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Abstract

We report the results of residue-residue contact prediction of a new pipeline built purely on the 

learning of coevolutionary features in the CASP13 experiment. For a query sequence, the pipeline 

starts with the collection of multiple sequence alignments (MSAs) from multiple genome and 

metagenome sequence databases using two complementary HMM-based searching tools. Three 

profile matrices, built on covariance, precision, and pseudolikelihood maximization respectively, 

are then created from the MSAs, which are used as the input features of a deep residual 

convolutional neural network architecture for contact-map training and prediction. Two 

ensembling strategies have been proposed to integrate the matrix features through end-to-end 

training and stacking, resulting in two complementary programs called TripletRes and ResTriplet, 

respectively. For the 31 free-modeling (FM) domains that do not have homologous templates in 

the PDB, TripletRes and ResTriplet generated comparable results with an average accuracy of 

0.640 and 0.646, respectively, for the top L/5 long-range predictions, where 71% and 74% of the 

cases have an accuracy above 0.5. Detailed data analyses showed that the strength of the pipeline 

is due to the sensitive MSA construction and the advanced strategies for coevolutionary feature 

ensembling. Domain splitting was also found to help enhance the contact prediction performance. 

Nevertheless, contact models for tail regions, which often involve a high number of alignment 

gaps, and for targets with few homologous sequences are still suboptimal. Development of new 

approaches where the model is specifically trained on these regions and targets might help address 

these problems.
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Introduction

For nearly five decades, the success of computational structure prediction has been limited to 

proteins with homologous templates from solved experimental structures1–3. Significant 
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progress has been recently witnessed on ab initio 3D structure prediction4–7, which is mainly 

due to the success of sequence-based contact predictions8,9. Due to its significant 

importance to protein structure prediction, the problem of contact-map prediction has drawn 

an increasing amount of attention, and as a result, several new approaches have been 

proposed within the last decade10–21.

Initial studies on protein contact prediction focused on the analysis of the marginal 

correlation between two positions in the multiple sequence alignment (MSA)22,23, the idea 

of which is attractive, but the implementations often introduce transitional noise to the 

predicted contact-map. In other words, if both positions A and B are coupled to position C, 

the marginal correlation based analysis will report superficial coupling between positions A 

and B as well. Direct coupling analysis (DCA) methods (e.g., mfDCA10, PSICOV11, 

CCMpred12, and GREMLIN13), were subsequently proposed to address this problem of 

transitional noise by excluding effects from other positions. However, for proteins with few 

sequence homologs, these coevolutionary methods could fail due to the fact that the 

parameters of the inverse Potts model used in most DCA methods cannot be accurately 

estimated by limited number of samples. Supervised machine learning based methods, such 

as MetaPSICOV14,15 and NeBcon16, predict contact-maps by combining features based on 

the final results of various coevolutionary methods with a variety of one-dimensional 

sequence properties. These methods outperform the pure DCA methods, especially for 

proteins with a limited number of sequence homologs. Most recently, deep neural network 

based contact-map predictors which formulate contactmap prediction as a pixel-level 

classification problem, have achieved great success17–19. However, there is still room for 

further improvements, especially in terms of feature representation. It is observed that most 

machine learning methods use the post-processed scores of coevolutionary analysis methods 

as features; as a result, there could possibly be information loss in this post-processing step.

Unlike many other machine learning predictors, the recently developed DeepCov20 directly 

uses the raw sequence covariance matrix as its only feature, followed by convolutional 

neural networks to predict the contact-map; it achieved comparable results to predictors 

based on features of postprocessed coevolutionary analysis. Alternatively, ResPRE21 

considers the ridge estimation of the inverse of the covariance matrix, which was shown to 

be capable of wiping out noisy signal from translational interactions; when coupled with a 

fully residual neural network structure24, the approach demonstrated superiority to the state-

of-the-art of other approaches. Here, we further extend this approach during CASP13, where 

two methods, TripletRes and ResTriplet, are proposed to ensemble a triplet of raw 

coevolutionary features, including the covariance matrix, the precision matrix, and the 

parameter matrix of a pseudolikelihood maximized Potts model25,26, by two complementary 

strategies, based on end-to-end training and stacking.

