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Abstract

Accurate stroke lesion segmentation is a critical step in the neuroimaging processing

pipeline for assessing the relationship between poststroke brain structure, function,

and behavior. Many multimodal segmentation algorithms have been developed for

acute stroke neuroimaging, yet few algorithms are effective with only a single

T1-weighted (T1w) anatomical MRI. This is a critical gap because multimodal MRI is

not commonly available due to time and cost constraints in the stroke rehabilitation

setting. Although several attempts to automate the segmentation of chronic lesions

on single-channel T1w MRI have been made, these approaches have not been sys-

tematically evaluated on a large dataset. We performed an exhaustive review of the

literature and identified one semiautomated and three fully automated approaches

for segmentation of chronic stroke lesions using T1w MRI within the last 10 years:

Clusterize, automated lesion identification (ALI), Gaussian naïve Bayes lesion detec-

tion (lesionGnb), and lesion identification with neighborhood data analysis (LINDA).

We evaluated each method on a large T1w stroke dataset (N = 181). LINDA was the

most computationally expensive approach, but performed best across the three main

evaluation metrics (median values: dice coefficient = 0.50, Hausdorff's dis-

tance = 36.34 mm, and average symmetric surface distance = 4.97 mm). lesionGnb

had the highest recall/least false negatives (median = 0.80). However, across the

automated methods, many lesions were either misclassified (ALI: 28, lesionGnb:

39, LINDA: 45) or not identified (ALI: 24, LINDA: 23, lesionGnb: 0). Segmentation

accuracy in all automated methods were influenced by size (small: worst) and stroke

territory (brainstem, cerebellum: worst) of the lesion. To facilitate reproducible sci-

ence, our analysis files have been made publicly available online.
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1 | INTRODUCTION

Despite intensive research and rehabilitation efforts, stroke remains a

leading cause of long-term disability worldwide (Mozaffarian et al.,

2016). Stroke rehabilitation research aims to understand the

relationship between brain, behavior, and recovery following a stroke

and to use brain changes after a stroke to predict functional out-

comes. Neuroimaging, particularly high-resolution T1-weighted (T1w)

anatomical MRIs, has been used to examine structural brain changes

after stroke. Careful investigation of poststroke brain anatomy, using
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techniques such as voxel-lesion symptom mapping or calculation of the

overlap percentage between the lesion and critical brain structures,

have been useful for relating brain changes to behavioral outcomes

(e.g., corticospinal tract lesion load; Bates et al., 2003; Lindenberg et al.,

2010; Riley et al., 2011; Zhu, Lindenberg, Alexander, & Schlaug, 2010).

However, accurate and precise lesion annotation is necessary to con-

duct and draw valid clinical inferences from these analyses.

To date, manual lesion tracing by an individual with expertise in

neuroanatomy remains the gold standard for lesion segmentation.

This procedure is a time and labor-intensive process that requires

domain expertise (Fiez, Damasio, & Grabowski, 2000). Consequently,

this is not feasible for studies with larger sample sizes, and becomes a

limiting factor in large-scale stroke rehabilitation neuroimaging ana-

lyses (Liew et al., 2018). This is especially problematic for stroke reha-

bilitation research, as compared to acute stroke research, because

there are few stroke segmentation algorithms that can be effectively

used with only a T1w MRI for lesion segmentation.

Whereas multimodal MRI sequences including diffusion weighted

imaging, T2-FLAIR, and perfusion weighted imaging are commonly

acquired within the first few hours to days of stroke onset and used

to make clinical decisions about treatment of acute stroke, the pri-

mary imaging modality that is commonly acquired for studying chronic

stroke anatomy across stroke rehabilitation research sites is a high-

resolution T1w MRI (Albers, 1998; Chalela et al., 2000). This is typi-

cally due to patient burden as well as time and financial constraints.

Additionally, across different research groups, image modalities that

are acquired beyond a T1w MRI vary widely due to varied research

interests. For example, some groups may be interested in examining

functional changes in the brain, and allocate image acquisition time to

acquire task- or resting-state fMRI, while other groups may be more

interested in acquiring detailed anatomical scans and therefore

acquire a diffusion tractography scan. A wealth of research attention

has focused on developing optimal algorithms for quick lesion seg-

mentation and prediction of gross clinical outcomes using multimodal

sequences (Maier, Schröder, Forkert, Martinetz, & Handels, 2015).

However, fewer lesion segmentation algorithms have focused on only

T1w MRIs, on which lesions appear hypointense to the adjacent tissue

and sometimes appear as holes in the tissue. Lesion segmentation on

a single T1 modality is a challenging task, as such, algorithms have less

access to information about the lesion as compared to algorithms that

use multiple scans from the same subject (Pustina et al., 2016).

In recent years, a handful of automated and semiautomated lesion

segmentation approaches have been developed in response to this

problem (see literature search results in Table S1, Supporting Informa-

tion). Automated segmentation approaches can be divided into two

major categories: (a) supervised image classification techniques which

use machine learning to train classifiers based on “ground truth” lesion

examples (i.e., manually traced lesions), and (b) unsupervised

approaches, which use mathematical modeling to first distinguish the

lesional tissue characteristics from other tissue types without labeled

responses and then separately cluster the voxels belonging to each

tissue type. These automated approaches are promising, yet few com-

parisons between existing T1w lesion segmentation methods have

been made, due to (a) the lack of large-sized, publicly available stroke

T1w MRI datasets and (b) the intensive labor necessary to manually

segment lesions as the benchmark for comparison.

Systematic evaluations of existing algorithms can be useful for

identifying current best solutions, as well as identifying areas where all

algorithms could use improvement. An excellent example of a compara-

tive evaluation of lesion segmentation algorithms comes from the mul-

timodal, acute neuroimaging world in the form of the annual ischemic

stroke lesion segmentation challenge (ISLES challenge; Maier et al.,

2017; http://www.isles-challenge.org/). In the ISLES challenge, teams

compete to develop algorithms that accurately segment the lesions and

upload their algorithms to the ISLES website, after which the ISLES

organizers evaluate automated lesion segmentations and rank partici-

pating research teams based on their performance on image metrics,

including the dice similarity coefficient (DC), Hausdorff's distance (HD),

average symmetric surface distance (ASSD), precision, and recall. How-

ever, to our knowledge, no such fair and systematic evaluations have

been conducted on T1w MRIs on chronic stroke data.

Here, we evaluated existing approaches for unimodal T1w chronic

stroke lesion segmentation by quantitatively measuring the perfor-

mance of each on a large, publicly available stroke lesion dataset. We

also identified areas for improvement across automated lesion seg-

mentation algorithms in the chronic stroke population.

