF is smooth but not constant, and produces a nonlinear relationship that 

is nevertheless well fit by a linear regression (solid line, R2=0.88). The red dashed line 

shows the predicted fit from Equation 4. In the bottom row, the average IRPF is 

discontinuous, but the resulting recovery relationship does not look discontinuous, but rather 

just somewhat non-linear, and again is still well fit by linear regression (R2=0.83), although 

the local slope varies as Equation 4 (red dashed line).
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Figure 4. 
Estimating the local slope of recovery using local linear regression. A: UEFM recovery data 

from 2 (circles) and 3 (squares) shown with sample windows (20 UEFM points wide) used to 

create the local estimate of slope (grey rectangles). For the data points (i.e. subjects) falling 

within each window, we performed a regression to estimate the slope for those data points 

alone (i.e. the “local slope”). B: Local slope estimated with the linear regression over each 

window for the data combined from 2,3. C: Local slope from 2 alone, with window size of 20 

UEFM points. D: Local slope from 3 alone, with a window size of 20 UEFM points. Plus 

signs show points for which the p-value of the local regression < 0.05, and “x” where the p > 

0.05. Horizontal dashed line shows slope from global regression. Note that the global 

regression slope result is dictated by the data from the individuals with higher baseline 

scores because their data is less variable.
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Figure 5. 
Relationship between item recovery probability function (IRPF) nonlinearities and 

nonfitters. A great enough jump nonlinearity in a great enough number of the IRPFs creates 

a nonlinearity in the PR-type relationship, even though the nonlinearities are smoothed by 

the summation associated with calculating a total score. A: Sample IRPFs with 50% jump 

nonlinearities in 30% of the items. B: PR plot resulting from IRPFs in A. The nonlinearity 

measure was quantified as NL =
∫ XL

XR(g(x) − f (x))2

XL − XR
 where g(x) is the best-fit 3rd-order 

polynomial (dashed line) and f(x) is the linear PR model (solid line). Nonlinearity started 

becoming visually apparent with NL ≥ 0.4. C: Sample IRPFs with 40% jump nonlinearities 

in all items. D: PR plot resulting from IRPFs in C. E: Results from simulations where P% of 

the 33 IRPFs, starting with the most difficult items, exhibited a jump decrease by D% at So 

= 20, varying P and D. F: R2 values for the same simulations as in E. The asterisks in E and 

F show simulation runs where L = 0.4, the value where we judged non-linearity to be 

visually apparent. In panel F one can see that simulations with NL=0.4 always produced R2 

values greater than 0.8 – i.e. R2 is a poor indicator of nonlinearity.
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Figure 6. 
Analysis of difficulty on scoring on items of the UEFM assessment. A: Average probability 

of scoring either a 1 or 2 on each UEFM item for non-fitters taken as a group (i.e. subjects 

with follow-up UEFM scores <40). The three reflex test items were excluded as all recorded 

subjects scored a 1 or 2 on these items. We categorized item difficulty based on the 

probability of scoring on the item, We also highlight the type of movement tested: 

synergistic movement (green), shoulder (yellow), elbow (orange), wrist + hand (red), and 

UE tremor/coordination/speed (blue). B: Probability of scoring on the very difficult items as 

a function of chronic UEFM score. Items are listed from most difficult to easiest in the 

legend, top to bottom.
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Figure 7. 
Analysis of a special group of non-fitters who respond better to intensive UE movement 

training provided in the chronic phase of stroke. A: Distribution of patients (% out of total 

214 patients reported in 2,3) at baseline (light colors) and follow-up (dark colors), “fitters” 

(blue) and “non-fitters” (red-poor recovery, magenta – better recovered) B: Change in 

UEFM score after UE robotic movement training as reported in our previous work 30. The 

betterrecovered non-fitters showed an increased UEFM response to robotic movement 

training. (ANOVA, p < 0.001, with follow-up t-tests, Group 1–2 comparison p = 0.001, 

Group 2–3 comparison p = 0.015; Group 1–3 comparison p=0.03).C: Mean change in 

UEFM score reported for control and experimental groups in 18 robotic rehabilitation 

clinical trials with chronic stroke patients (studies 21,32,41–48,33–40taken from the systematic 

review 31). Treatment groups included conventional therapy, functional electrical 

stimulation, and robot-assisted arm training. Matching symbols indicate groups from the 

same studies. For B and C, the horizontal solid line shows the MCID for the UEFM test, the 
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vertical dashed lines denote how we subdivided the subjects into three UEFM zones. The 

groups with mean starting UEFM score in the middle zone again had a significantly higher 

mean change in UEFM score (ANOVA, p < 0.001, with follow-up t-tests, Group 1–2 

comparison p < 0.001, Group 2–3 comparison p = 0.0013; Group 1–3 comparison p=0.56).). 

D: Estimated probability to score ‘2’ in the UEFM test item testing shoulder flexion from 0–

90˚ with the elbow fully extended, plotted as a function of UEFM score. As described in the 

text, this is based on data from 319 subjects from several studies 19–26. Subjects with UEFM 

in the range [22–40] (i.e. the rehabilitation responsive non-fitters) are the ones just able to 

perform this out-of-flexion-synergy movement. E: Box and Blocks Test score as a function 

of the UEFM based on data from several studies 23,26,51. Subjects with UEFM in the range 

[22–40] also are the ones predicted to just able to grasp and release blocks on the BBT. 

Here, we identified the underlying relationship between motor performance on the UEFM 

and the BBT in order to estimate BBT scores from UEFM scores.
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