In this article, we report the results of TripletRes and ResTriplet in the contact prediction 

section of the CASP13 experiment. Careful analyses will be performed to investigate the 

strengths and weaknesses of the different components of the pipelines, with particular 

focuses on the hard free-modeling (FM) targets that lack homologs from the structure and 

sequence databases. We will also highlight the challenges identified from the CASP 

experiment to our methods and possible strategies to address these issues.

Li et al. Page 2

Proteins. Author manuscript; available in PMC 2020 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Materials and methods

The overall pipelines for TripletRes and ResTriplet are shown in Figure 1. For a given query 

sequence, a multiple sequence alignment is generated by incrementally searching against 

multiple sequence databases using DeepMSA27. Three coevolutionary matrix features are 

then extracted based on the obtained MSA, including the covariance matrix (COV), the 

precision matrix (PRE), and the coupling parameters of the Potts model by pseudolikelihood 

maximization (PLM). Two different strategies have been used to integrate coevolutionary 

features in TripletRes and ResTriplet respectively. In TripletRes, all features are fused 

directly by neural networks, where all networks are trained end-to-end. In ResTriplet, a two-

stage strategy is performed, in which it first learns three individual contact-map predictors 

from the three feature matrices, and then uses stacking to ensemble the contact-maps from 

the predictors with secondary structure predictions for the final contact prediction. Here, 

ResTriplet trains the models in the first stage and the second stage separately. Below we 

explain the pipelines in more detail.

Multiple sequence alignment collection

Multiple sequence alignments are critical elements for contact-map prediction based on 

coevolutionary analysis. DeepMSA is used to generate MSAs from three sequence databases 

and consists of three steps27. First, HHblits28 is used to search against UniClust3029 for 

three iterations with a minimal coverage equal to 50%. We will proceed to Step 2 if 

DeepMSA doesn’t provide enough sequences (i.e., Nf<128) in Step 1. Here, Nf is the 

normalized number of effective sequences which is calculated by:

Nf = 1
L ∑n = 1

N 1
1 + ∑m = 1

N 𝕀 Sn, m ≥ 0.8
(1)

where 𝕀[Sn, m ≥ 0.8] = 1 if the sequence identity between m-th sequence and n-th sequence in 

the MSA is over 0.8, otherwise 𝕀 Sn, m ≥ 0.8 = 0. In Step 2, Jackhmmer30 is used to search 

the query sequence against UniRef90 for three iterations with an E-value cutoff of 10. 

Instead of directly using the sequence alignments obtained by Jackhmmer, the “hhblitdb.pl” 

script from HH-suite31,32 is used to construct a custom database from the Jackhmmer hits 

for further HHblits searching. If the Nf of the MSA in Step 2 still lower than 128, Step 3 will 

be performed, in which HMMbuild from the HMMER package30 is used to search against 

the Metaclust33 metagenome sequence database with parameters “-E 10 --incE 1e-3”. A 

custom HHblits database is built from the hits, similar to Step 2. In both Steps 2 and 3, The 

MSA from the previous steps is used to jump-start an HHblits search against the custom 

databases. The final MSA obtained thereof can be very large, which would result in long 

runtimes for the PLM feature calculation. Therefore, an additional filter for low coverage 

sequences is applied for MSAs with an Nf>128, where we remove sequence homologs with 

coverage <60% if the resulting MSA retains an Nf>128. We may additionally remove 

sequence homologs with coverage <75% if the resulting MSA still has an Nf>128.
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Three evolutionary matrix features extracted from MSA

There are three coevolutionary features used by our methods. The first one, COV, is the 

covariance matrix as proposed by DeepCov20. Considering an MSA with N rows and L 
columns, we can compute a 21∙L by 21∙L sample covariance matrix as follows:

Si j
ab = f i, j(a, b) − f i(a) f j(b) (2)

where fi,j(a,b) is the observed relative frequency of residue pair a and b at position i and j 
and fi(a) is the frequency of occurrence of a residue type a at position i. Each entry of the 

covariance matrix gives the covariance of residue type a at position i with residue type b at 

position j. There are in total 21 residue types (20 standard amino acid types plus a gap type).