2 | METHODS

We first performed a review of the literature to identify existing T1w

MRI stroke lesion segmentation approaches. We then implemented

the identified lesion segmentation approaches, and compared their

performance to a ground-truth expert segmentation using various

image metrics. Finally, we statistically evaluated how each automated

segmentation approach performed against one another. All statistical

analysis files are publicly available on our GitHub repository to facili-

tate reproducibility (https://github.com/npnl/elsa).

2.1 | Literature search

A computerized search covering the period from April 2007 to April

2017 was conducted on the PubMED online database using the fol-

lowing terms: ([“lesion identification” OR “lesion detection” OR “lesion

classification”] OR “lesion” AND [“stroke”[MeSH Terms] OR “brain”

[MeSH Terms]]) AND “automated.” Studies were limited to those in

the English language.

The initial search yielded 189 results. We then excluded articles that

were targeted at lesions not caused by stroke (e.g., multiple sclerosis;

n = 144). Any articles that were not specifically on the topic of lesion

segmentation methods were also excluded (n = 31). This resulted in

14 remaining results (Table 1, Supporting Information). Finally, to pro-

vide a fair evaluation for algorithms for chronic, T1w stroke MRI, we

identified only articles on lesion segmentation approaches that were

performed on chronic stroke lesions and have been shown to support

segmentation on a single T1w (n = 6, Table 1). Of these six different
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lesion segmentation approaches, two were excluded as the software

was either no longer available or not supported (S. Shen, personal com-

munication; Shen, Szameitat, & Sterr, 2010; Guo et al., 2015).

2.2 | Software overview

Based on our literature search, we tested both semiautomated and

fully automated approaches to lesion segmentation. In the following

sections, a brief overview of each approach is provided.

2.2.1 | Semiautomated software

We examined one semiautomated approach, Clusterize (de Haan et al.,

2015; Philipp, Groeschel, & Wilke, 2012), as it was the only approach that

met our literature search criteria. However, we acknowledge that other

tools that may be considered “semiautomated,” such as MRIcron (http://

people.cas.sc.edu/rorden/mricron/index.html) and ITKSnap (Yushkevich

et al., 2006), are also publicly available and may be used in lesion segmen-

tation, although they were not developed specifically for stroke lesion

segmentation. Both MRICron and ITKSnap provide three-dimensional

(3D)-growth algorithms to fill an initial area, and require a relatively large

amount of manual input to guide the automated segmentation mask, thus

making them more comparable to manual lesion segmentation methods.

For these reasons, we did not include them in our evaluation.

Clusterize toolbox

The Clusterize approach is a semiautomated approach originally

developed to identify demyelination load in metachromatic leukodys-

trophy using T2-weighted MRIs (Philipp et al., 2012). However, the

Clusterize algorithm has been shown to perform comparably on both

acute and chronic stroke T1w MRI datasets (de Haan et al., 2015).

The Clusterize approach has an automated preprocessing step

followed by a manual cluster selection step. The automated

preprocessing step involves identification of the local intensity max-

ima on each image slice and assignment of each voxel to a single clus-

ter core based on its intensity. This is followed by a manual cluster

selection step and an optional freehand correction step to optimize

the accuracy of the lesion mask.

2.2.2 | Fully automated software

Three fully automated approaches resulted from our literature search

and were currently available: the automated lesion identification (ALI)

toolbox, a Gaussian naïve Bayes lesion detection method (lesionGnb),

and lesion identification with neighborhood data analysis (LINDA;

Seghier et al., 2008; Griffis et al., 2016; Pustina et al., 2016).

ALI toolbox

The ALI approach is an unsupervised method that performs outlier

detection to segment lesions using a fuzzy c-means algorithm (Seghier

et al., 2008). The outlier detection procedure includes a voxel-wise

comparison between healthy and nonhealthy tissue, using a healthy

dataset to define the healthy tissue.

Gaussian naïve Bayes lesion detection

The lesionGnb approach is a supervised method that performs Gaussian

naïve Bayes (GNB) classification for the automated delineation of

chronic stroke lesions (Griffis et al., 2016). The lesionGnb approach used

30 training cases to create feature maps encoding information about

missing and abnormal tissue, obtained from gray matter (GM), white

matter (WM), and cerebrospinal fluid (CSF) prior probability maps, and

tissue probabilistic maps (TPMs). The GNB classifier was trained on

ground-truth manually delineated lesions as well as these feature maps

using a leave-one-out cross-validation approach. The trained GNB clas-

sifier is provided by the developers of the lesionGnb toolbox.

Lesion identification with neighborhood data analysis

The LINDA approach is a supervised method that relies on feature

detection and uses a random forest (RF) algorithm to train and classify

lesioned voxels (Pustina et al., 2016). In the LINDA method, features

capturing aspects of geometry, subject specific anomalies, and devia-

tion from controls for 60 stroke subjects were passed into a single

matrix containing information about a single voxel and its neighboring

voxels. The matrix was then used to train the RF algorithm using man-

ually delineated lesions as the ground truth. RF training was repeated

two more times with successively hierarchical image resolution. The

trained RF classifier is provided by the developers of LINDA.

2.3 | Data and implementation of algorithms

2.3.1 | Computational platform and software
installation

All computations were performed on a Mac OSX Yosemite operating

system with a 3.2 GHz Intel Core i5 processor and 8 GB RAM. To run

the ALI, lesionGnb, and Clusterize toolboxes, we used MATLAB ver-

sion R2016b and SPM12. For the LINDA toolkit, we used R version

3.3.3, ANTsR version 0.3.1, ANTsRCore version 0.3.7.4, and ITKR ver-

sion 0.4.12. See Table 2 for more information.

2.3.2 | Data

Stroke data

We obtained our stroke dataset from the Anatomical Tracings of

Lesions After Stroke (ATLAS) database (Liew et al., 2018). ATLAS is a

public database consisting of 304 T1w anatomical MRIs of individuals

with chronic stroke collected from research groups worldwide from the

ENIGMA Stroke Recovery Working Group consortium. To account for

potential confounding factors, we included only MRIs with 1 mm isotro-

pic voxels, and all MRIs were collected from 3-T scanners. We further

excluded any MRIs that highly deviated from the normal range of the

standard orientation. We also only included one MRI per individual

(no inclusion of longitudinal data). One hundred and eighty-one T1w

anatomical MRIs (100 left hemisphere stroke (LHS), 81 right hemisphere

stroke (RHS)) from a total of eight different scanners were included in

the current analyses. Average lesion volume for all 181 lesions was

23,387 mm3 (median = 5,584 mm3); for right hemisphere lesions:
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mean = 31,842 mm3; median = 15,334 mm3; for left hemisphere lesions:

mean = 16,539 mm3; median = 4,508 mm3 (see Figure S1, Supporting

Information for lesion volume histogram). Further information on image

acquisition for stroke data can be found in Liew et al., 2018.