Since the covariance matrix in Eq. (2) encodes the marginal correlations between variables, 

we calculate the second feature, the precision matrix (PRE)21, by minimizing the objective 

function:

ℒ = tr(SΘ) − log Θ + ρ Θ 2
2

(3)

where the first two terms can be interpreted as the negative log-likelihood of the inverse 

covariance matrix, i.e., the precision matrix Θ, under the assumption that the data are under 

a multivariate Gaussian distribution. Here, tr(SΘ) is the trace of the matrix SΘ and log|Θ| is 

the log determinant of Θ. The last term in Eq. (3) is the L2 regularization of the precision 

matrix with ρ being set as e −6. The inverse of the covariance matrix provides direct 

couplings between pairs of sites conditional on other positions. Thus, the precision matrix 

has better performance in the prediction of contact-maps than the covariance matrix21.

The negative of the inverse of the covariance matrix can also be interpreted as the Gaussian 

approximation of the inverse Potts model. Thus, another way to approximate the inverse 

Potts model through pseudolikelihood maximization (PLM)25,26 is also considered. The 

starting point for this procedure is approximating the probability of the sequence by the 

conditional probability of observing one variable conditional on all the other variables. We 

use CCMpred12 to efficiently calculate the PLM coupling parameters.

The covariance matrix, the precision matrix, and the coupling parameters of the Potts model 

all assume a form of a 21∙L by 21∙L matrix, representing relationships between the specific 

residue types of any two positions. In each of the three matrices, the full set of 441 coupling 

parameters for every position pair is represented as a 21 by 21 sub-matrix. After a reshaping 

procedure, three input features of size of L by L by 441 are collected for each sequence.

Residual convolutional neural network architectures for contact model training

As shown in Figure 1, we proposed two architectures based on deep residual neural 

networks (ResNet)24 in CASP13 to investigate the best way of ensembling for contact-map 

prediction, where the first version of ResNet is used as the basic residual block. Here, each 

residual block is defined as:
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y = f F x, W1, W2 + x (4)

where x and y are the input and output vectors of the residual block considered, f denotes the 

activation function (ReLU34 is used in this work), and the function F represents the residual 

mapping to be learned by convolutional operations. Specifically, there are two convolutional 

layers in a residual block. Thus, the residual function is:

F x, W1, W2 = W2f W1x (5)

where W1 and W2 are the learnable weights in the first and the second convolutional layers 

respectively. We also have added instance normalization with default parameters and 

dropout layers to the basic block to speed up training of the neural networks and to avoid 

overfitting. The detailed architecture of the basic residual block is shown in Figure S1. Here, 

the dropout rate was set to 0.2, which means 80% of the input signal before a dropout layer 

would be randomly masked at each training batch.

The right-upper portion of Figure 1 depicts the architecture of TripletRes, where the three 

coevolutionary features are ensembled directly by neural networks. Each input feature is fed 

into a set of 24 residual blocks and transformed into the output feature with 64 channels. The 

three output features are concatenated along the channel dimension as the input of the last 

neural networks. The last set of neural networks try to learn patterns from the three 

transformed features by another 24 residual blocks. All residual blocks have a channel size 

of 64, and the kernel size of convolutional layers are set to 3 × 3 with padding size equaling 

to one. Such a padding parameter set-up can keep the spatial information fixed through 

different layers. Here, we use a convolutional layer of 1 × 1 kernel size to transform each 

coevolutionary input feature and the concatenated feature into 64 channels. The final 

contact-map prediction is obtained by a sigmoid activation function over the output of a 

convolutional layer whose output channel is set to one.

The right-lower part shows a two-stage ensemble model, ResTriplet, using stacking strategy. 

In Stage I, three individual base models are trained separately based on the three different 

sets of coevolutionary features, PRE, PLM and COV, as described above. The base models 

have the same training data and the same neural network structure consisting of 22 residual 

basic blocks. In Stage II, we use a shallow neural network structure to combine the 

predictions of base models from Stage I. Thus, the predicted contact-maps of base models 

are considered as the input features in stage II. The predicted secondary structures, denoted 

as PSS in Figure 1, by PSIPRED35 are also adopted as an extra feature for the neural 

network model in Stage II. For shallow convolutional neural networks, the size of receptive 

fields is usually limited. Hence, a collection of 5 dilated convolutional neural network 

layers36 with dilation value set to 2 and channel size set to 16 is employed in order to 

enlarge the size of receptive fields. Different from TripletRes, ResTriplet employs a dilated 

convolutional neural network layer with dilation value set to 2 and output channel set to 1 as 

the last layer. The final output of ResTriplet is then obtained by applying a sigmoid function 

over the last convolutional layer.
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It should be noted that we did not apply any kind of pre-normalization operation to the input 

features; instead, an instance normalization layer is added after each convolutional layer 

except the last convolutional layer in both TripletRes and ResTriplet. Both TripletRes and 

ResTriplet share the same training set as described in Text S1. For TripletRes, a total of 10 

models were trained. The training set was divided into 10 subsets. Each subset was 

considered as a validation set, and the remaining subsets were considered as the training set 

of each model. Finally, the output is the average of all 10 models. In Stage I of ResTriplet, to 

reduce the risk of over-fitting, predicted contact-maps produced by each base model are also 

generated by 10-fold cross validation. In other words, we build 10 models for each 

coevolutionary feature using the same data splitting strategy as that in TripletRes. For each 

specific coevolutionary feature type, the predicted contact-maps of the validation set of each 

model are considered as the features of Stage II. However, in Stage II, ResTriplet does not 

perform cross-validation because of limited time before the CASP experiment. The neural 

networks in both TripletRes and ResTriplet are implemented in Pytorch37 and trained by 

Adam optimizer38 with a default initial learning rate, i.e., 1e-3, for 50 epochs. The training 

of TripletRes requires 4 GPUs running concurrently, while the training procedures of 

ResTriplet can be handled with only one GPU. A dynamic batch size strategy during training 

is considered due to the limited of GPU resources. A batch size of 1 is used for sequences 

with length L > 300, 2 for in 200–300, and 4 for LL < 200. The choice of the 

hyperparameters of the two models, especially the number of layers, is a compromise 

between memory usage and performance. In particular, while deeper CNN models can, in 

theory, yield better performance, only a limited number of layers can fit into the GPU 

memory for efficient training.

Domain splitting and domain-based contact prediction

Protein domains are subunits that can fold and evolve independently. Due to the independent 

evolution of domains, constructing MSAs and predicting contacts for individual domains 

can often lead to improved accurate intra-domain contact prediction compared to that of the 

full-length sequence. Since the domain boundary of CASP targets are not known a priori, for 

a given CASP full-length target, ThreaDom39 is used before contact prediction in order to 

identify domain boundary locations. The core methodology of ThreaDom is threading the 

query sequence through the PDB library using LOMETS40 to construct a template structure-

based multiple sequence alignment. Following this alignment, a domain conservation score 

is calculated, where a target-specific scoring cut-off strategy is then used to assign the 

domain boundaries. The final contact-map prediction is derived from both the full-length 

sequence and each of its domains. The inter-domain contacts are the results from the 

prediction of the full-length sequence, and the intra-domain contacts are replaced by the 

prediction of individual domains.

Results

Overall performance

CASP13 had a total of 90 full-length protein targets, where 82 have had their final structure 

released, which have been split into 122 domains by the assessors. In Table SI in the 

Supporting Information, we give a list of Nf values of MSAs and the top L, L/2 and L/5 
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contact prediction accuracy by ResTriplet and TripletRes for all the 122 domains in three 

ranges (short, medium and long), where L is the length of the query sequence. Among them, 

the average results of FM domains are summarized in Table I, following the official 

assessment of the CASP accessors, for three categories of short, medium and long-range 

contacts. Here, a contact is defined as two residues (i and j) whose Cβ atoms are less than 

8Å apart. A short-range contact is where 6 ≤ |i − i| ≤ 11, a medium-range contact is where 12 

≤ |i − j| ≤ 23, and a long-range contact is where |i − i| ≥ 24. It is shown that the two proposed 

methods have comparable performance, although the TripletRes has a slightly higher 

accuracy than the ResTriplet program, by 1.2% and 0.9% for the top L and L/5 long-range 

contacts, respectively. Nevertheless, the corresponding p-values of the difference are 0.82 

and 0.65, showing that the difference is statistically insignificant. If we count the number of 

targets with a top L long-range contact accuracy >0.5, TripletRes met this criterion in 23 out 

of the 31 domains, which is also slightly higher than ResTriplet (22). This difference is 

probably due to the fact that the TripletRes pipeline is trained end-to-end and therefore does 

not suffer from the shortcomings of the stacking strategy used by ResTriplet, such as the fact 

that since the feature ensemble in ResTriplet is optimized separately, the predicted contact-

map and the secondary structure features could be less reliable in some extreme cases where 

sequence homologs are barely obtained. Therefore, this strategy suffers a slightly higher loss 

of contact accuracy for the FM targets compared to TripletRes.