Healthy data

The ALI method required a dataset of healthy controls to perform out-

lier detection. As the developers of the algorithm did not provide a

healthy control dataset, we used images of healthy subjects sampled

from the Functional Connectome Project (http://fcon_1000.projects.

nitrc.org, n = 100). The developers of ALI did not recommend an opti-

mal number of healthy controls, but rather specified that a larger set of

healthy controls would better estimate the normal variability in brain

structure (M. Seghier, personal communication). Although we could not

match the exact acquisition parameters used in the ATLAS stroke sites,

we did include only 3-T MRIs from seven different research sites with

data within the same older adult range of the ATLAS data we used.

2.3.3 | Lesion segmentation

Expert segmentation

The ATLAS database included manually segmented lesion masks cre-

ated by a team of trained individuals. We included only lesions that

were designated as the primary stroke, as the original algorithms were

developed and tested on a single lesion per brain (Griffis et al., 2016;

Pustina et al., 2016; Seghier et al., 2008). Each lesion mask was care-

fully quality controlled. Briefly, each stroke lesion was segmented using

either the coronal or axial view in MRIcron (http://people.cas.sc.edu/

rorden/mricron/index.html) with a mouse, track pad, or a tablet

(depending on preference) by 1 of 11 trained individuals. Individuals

tracing lesions consisted of undergraduate students, graduate students,

and postdoctoral fellows. Standardized training included utilization of a

detailed protocol and instructional video, and guidance with extensive

feedback on lesion tracings from an expert tracer and in consultation

with a neuroradiologist. All lesions were checked for accuracy by a sep-

arate tracer. Lesion masks were also smoothed using a 2 mm FWHM

kernel in order to smooth jagged edges between slices. All lesion loca-

tions were reviewed by a neuroradiologist. Interrater and intrarater reli-

ability was computed for five stroke lesions (interrater DC: 0.75 ± 0.18;

intrarater DC: 0.83 ± 0.13; Liew et al., 2018). For further information

on the labeling and training protocol, see Liew et al., 2018.

Semiautomated segmentation

Clusterize. We followed the standard procedure (previously described

in Section 2.2.1) and manually selected clusters as our lesion mask.

We did not perform additional manual correction, as this time-

consuming process would have made the process analogous to a man-

ual labeling procedure.

Automated segmentations

Automated lesion identification. The following automated steps were

implemented as part of the ALI toolbox. All adjustable parameters were

kept at their default values. First, segmentation and normalization of

both healthy and stroke T1w MRI images were performed in SPM12.

TABLE 2 Processing features of fully automated toolboxes

ALI
Voxel-based GNB classification
(lesion_gnb) LINDA

Compatible operating

systems

Windows, Linux, Mac Windows, Linux, Mac Windows 10+, Linux, Mac

Platform dependencies MATLAB, SPM5+ MATLAB 2014b+ (requires statistics

and machine learning toolbox),

SPM12+

R v.3.0+, ANTsR package

Year developed 2007 2015 2016

Open source No Yes Yes

Learning type Unsupervised Supervised Supervised

Training dataset Requires user to provide segmented

healthy training dataset

Provided (trained on 30 LHS subjects) Provided (trained on 60 LHS subjects)

Amenable to left or

right hemisphere

lesions

Yes Yes, provided that the user indicates

which hemisphere first

No, right hemisphere lesions

must be flipped

Template brain space ICBM152 ICBM152 Colin 27 template

User-defined

parameters

Sensitivity (tuning factor), fuzziness

index in fuzzy means clustering

algorithm, threshold probability

and size for the extra class prior

Optional smoothing, smoothing kernel,

minimum cluster size, implicit masking

while smoothing

None

Optional

postprocessing steps

None Resegmentation with a tissue prior None

Abbreviations: ALI, automated lesion identification; GNB, Gaussian naïve Bayes; lesionGnb, Gaussian naïve Bayes lesion detection; LHS, left hemisphere

stroke; LINDA, lesion identification with neighborhood data analysis.
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For stroke T1w MRIs, the ALI toolbox used a modified unified

segmentation–normalization algorithm, which included use of an extra

lesion tissue class prior (defined as the mean of the standard WM and

CSF priors) to inform tissue probability maps for the segmentation of

GM, WM, and CSF maps. GM and WM segmentations were then

smoothed, and outlier detection comparing both GM and WM segmen-

tations between patients and healthy controls was performed using

fuzzy means clustering. Finally, the identified GM and WM outliers

were combined into a final lesion mask.

Gaussian naïve Bayes lesion detection. For the lesionGnb approach, the

following steps were implemented: we first specified whether the

stroke was on the left or right hemisphere, as the program does not

automatically detect the stroke hemisphere. Then, probabilistic tissue

segmentation on the stroke T1w MRI was carried out using default

parameters in the New Segment tool in SPM12. Tissue segmentations

were smoothed with an 8 mm FWHM kernel based on default param-

eters, and feature maps containing information about missing and

abnormal tissue were derived from GM/WM/CSF TPMs. The trained

and cross-validated GNB classifier provided by the developers was

then used to predict lesion class labels. A minimum cluster size of

100 voxels, again based on default parameters, was specified as the

threshold for retention of clusters in the final mask, and the final mask

was smoothed using an 8 mm FWHM kernel.

Per personal communication, an additional resegmentation step

using the final lesion was recommended for improving normalization

performance and outline precision (J. Griffis, personal communication;

Sanjuán et al., 2013). However, as we wanted to compare each algo-

rithm based only on the publicly available information, we did not use

the additional resegmentation step for this analysis.

Lesion identification with neighborhood data analysis. LINDA requires all

strokes to be presented on the left hemisphere. Therefore, using the

metadata obtained from ATLAS, as a first step, we automatically

flipped the T1w MRIs for subjects with RHS so that the stroke

appeared on the left hemisphere (n = 81). The following steps were

implemented as a part of the LINDA package: Advanced Normaliza-

tion Tools (ANTs; Avants et al., 2010) was used to perform two itera-

tions of bias correction and brain extraction, as well as spatial

normalization. Six features (deviation of k-mean segmentation from

controls, gradient magnitude, T1 deviation from controls, k-mean seg-

mentation, deviation of T1 asymmetry from controls, and raw T1 vol-

ume) were computed from the preprocessed T1w image. Within the

LINDA package, these features were passed to the pretrained RF clas-

sifier provided by the developers, and the classifier was then run to

detect the lesion using a multiresolution strategy to characterize

lesion/perilesional characteristics at different spatial levels. This

involves first downsampling the test image to 6 mm, and then using

increasing resolutions at 4 and 2 mm, where the predicted lesion mask

was then inversely transformed from the template to the subject's

image space after each iteration to improve prediction accuracy. For

right hemisphere lesions, we flipped the images back to the right

hemisphere after lesion segmentation.