Since the FM targets have on average a lower number of homologous sequences than the 

template-based modeling (TBM) targets, the contact prediction accuracy for FM is expected 

to be lower. To examine this, we also listed the results of contact-map prediction for all 

domains in Table SI. In our case, the average Nf is 57.4 and 390.8 for the FM targets and all 

targets, respectively. Accordingly, the average accuracy of the top L long-range contacts of 

ResTriplet and TripletRes predictions for all targets is 29% and 25% higher compared to that 

of FM targets. Interestingly, the increase in ResTriplet is slightly larger, which results in a 

slightly higher accuracy by ResTriplet than by TripletRes in all targets, contrary to the trend 

present in the FM targets only. The larger discrepancy in accuracy is likely because of the 

consideration of secondary structure information in ResTriplet; the prediction of secondary 

structure is relatively reliable when more homologous sequences are found.

Impact of DeepMSA on contact prediction accuracy

The quality of the MSA is highly correlated with the predictive accuracy of a protein 

contact-map, especially for TripletRes and ResTriplet due to their dependence on 

coevolutionary features derived directly from the MSA. In CASP13, we utilized DeepMSA 

to construct MSAs by searching across multiple databases using complementary sequence 

searching engines27. To examine the impact of such pipeline on the final contact predictions, 

Figure 2A and Figure 2B show a head-to-head comparison of the top L long-range 

predictions on the FM targets by TripletRes and ResTriplet using two different pipelines of 

MSA collection, one with DeepMSA and another with a routine approach of HHBlits 

searching through UniClust30 sequence database. The result shows that 27 (28) out of the 31 

FM domains have improved contact predictions using DeepMSA relative to the HHBlits 

pipeline for TripletRes (ResTriplet). On average, DeepMSA improved the precision of 

TripletRes/ResTriplet from 33.2%/35.4% to 40.9%/40.4%. The p-values from a Student’s t-
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test are 2.9e-06/1.1e-04, suggesting that the improvement is statistically significant. Since 

the only factor that was changed between these two pipelines was the method of MSA 

collection, the difference can be attributed solely to this factor. In this regard, the average Nf 

by DeepMSA is 57.4 for the 31 FM domains, compared to 11.6 from HHBlits, indicating 

that DeepMSA indeed generates more diverse sequences with a deeper alignment.

Interestingly, DeepMSA has a slightly greater improvement with TripletRes than ResTriplet. 

Even though TripletRes has lower accuracy for long-range top L contacts compared to 

ResTriplet based on HHblits MSAs, the final accuracy of TripletRes is higher than that of 

ResTriplet after both employing deep MSAs. To provide a more quantitative analysis about 

the impact of MSAs on the performance of the proposed methods, we present the precision 

of long-range top L/5 contact prediction by TripletRes and ResTriplet versus the Nf of 

MSAs for all targets in Figure 2C and Figure 2D. Note that 8 targets (i.e., T0952-D1, 

T0953s1-D1, T0960-D1, T0960-D4, T0963-D1, T0963-D4, T0979-D1, and T0980s2-D1) 

with no long-range contacts in the experimental structures are excluded from the figure. The 

Pearson correlation coefficients between precision and the logarithm of Nf are 0.584 and 

0.551 for TripletRes and ResTriplet, respectively, for all 122 domains, indicating that the 

correlations are both modest. The reason is mainly because of the occurrence of targets with 

low Nf values but high precision. 19/21 out of 28 domains that have an Nf lower than 10 

predicted by TripletRes/ResTriplet achieve precisions over 0.5, as shown in the left-upper 

blocks in Figure 2C and Figure 2D. To further investigate this phenomenon, we performed 

direct coupling analysis by the CCMpred program on domains with an Nf less than 10; the 

precision of long-range L/5 contact prediction was found to be 0.149, 74.8%/75.5% lower 

than 0.591/0.608 achieved by TripletRes and ResTriplet. The large gap between the 

performance of the pure DCA method and deep-learning based methods demonstrates the 

effectiveness of supervised deep neural network training. However, some targets with highly 

populated MSAs still have lower precision. Taking T0982-D2 as an example, the long-range 

top L/5 precision of contact-maps predicted by TripletRes and ResTriplet are 0.462 and 