2.4 | Postprocessing of automated lesion masks

All automated lesion mask outputs were converted back to native

space for comparison to expert segmentations. For the ALI and

lesionGnb approaches, which relied on SPM for preprocessing, lesion

masks were inverse transformed using the transformation matrix

resulting from SPM. The LINDA toolbox included two lesion masks,

one output in native space and the other in stereotaxic space. There-

fore, no further processing was necessary for the LINDA approach.

2.5 | Segmentation evaluation

2.5.1 | Visual evaluation

As a first step, we manually inspected the quality of the automated

lesion mask outputs. To do so, we used an open-source package

(Pipeline for the Analysis of Lesions after Stroke; PALS; http://github.

com/NPNL/PALS) to perform a visual evaluation of the automated

outputs (Figure 1; Ito et al., 2018). The Visual QC module in PALS

facilitates visual inspection of lesion segmentations by creating HTML

pages with screenshots of lesion segmentations overlaid on each sub-

ject's T1w image, and allows for easy flagging of lesion masks that do

not pass inspection.

Given the nature of our multisite data, we anticipated that there

might be cases in which the lesion segmentation algorithms would

either (a) produce a lesion mask that has no overlap with the expert

segmentation, that is, misclassify the lesion, or (b) identify no lesioned

voxels, creating an empty mask file. For evaluating the performance

across approaches, we decided to eliminate a case if any automated

approach yielded an empty mask file, as this would not yield any com-

parable distance metric. Additionally, we eliminated cases in which all

three automated algorithms produced lesion masks that had no over-

lap with the expert segmentation as these cases would have the same

ranks in the nonparametric evaluation (Table 3; see Section 2.5.3).

2.5.2 | Quantitative evaluation

Evaluation metrics

To evaluate the performance of each automated lesion segmentation

approach compared to the expert segmentation, we implemented the

following evaluation metrics, which were used to evaluate lesion seg-

mentations in the ISLES challenge: DC, HD and ASSD (Maier et al.,

2017). To assess oversegmentaion and undersegmentation, we also

obtained values on precision (also known as positive predictive value)

and recall (sensitivity). We additionally calculated the lesion volume to

assess whether the automated lesion segmentation approaches

detected lesions of similar size to the expert segmentation. Finally, algo-

rithmic efficiency was evaluated by obtaining the computational time

for each segmentation approach. Evaluation metrics are described in

detail below.
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Dice similarity coefficient

DC is a measure of segmentation accuracy. DC is calculated with the

following equation:

DC=2* jX\Y j = Xj j+ Yj jð Þ

DC ranges from 0 (no overlap) to 1 (complete overlap), and X and

Y represent the voxels in the expert segmentation, and those in the

automated segmentation respectively.

Hausdorff's distance

HD is a measure of the maximum distance between all surface points

of two image volumes. It is defined as:

dH X,Yð Þ= max max
xϵX

min
yϵY

d x,yð Þ, max
yϵY

min
xϵX

d y,xð Þ
� �

where x and y are points of lesion segmentations X and Y, respec-

tively, and d(x,y) is a 3D matrix consisting of all Euclidean distances

between these points. HD is measured in millimeters and a smaller

value indicates higher accuracy.

Average symmetric surface distance

ASSD is a measure of the average of all Euclidean distances between

two image volumes. Given the average surface distance (ASD),

ASD X,Yð Þ=
X
x2X

miny2Yd x,yð Þ= jX j

where d(x,y) is a 3D matrix consisting of the Euclidean distances

between the two image volumes X and Y, ASSD is given as:

ASSD X,Yð Þ= ASD X,Yð Þ+ASD Y,Xð Þf g=2

Similar to HD, the ASSD is measured in millimeters, and a smaller

value indicates higher accuracy.

Precision and recall

Precision, also called positive predictive value, is the fraction of true

positives (i.e., overlapping points between the two images) within the

automated segmentation. It is defined as:

Precision =TP= TP+FPð Þ

where precision ranges from 0 to 1 (1 indicating optimal precision),

and TP are the true positives and FP denotes false positives in the

automated segmentation.

Recall, also called sensitivity, is the fraction of true positives (over-

lapping points between the two images) within the expert segmenta-

tion. It is calculated with the following equation:

Recall = TP= TP+FNð Þ

where recall ranges from 0 to 1 (1 indicating optimal recall), and TP

denotes true positives and FN (false negative) denotes points that the

automated segmentation failed to identify.

F IGURE 1 Example of quality control page. Prior to quantitatively evaluating each lesion segmentation performance, we visually assessed the
lesion mask for each case. We created a script that automatically output a quality control page (https://github.com/npnl/PALS; Ito, Kumar,
Zavaliangos-Petropulu, Cramer, & Liew, 2018) with each automated lesion mask overlaid (red, yellow, green) on the expert segmentation (white).
Subject IDs shown in this figure are kept in the same convention as in the Anatomical Tracings of Lesions After Stroke database [Color figure can
be viewed at wileyonlinelibrary.com]
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2.5.3 | Statistical analyses

All statistical analyses were carried out in R version 3.3.3. To prevent

any undue influence of extremely easy or extremely difficult cases, we

performed nonparametric analyses to use the ranks of each auto-

mated approach to determine whether one approach outperformed

another. For fair comparison, our statistical analyses were performed

only on the fully automated approaches and did not include the lesion

masks created in the Clusterize toolbox, which were driven by a

degree of manual input. We report segmentation evaluation metrics

for Clusterize in Table 4.

A Friedman test, the nonparametric equivalent of a one-way

repeated measures analysis of variance (ANOVA), was carried out to

examine whether there was a significant difference in the perfor-

mance among the fully automated segmentation approaches for each

evaluation metric (DC, ASSD, HD, precision, and recall). Post hoc ana-

lyses with Wilcoxon signed-rank tests were carried out using a

Bonferroni correction for multiple comparisons. All Type I error rates

were set at α < 0.05.

To further evaluate the utility of the automated segmentation

approaches on lesion volume, we calculated a Pearson product–

moment correlation coefficient for each automated approach to

determine the relationship between the lesion volume of the expert

segmentation and the lesion volume of the automated segmentation.