0.385 respectively, despite the Nf value of 207.15. According to the top template (PDB ID: 

3tfzB) provided by CASP, it is highly possible that the domain interacts with a specific 

ligand in vivo. Therefore, the structure determination of this target should be conditional not 

only on the sequence information, but also information of the binding ligand. The 

negligence of ligand information in our pipeline can lead to bias in the contact map 

prediction. Another possible reason for the low precision values is the inherent roughness of 

using contacts as the ground truth during the training process. The binary contact-map 

representation may cause the loss of detailed distance information and cannot faithfully 

represent the elasticity of the protein. The mean ground truth distance of false positives 

predicted by ResTriplet in long-range top L/5 predicted contacts are 10.86, which means the 

false positives are still close enough to be in contact. Such phenomenon can be caused by the 

fact that the models trained by binary contact-maps may not be able to distinguish residue 

pairs whose distance is near the contact threshold in this case. The studies of training with 

distance information are under progress.

While DeepMSA improves contact precision on average, it occasionally has negative effects 

on targets where MSAs are too aggressively collected. In particular, for the domain T0982-

D2, for example, DeepMSA went through all 3 steps to obtain the final multiple sequence 
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alignment, and the Nf values of MSAs of three steps are 39.7, 91.6, and 288.9 respectively. 

TripletRes and ResTriplet achieved long-range top L/5 precisions of 0.962 and 0.923 

respectively based on the MSA generated by Step 1. When the MSA generated from Step 2 

is used, the precision of ResTripet slightly improves to 0.962 while that of TripletRes drops 

to 0.615. The precision of TripletRes and ResTiplet both drops to 0.577 and 0.423 based on 

the MSA of Step 3 and become 0.462 and 0.385 at last. The downward trend of the precision 

for the two predictors in response to the deeper searching of the DeepMSA pipeline 

indicates that deeper MSAs do not necessarily lead to better contact prediction, partly 

because there could be the alignment noise introduced with a deeper MSA. How to 

quantitatively measure and reduce the alignment noise of homologous sequences contained 

within an MSA is still an important issue worthy of further study.

When only FM targets are counted, we found that the correlations between precision and Nf 

value were 0.559 and 0.659 for TripletRes and ResTriplet, respectively. In other words, the 

performance of TripletRes is less dependent on the quality of MSAs for FM targets. Such an 

observation further proves the robustness of TripletRes, in particular for FM targets. We also 

observed that the correlation between the precision of ResTriplet and Nf is much higher than 

that of TripletRes on FM targets, which confirms that the performance of ResTriplet is more 

sensitive to the content of the MSAs than TripletRes. As pointed out previously, this is 

probably because ResTriplet uses extra predicted one-dimensional features based on MSAs. 

The quality of the input MSA thus has more impact on the performance of the final 

prediction for ResTriplet. Nevertheless, 11/12 out of the 18 FM targets that have a very low 

Nf (<10) for TripletRes/ResTriplet achieve a reasonable contact accuracy >0.5. These data 

show that the neural networks fed with coevolutionary features still have the ability to learn 

the underlying contact patterns even from a very limited number of sequence homologs, 

which is important for the modeling of FM targets that lack homologous sequences.

Comparison of ensemble methods with their components

Both TripletRes and ResTriplet are hybrid approaches integrating information from three 

different components. To examine the effect of the information ensembling method, we 

present a comparison of the results of the hybrid methods against three predictors using the 

individual component input features on CASP13 FM targets in Figure 3. The prediction of 

each component predictor is the average of 10 models for the corresponding coevolutionary 

feature type. It is observed that the impact of the ensemble is quite significant for FM 

targets. For example, the mean precision of long-range top L/5 contacts was 64.6% for 

TripletRes, which is 10.6%, 8.6%, and 12.0% higher than those of predictors based on PLM, 

PRE, and COV, respectively. Similarly, the stacked ensemble of ResTriplet also brought a 

mean precision of 64.0%, which is 9.6%, 7.6%, and 10.9% higher than the mean precisions 

of each component. The same pattern was also observed in the mean precisions of long-

range top L contacts. When we consider all targets (Figure S2), the results showed that the 

ensemble methods (TripletRes and ResTriplet) only slightly outperformed PLM, PRE, and 

COV based component predictors. For example, the top L/5 long-range average precision of 

TripletRes and ResTriplet for all targets are 75.4% and 76.2%, which were only marginally 

higher than 75.2%, 74.6%, and 71.0% achieved by predictors based on PLM, PRE, and COV 

features, respectively. The same is true when considering the top L long-range predictions. 
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Such an observation indicates that the ensemble is particularly necessary for FM targets. 

This is partly because the FM targets usually have a lower number of homologous 

sequences, where complementary information from different components can help enhance 

the overall accuracy of the final contact models. For TBM targets, however, the MSA is 

usually deep enough for each of the component predictors to generate satisfactory contacts 

and the effectiveness of ensembling is therefore less pronounced.

In addition, it was observed that predictors based on PLM and PRE features performed 

better than the COV based feature in all the comparisons. This is because the PLM and the 

PRE features are both built on direct coupling analysis, while the COV feature is based on 

marginal correlation analysis, which suffers more from indirect transitional noise.

Impact of domain splitting on contact predictions

Both TripletRes and ResTriplet use DeepMSA to create MSAs from the sequences of 

individual domains as parsed by ThreaDom. To examine the effect of the domain splitting on 

contact prediction, Figure 4 compares the long-range top L precision before and after the 

domain splitting procedure on 26 whole-length proteins that were assigned as multi-domain 

sequences by ThreaDom. Out of these 26 proteins, 59 domains have their structure released, 

where Figure 4 lists the contact prediction results of these 59 domains following the official 

domain definitions from CASP13.

The ThreaDom-based domain partitions generated an obviously positive impact on the 

contact predictions. There are overall 23 (or 36) out of the 59 domains that have an increased 

precision after the domain splitting procedure for TripletRes (or ResTriplet) relative to the 

whole-chain based predictions, while the opposite occurs only in 12 (or 7) cases. On 

average, the top L long-range precision of TripletRes and ResTriplet (52.6% and 54.1%) are 

also higher than that of the whole-chain prediction (46.9% and 46.6%), which corresponds 

to a p-value of 1.8e-03 and 9.9e-05, respectively, showing that the difference is statistically 

significant.

Among the 59 domains in Figure 4, two domains, T0981-D3 and T0981-D5, stand out with 

a very large difference between using and not using the domain splitting. Both of the 

domains are from T0981, which contains five domains, but ThreaDom split the target 

sequence into four domains (see Figure S3). A closer look showed that the normalized 

effective number of sequences in the MSA (Nf) is 0.2, with only 9 homologous sequences 

being present in the MSA when the whole-chain sequence is used. The Nf value increased to 

229.6 and 2.8, respectively, for T0981-D3 and T0981-D5 after the domain splitting by 

ThreaDom, which eventually increased the contact prediction accuracy of TripletRes/

ResTriplet from 0.187/0.177 to 0.675/0.818 for T0981-D3, and 0.110/0.244 to 0.803/0.669 

for T0981-D5. These data suggest that the benefit of domain partitioning mainly manifests 

as improvement of the MSA construction, since domain splitting helps DeepMSA to detect 

more homologous sequences for each individual domain.

However, theoretically, domain splitting may also result in bias in the estimation of DCA 

models. Before domain splitting, the probability of a certain amino acid at a certain position 

in DCA models is conditional on all other positions of the full-length sequence. However, 
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after domain splitting, this probability is only conditional on other positions of the domain. 

Moreover, alignment quality of positions close to the domain boundary could also be 

negatively affected after domain splitting. These two factors could be the reason that a small 

number of domains have lower precision even with more sequence homologs being present 

in the MSA.

What went right?

We found that using raw coevolutionary features can provide high-precision contact-map 

predictions when coupled with deep convolutional neural networks. Among the 

coevolutionary features, the DCA-based features, i.e., the precision matrix and the coupling 

parameters of the pseudolikelihood maximized Potts model, outperform the marginal 

correlation feature, i.e., the covariance matrix. Considering that many methods in literature 

have used the covariance matrix feature, this conclusion may help push the boundaries of 

contact-map prediction. Moreover, although a single raw coevolutionary feature can provide 

relatively accurate contact-maps, multiple feature fusion/ensembling with deep 

convolutional neural networks is still needed to achieve even better performance.