2.5.4 | Analyses of segmentation performance by
lesion characteristics

We assessed whether performance of any of the automated lesion

segmentation approaches was associated with any particular lesion

characteristics, such as stroke territory (cortical, subcortical,

brainstem, cerebellar) and lesion size.

Stroke territory

For each automated approach, we compared DC for each stroke territory

(cortical, subcortical, brainstem, cerebellar) using a Kruskal–Wallis rank

sum test (a nonparametric equivalent to a one-way ANOVA) followed by

post hoc comparisons with a Bonferroni adjustment to assess whether

there were differences in accuracy among the different stroke territories.

Lesion size

We created a lesion size variable by transforming lesion volume based

on expert segmentations into three categories using the 33rd and

67th percentiles in the dataset of all lesion volumes as cutoff ranges

for small, medium, and large lesions.

Here, again, we compared DC for each category of lesion size

using a Kruskal–Wallis rank sum test, followed by post hoc compari-

sons with a Bonferroni adjustment.

2.5.5 | Misclassified cases

Finally, for cases in which lesions were misclassified (i.e., an auto-

mated lesion mask was created but the DC yielded 0), we quantified

the minimum distance (dmin) between the edge of the expert segmen-

tation with the edge of the automated segmentation with the follow-

ing equation:

dmin X,Yð Þ= min
xϵX

fmin
yϵY

d x,yð Þg
( )

where x and y are points of lesion segmentations X and Y, respec-

tively, and d(x,y) is a 3D matrix consisting of all Euclidean distances

between these points. Minimum distance is measured in millimeters

and a smaller value indicates higher accuracy. We examined this mini-

mum distance measure to better understand, when lesion masks mis-

sed the lesion completely, whether they were close or far off from the

actual lesioned territory.

3 | RESULTS

3.1 | Exploratory data analysis

3.1.1 | Computational time

We first examined how long it took for each algorithm to run. For this

evaluation, we used a subset of n = 100 left hemisphere MRIs (from

our total dataset of n = 181). This was because additional steps, albeit

automated, were required for processing right hemisphere lesions in

the LINDA toolbox, which would have made it difficult to compare

total time across toolboxes. The average times to preprocess an image

and detect a lesion for 100 LHS MRIs, in order from fastest to

slowest, were as follows: Clusterize (106.43 s, but with an additional

251.75 s to manually identify each cluster), lesionGnb (246.12 s), ALI

(396.99 s, but with an additional 247.83 s per each healthy brain), and

LINDA (3,843.66 s). Notably, for Clusterize, the manual identification

time will vary by user and by lesion. For ALI, which requires healthy

brains for comparison, we used 100 healthy brains to match the num-

ber of stroke MRIs (see Section 2.3.3).

3.1.2 | Visual evaluation

We performed a visual evaluation to assess the quality of the auto-

mated lesion masks and ascertain that the lesion masks were correctly

transformed back to native space.

For the Clusterize toolbox, there were 152 cases which resulted in

a lesion mask, and 29 cases (16.02%) in which no cluster was detected

as the lesion mask during manual identification.

All fully automated approaches ran completely and produced a

lesion mask file for each case. However, we identified a number of

cases where either there were no lesioned voxels that resulted from

the automated segmentation, creating an empty file (which we refer to

as an empty mask; Table 3), or there was a complete mismatch

between the automated and expert segmentation (i.e., all voxels in the

automated mask were misclassified as the lesion, which we refer to as

a misclassification). This had been anticipated as the algorithms were

based on supervised learning with a limited number of their own
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training data for which lesions in some brain regions (e.g., cerebellum)

were not included.

Of the 181 cases, ALI successfully generated 129 lesion masks

(71%) with at least a single voxel overlapping with the manual label.

lesionGnb also detected 142 cases (78%) with at least a single voxel

overlap with the manual label, and LINDA detected 113 cases (62%).

In addition, ALI had 28 cases in which the automated segmenta-

tion was misclassified (e.g., a lesion was detected, but it did not have

any overlapping voxels with the lesion identified by manual segmenta-

tion), lesionGnb had 39 misclassified cases, and LINDA had 45 cases

(Table 3). Ten of these were the same cases across all three

approaches, and we removed these 10 misclassified cases from statis-

tical evaluation of the approaches, as there would be no differences in

rank between these cases.

Finally, there were 24 cases in which ALI produced an empty

mask; 23 in which LINDA produced an empty mask (eight of these

were the same cases as ALI); and zero in lesionGnb (in other words,

lesionGnb always created a mask in which it identified what it consid-

ered to be lesioned voxels). We subsequently excluded these cases

(n = 23 + 24–8 = 39) from the analysis of the evaluation metrics, as

they would not yield any measurable metrics. Hence, after exclusion

of 39 cases that had empty masks and 10 misclassified cases, 132 total

cases remained in our quantitative evaluation.

For a discussion on the implications and possible reasons for mis-

classification and failed lesion detection, see Section 4.4).

3.2 | Quantitative evaluation

The performance of each fully automated toolbox was evaluated

across the following metrics: DC, HD, ASSD, precision, and recall (Fig-

ures 2 and 3). A summary figure can be found in Figure 4.

3.2.1 | Dice similarity coefficient

Using a Friedman test, we found a statistically significant differ-

ence in DC among the three fully automated lesion segmentation

approaches, χ2(2) = 27.10, p < .0001; corrected using the

Bonferroni adjustment which was applied to all the following tests.

Median (IQR) DC values for ALI, lesionGnb, and LINDA approaches

were 0.40 (0.00–0.81), 0.42 (0.00–0.88), and 0.50 (0.00–0.88),

respectively. Post hoc analyses using Wilcoxon signed-rank tests

on DC showed that LINDA outperformed lesionGnb and ALI

(sum of positive ranks, lesionGnb: V = 5,359, p = .01; ALI:

V = 1944, p < .0001), and lesionGnb outperformed ALI (V = 2,601,

p < .0001).

3.2.2 | Hausdorff's distance

A statistically significant difference in ranks for HD was found

among the three fully automated segmentation approaches,

χ2(2) = 43.09, p < .0001. Median (IQR) HD values for ALI,

TABLE 4 Descriptive statistics for each approach. Performance rates for each approach; median (IQR): DC, HD, ASSD, precision, and recall

Clusterize ALI lesion_gnb LINDA

Image metrics N = 152 N = 132 N = 132 N = 132

DC 0.18 (0.31) 0.4 (0.44) 0.42 (0.37) 0.5 (0.61)

HD (mm) 80.89 (36.6) 62.79 (48.49) 58.19 (25.22) 36.34 (42.48)

ASSD (mm) 12.64 (7.68) 9.58 (13.17) 8.75 (7.89) 4.97 (13.98)

Precision 0.11 (0.22) 0.31 (0.45) 0.29 (0.33) 0.6 (0.63)

Recall 0.89 (0.26) 0.61 (0.51) 0.8 (0.44) 0.59 (0.63)

Average processing time 106.43 s for automated

clustering + 251.75 s for

manual identification

396.99 + 247.83 s per

healthy brain

246.12 s 3,843.66 s

Abbreviations: ALI, automated lesion identification; ASSD, average symmetric surface distance; DC, dice coefficient; HD, Hausdorff's distance; lesionGnb,

Gaussian naïve Bayes lesion detection; LINDA, lesion identification with neighborhood data analysis.

TABLE 3 Cases with no lesion mask identified, or lesions misclassified. Cases with no lesion mask identified yielded an empty file (containing
only 0 value), and cases in which the lesion was misclassified contained lesioned voxels, but had no voxels overlapping with the expert
segmentation. For comparisons between algorithms, we removed cases with no lesions identified (24 ALI + 23 LINDA – 8 overlapping = 39), and
removed the 10 cases in which all three algorithms misclassified the lesion

No lesion identified Lesion misclassified Total cases

ALI 24 28 52

lesion_gnb 0 39 39

LINDA 23 45 68

Overlapping cases 8 (ALI + LINDA only) 10 across all three approaches 32 across three approaches

Abbreviations: ALI, automated lesion identification; lesionGnb, Gaussian naïve Bayes lesion detection; LHS, left hemisphere stroke; LINDA, lesion

identification with neighborhood data analysis.
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lesionGnb, and LINDA are as follows: 62.79 mm (12.81–127.10),

58.19 mm (16.06–135.50), and 36.34 mm (7.55–91.75), where

smaller values indicate better performance. Wilcoxon signed-rank

tests showed that LINDA performed better than ALI and lesionGnb

(ALI: V = 7,156, p < .0001; lesionGnb: V = 1,915, p < .0001). There

were no significant differences between ALI and lesionGnb

(V = 5,085, p = .34).

3.2.3 | Average symmetric surface distance

We also found a statistically significant difference in ASSD among the

three fully automated segmentation approaches, χ2(2) = 42.97,

p < .0001. Median (IQR) ASSD values for ALI, lesionGnb, and LINDA

approaches were 9.58 mm (1.94–76.11), 8.75 mm (1.88–36.94), and

4.97 (1.11–71.95), respectively. Again, smaller values indicate better

F IGURE 2 Distribution of
dice similarity coefficient values
for automated approaches.
Histograms of all dice similarity
coefficient values (N = 132) for
each automated lesion detection
approach; left hemisphere stroke
(LHS) in gray; right hemisphere
stroke (RHS) in gold [Color figure
can be viewed at
wileyonlinelibrary.com]

F IGURE 3 Violin plots of evaluation metrics for automated approaches. For dice coefficient, precision, and recall, range is from 0 to 1, where
0 = worst and 1 = best; Hausdorff's distance and average symmetric surface distance are measured in millimeters, and smaller values indicate better
performance. *p < .05, **p < .01, ***p < .001, ns, not significant; Bonferroni corrected [Color figure can be viewed at wileyonlinelibrary.com]
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performance. Pairwise comparisons showed that LINDA and

lesionGnb both performed better than ALI (LINDA: V = 6,832,

p < .0001; lesionGnb: V = 5,990, p = .0008), but there were no signifi-

cance differences between LINDA and lesionGnb (V = 3,766, p = .47).

3.2.4 | Precision and recall

We found a statistically significant difference in median precision

among the three fully automated approaches, χ2(2) = 41.59,

p < .0001. Median (IQR) precision values for ALI, lesionGnb, and

LINDA approaches were 0.31 (0.00–0.99), 0.29 (0.00–0.84), and 0.60

(0.00–1.00), respectively. Here, higher values indicate better perfor-

mance. Wilcoxon signed-rank tests showed that LINDA had higher

precision rates than both ALI (V = 1,423, p < .0001) and lesionGnb

(V = 6,961, p < .0001), and there were no significant differences

between ALI and lesionGnb (V = 3,998, p = 1.00).

We also found a statistically significant difference in recall among the

three fully automated lesion segmentation approaches, χ2(2) = 97.86,

p < .0001. Median (IQR) recall values for ALI, lesionGnb, and LINDA

approaches were 0.61 (0.00–0.96), 0.80 (0.00–0.99), and 0.59

(0.00–0.98), respectively, again with higher values indicating better per-

formance. We found that lesionGnb performed better than both LINDA

(V = 1,084, p < .0001) and ALI (V = 1,171, p < .0001), and there were no

significant differences between LINDA and ALI (V = 4,479, p = .55).

3.3 | Volume correlation

We found a significant positive correlation between lesion volumes of

automated segmentations and manual lesion segmentations for each

approach: ALI (r = .69, p < .0001), lesionGnb (r = .61, p < .0001), and

LINDA (r = .59, p < .0001). Root mean square error (RMSE) is as fol-

lows: ALI (58,275.71 mm3); lesionGnb (73,931.39 mm3); and LINDA

(47,421.61 mm3). However, we detected two outliers, defined as hav-

ing a Cook's distance >1 for LINDA and one outlier for ALI and

lesionGnb each. After outlier removal, we found a statistically signifi-

cant positive correlation between the lesion volumes of the expert

segmentations and the lesion volumes of each of the automated seg-

mentations: ALI (r = .75, p < .0001), lesionGnb (r = .90, p < .0001), and

LINDA (r = .84, p < .0001). RMSE is as follows: ALI (57,427.09 mm3);

lesionGnb (42,619.39 mm3); and LINDA (25, 092.11 mm3).

3.4 | Analyses of segmentation performance by
lesion characteristics

3.4.1 | Analyses of cases by stroke territory

We found significant differences in DC between different stroke terri-

tories for each automated approach (ALI: χ2 = 76.78, p < .0001;

lesionGnb: χ2 = 97.22, p < .0001; LINDA: χ2 = 77.61, p < .0001;

Figure 5). Pairwise comparisons for each of the approaches followed a

similar pattern, where cortical lesions had significantly higher DC than

all other stroke territories (p < .0001), subcortical lesions had higher

DC than brainstem and cerebellar lesions (p < .05), and there were sig-

nificant no differences in DC between brainstem and cerebellar

lesions.

3.4.2 | Analyses of cases by lesion size

Lesion volume cutoffs for lesion size category as determined by the

33rd and 67th percentiles of all manual lesion volumes were as fol-

lows: small: 12–2,510 mm3; medium: 2,794–21,352 mm3; and large:

21,623–164,300 mm3.