According to our self-test benchmark and the CASP13 results, a combination of diverse 

multiple sequence alignment generation protocols (search algorithms and sequence 

databases) can significantly improve contact prediction, especially for FM targets. Another 

important aspect of our prediction procedure is domain splitting. Even when the predicted 

domain boundary is not exact, domain splitting still improves the precision by providing 

more diverse and deeper MSAs.

What went wrong?

Since all evolutionary coupling are inferred from the MSA, strong noise can be introduced in 

terminal regions where long stretches of gaps in the MSA leads to a false positive coupling 

signal. This is because gaps are treated as an additional amino acid type in constructing 

coevolutionary features. This issue has been amplified by T0957s2-D1, where the top L 

long-range accuracies are 39.4% and 34.2% for TripletRes and ResTriplet respectively. As 

shown in Figure 5A, there is a significantly high number of alignment gaps in the first 30 

residues. Accordingly, the majority of the false positive predictions (marked as grey circles 

in the upper-left corner of the contact map in Fig. 5B) are from the contacts involving these 

N-terminal residues. Figure 5C presents the 3D structure of the domain, which shows that 

the N-terminal is well-packed with the rest of the domain and has the same secondary 

structure as other residues, indicating that the gaps are not due to the irregular local structure 

or motif disordering. In this regard, how to appropriately consider large gaps in MSAs is still 

an important problem.

Conclusion

We have introduced two hybrid contact prediction methods, TripletRes and ResTriplet, 

which have been tested in CASP13. Unlike other methods which use post-processed 

coevolutionary analysis coupling potentials, these two methods use the raw coevolutionary 

matrices as the only input features, which can result in advanced contact-map predictions 
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when coupled with deep residual neural networks. Part of the success of these methods is 

due to the feature ensembling strategies: feature fusion by neural networks, denoted as 

TripletRes, and multiple predictor stacking, denoted as ResTriplet. Meanwhile, the iterative 

MSA construction procedure DeepMSA, which combines multiple sources of sequence 

databases, and domain specific MSA collection also contributed to the improvement of the 

final contact-map prediction performance. The effects and usefulness of these approaches 

are particularly pronounced for FM targets, which typically involve a smaller number of 

homologous sequences compared to easier TBM targets.

Nevertheless, there are still issues in contact-map prediction particularly in the tail regions of 

sequences, which often have a higher number of alignment gaps that result in a lower 

contact accuracy than other regions. Meanwhile, contact prediction for hard targets with a 

lower number of homologous sequences is still far from satisfactory. Development of new 

pipelines with models specifically trained on these tail regions and hard targets might help 

address these shortcomings.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The pipeline of TripletRes and ResTriplet for contact-map prediction in CASP13.
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Figure 2. 
Illustration of the effect of MSAs on the performance of TripletRes and ResTriplet. (A) and 

(B) Comparison of top L long-range contact prediction results using MSAs by DeepMSA 

versus those by the routine HHblits search for TripletRes and ResTriplet, respectively. (C) 
and (D) Precision of long-range top L/5 contact prediction versus Nf of MSAs for TripletRes 

and ResTriplet, respectively.
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Figure 3. 
Mean precisions of long-range top L and top L/5 contacts of TripletRes and ResTriplet on 

FM targets, compared to the predictors trained on the component features from the 

covariance matrix feature (COV), the precision matrix feature (PRE) and the coupling 

matrix of the inverse Potts model feature (PLM).
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Figure 4. 
Comparison of precisions of long-range top L contact predictions with domain partitioning 

versus those without using domain partitioning. (A) TripletRes; (B) ResTriplet.
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Figure 5. 
An illustrative example of CASP13 domain T0957s-D1 showing false positive contact 

prediction in the N-terminal tail region due to the higher number of gaps in the alignment. 

(A) Bar plot of the number of gaps along the query sequence. (B) Contacts from the native 

structure (lower-right triangle section) versus predicted contacts by ResTriplet (upper-left 

section) where gray circles and black squares denote false and true positive predictions 

respectively. (C) 3D experimental structure of the T0957s-D1 with the N-terminal tail 

marked in black.
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Table I.

Overall performance of TripletRes and ResTriplet on CASP13 FM targets

Method
Short range Medium range Long-range

L L/2 L/5 L L/2 L/5 L L/2 L/5

ResTriplet 0.278 0.449 0.691 0.358 0.533 0.759 0.404 0.529 0.640

TripletRes 0.280 0.453 0.671 0.360 0.541 0.744 0.409 0.534 0.646
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