We found significant differences in DC between different lesion

volumes for each automated approach (ALI: χ2 = 116.29, p < .0001;

lesionGnb: χ2 = 126.88, p < .0001; LINDA: χ2 = 121.91, p < .0001;

Figure 6). Pairwise comparisons for each of the approaches showed

that large lesions had significantly higher DC than both medium and

small lesions (p < .0001), and medium-sized lesions also had higher DC

than small lesions (p < .0001).

3.5 | Misclassified cases

To quantify how far off misclassified lesions were from the expert

mask, we calculated the minimum distance between the edge of the

automated mask and the edge of the expert mask for cases in which

there were no overlapping voxels. Average dmin is as follows: ALI:

36.10 ± 21.72 mm (range: 2.24–93.25 mm); lesionGnb: 19.31

± 13.73 mm (range: 1.41–42.91 mm); and LINDA: 29.67 ± 19.82 mm

F IGURE 4 Heat map summary of the performances of algorithms.
Each of the automated lesion algorithms were assigned a value (1–3)
based on their median dice coefficient, Hausdorff's distance, average
symmetric surface distance, precision, and recall scores. If pairwise
comparisons (Section 3.2) showed they were not significantly
different, the algorithms were marked as tied [Color figure can be
viewed at wileyonlinelibrary.com]
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(range: 1.00–83.36 mm). A density plot of minimum distances to the

manual segmentation is shown in Figure 7. As the plot shows, masks

from lesionGnb were closest to the lesion, followed by ALI and then

LINDA. However, due to the low precision of lesionGnb (i.e., high

false positive rate), it is likely that lesionGnb creates multiple false

positive labels, some of which may have been in closer proximity to

the true lesion.

4 | DISCUSSION

In the present paper, we systematically evaluated the performance of

existing stroke lesion segmentation approaches for chronic T1w MRI

on a large common dataset. Overall, we found that LINDA performed

the best out of the fully automated lesion segmentation methods. In

addition, all methods performed the worst on small lesions, as well as

lesions in the brainstem and cerebellum. These findings provide impli-

cations for how to improve existing lesion segmentation algorithms

for T1w MRIs.

4.1 | Fully automated software

Our findings showed that each of the fully automated approaches

resulted in different patterns in the various evaluation metrics used in

the current study, indicating that each approach had its own benefits

and drawbacks. Specifically, we found that lesionGnb yielded the least

number of cases (in fact, 0) in which no lesion mask was detected,

compared to both LINDA and ALI. However, LINDA consistently per-

formed the best out of the evaluation metrics (DC, HD, ASSD).

A closer examination of precision and recall provides insight to the

results obtained from the DC and distance metrics: LINDA resulted in

higher precision (positive predictive value) rates than both ALI and

lesionGnb, while recall values were highest in lesionGnb and similar in

ALI and LINDA. Moreover, LINDA had roughly equivalent median pre-

cision and recall values (0.60 and 0.59, respectively), whereas both

ALI and lesionGnb had relatively better recall compared to precision

(ALI precision: 0.31, recall: 0.61; lesionGnb precision: 0.29, recall:

0.80). This suggests that both the lesionGnb and ALI approaches

tended to oversegment lesions (high false positives). These findings

were confirmed by our visual evaluation.

F IGURE 5 Analysis of the dice coefficient by stroke territory. (above) histograms of dice coefficient values for each stroke territory. (below)
box plots showing pairwise comparisons of DC values for each stroke territory. *p < .05, **p < .01, ***p < .001, ns, not significant; Bonferroni
corrected [Color figure can be viewed at wileyonlinelibrary.com]
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F IGURE 6 Analysis of the dice coefficient (DC) by lesion size. (Above) Histograms of DC values for each lesion size category. (Below) Box
plots showing pairwise comparisons of DC values for each lesion size category. *p < .05, **p < .01, ***p < .001, ns, not significant; Bonferroni
corrected [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 7 Density plot of minimum
distances to manual segmentations for
lesions with no overlap [Color figure can

be viewed at wileyonlinelibrary.com]
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Our findings suggest that LINDA was the approach that consis-

tently performed best across all metrics—but only when it successfully

identified a lesion. However, LINDA was also the most computation-

ally expensive approach: the average time to process a single image

on LINDA took roughly 16 times as long as lesionGnb, and six times

as long as ALI. Additionally, in cases in which automated segmenta-

tions were misclassified, the misclassified lesion was in closer proxim-

ity to the expert segmentation for lesionGnb as compared to LINDA.

The three fully automated segmentation approaches implemented

distinct machine learning algorithms in their approach to lesion seg-

mentation. ALI used an unsupervised approach with fuzzy means clus-

tering to detect outliers in gray and WM segmentations, lesionGnb

used a supervised naïve Bayesian classification algorithm to estimate

the probability of a lesion class, and LINDA used a supervised RF

approach with a multi-resolution framework to classify voxels and

their neighbors as lesional tissue. We expected that the supervised

learning algorithms would have higher performance than an

unsupervised approach, given that supervised approaches are trained

with ground-truth lesions. Indeed, we found that both LINDA and

lesionGnb had higher values than ALI on the DC. However, this was

not consistently the case for the distance metrics (ASSD and HD).

Notably, both lesionGnb and ALI have adjustable parameters. As

mentioned above, in order to systematically evaluate performance with-

out bias from expert feedback, we implemented the approaches with

their default settings. This may have caused a drop in accuracy in these

two approaches. Related, additional preprocessing steps, such as exclud-

ing voxels that fall within the CSF mask, may have improved results.

The three approaches also implemented different image

processing tools (e.g., ANTs, SPM) that include various preprocessing

steps, such as brain extraction, registration, and tissue classification. It

is likely that performance variability in these preprocessing steps may

have had downstream effects on lesion segmentation accuracy. Man-

ual quality control and inspection of preprocessing steps could

enhance the lesion segmentation process, and would ideally be a part

of any neuroimaging analysis pipeline.

4.2 | Comparison to other evaluations

Previously reported results from the developers of each automated

algorithm provide a useful tool for comparison and evaluation of the

results we obtained from the current study. Our DC values were

approximately 0.20–0.24 lower than those reported by the developers

in their original papers (ALI: original = 0.64, ATLAS = 0.40; lesionGnb:

0.66, 0.42; LINDA: 0.70, 0.50; Griffis et al., 2016; Pustina et al., 2016;

Seghier et al., 2008). There are several likely explanations for this.

First, each of these automated algorithms was originally tested on

single site, single scanner-acquired data. This makes these algorithms

vulnerable to over-fitting to their own data. In particular, the super-

vised methods (LINDA, lesionGnb) were dependent on machine learn-

ing classifiers that were pretrained using data acquired from a single

scanner from the original study (see, Supporting Information for more

information on training data and on analysis of site effects). Here, we

implemented a large data evaluation and tested each pretrained

algorithm on multisite data. Not surprisingly, we found a significant

drop in segmentation accuracy, as variability in machine characteris-

tics was likely not addressed using the initial training set. Whereas the

training data from the developers of the algorithms included only uni-

lateral lesions, the dataset we obtained from ATLAS included bilateral

lesions. However, the inclusion of MRIs with bilateral lesions is

unlikely to have contributed to the drop in DC values in the current

data as compared to those reported in the original papers, as we did

not find significant differences in DC between bilateral and unilateral

lesions (see, Supporting Information).

Second, to provide an equal comparison across toolboxes, we

implemented the fully automated approaches as they were without

modifications to the parameters selected using the original training

dataset. As previously stated, this could have resulted in a decrease in

accuracy for detecting lesions in this dataset. For example, keeping

the standard thresholding parameters suggested by the developers of

lesion_gnb at 100 voxels and 8 mm FWHM may have created a bias

against small lesions. We also kept built-in preprocessing steps prior

to lesion detection. While performance of the approaches may have

been improved by fine-tuning the default parameters to our dataset,

the current results obtained without modifications provide valuable

baseline information to researchers and clinicians who may be inter-

ested in using any of the tested algorithms and wish to bypass the

time-intensive and computationally intensive training procedure.

4.3 | Small brainstem and cerebellar lesions perform
worst

We also assessed whether automated lesion segmentation perfor-

mance was related to specific lesion characteristics. Overall, we found

that the fully automated approaches were less likely to detect small

lesions, with half of all total small lesion cases (30/60) failing to be

detected by all three fully automated approaches. This is consistent

with the literature, which has shown that automated and

semiautomated approaches for T1w lesion segmentation to be biased

for detection of large lesions (Wilke et al., 2011; Griffis et al., 2016).

Users of these algorithms should thus manually inspect lesion seg-

mentation quality, and pay specific attention to small lesions. How-

ever, as these are typically the fastest to manually segment, they

should also be the fastest to correct. Using an automated segmenta-

tion algorithm may therefore still save considerable time, even with

manual inspection and corrections for smaller lesions.

Regarding lesion location, fully automated approaches displayed

significantly higher segmentation accuracy on cortical lesions than

subcortical, brainstem, and cerebellar lesions, and subcortical lesions

generally displayed higher segmentation accuracy than brainstem and

cerebellar lesions. As brainstem and cerebellar strokes occur less fre-

quently, brainstem and cerebellar lesions were likely not included in

the original training set for the automated algorithms (Chua & Kong,

1996; Datar & Rabinstein, 2014; Kase, Norrving, Levine, & Babikian,

1993; Teasell, Foley, Doherty, & Finestone, 2002). Moreover, features

implemented in the algorithms to classify lesions may not be sensitive

to brainstem or cerebellar strokes. Finally, subcortical, brainstem, and
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cerebellar lesions are often smaller than cortical lesions, suggesting a

potential additive effect on accuracy. Users with datasets containing

multiple brainstem or cerebellar strokes may need to retrain the algo-

rithm with a training dataset that contains more of these types of

lesions to increase algorithm sensitivity.

4.4 | Dropped cases

In our evaluation, we found that there were 39 cases in which lesions

were not detected for the ALI and LINDA algorithms (ALI: 24, LINDA:

23, with eight same cases between approaches). Importantly, we note

that dropping these cases may have inflated the results in favor of

LINDA and ALI.

One potential explanation for the failed detection is that the thresh-

olds that were used to classify lesioned versus nonlesioned voxels was

too high. We had opted to use default values in implementing the algo-

rithms, since we wanted to be systematic in our evaluation, and because

ALI had user-adjustable parameters but LINDA did not. However, this

meant that the thresholds that were used might not have been optimally

tuned for this dataset. Although here the focus was to fairly evaluate

the various algorithms using a common set of parameters, an actual user

who is trying to generate lesion masks for his or her data could try to

better optimize a specific method for a specific dataset.

Additionally, we found that there were a number of cases in which

lesions were misclassified (ALI: 28, lesionGnb: 39, LINDA: 45, with

10 same cases between all three, which are shown in, Supporting Infor-

mation). These are cases where the automated algorithm generated a

lesion mask that did not overlap at all with the manual segmentations. Of

the misclassified cases, lesionGnb produced lesion masks that were clos-

est to the manual segmentation. However, we note that this may be due

to the increased false positive rate of the lesionGnb algorithm. Notably,

across all of the segmentation algorithms, most of these cases were small

and brainstem/cerebellar lesions, which may not be reflective of the

cases that were used in the training datasets of the algorithms. Finally,

the number of cases with suboptimal segmentations may also have been

inflated in due to our use of secondary, combined multisite data.

4.5 | Semiautomated software

We tested one semiautomated software, the Clusterize toolbox, for

lesion segmentation. The Clusterize toolbox was designed for use

with manual input and corrections. We only performed the initial

manual step of cluster selection (identifying the lesioned region), but

did not perform the subsequent manual correction, as this would have

made the segmentation analogous to an expert segmentation. How-

ever, because a manual correction was expected as a part of the pro-

cedure for the Clusterize toolbox, we expected the Clusterize toolbox

to have a less favorable performance compared to the other methods

that did not require additional manual input (i.e., the automated

approaches). We therefore did not evaluate performance on

Clusterize against the automated segmentations (see Table 4).

The automated preprocessing plus manual cluster selection resulted

in a relatively low DC value (M = 0.18, IQR: 0.06, 0.37), but a fairly high

recall value (sensitivity; M = 0.89, IQR: 0.71, 0.96). The high recall was

likely driven by the manual selection of clusters: due to expert feed-

back, a cluster corresponding to the true lesion was accurately selected

for most cases. However, Clusterize tended to overestimate the

lesioned region, which led to lower precision in the lesion segmenta-

tion. In particular, we found that the cluster corresponding to the true

lesion often included the ventricle as part of the lesion when the lesion

was adjacent to the ventricle. These lower precision values may also

have been partly driven by the fact that Clusterize was originally

designed for the detection of a different type of the brain lesion

(i.e., metachromatic leukodystrophy) on T2-weighted images,

suggesting a need for additional feature modeling or parameter optimi-

zation. The creation of a mask for the ventricles and exclusion of any

voxels within that mask could also enhance this method.

4.6 | Limitations

Here, we strived to evaluate existing T1w lesion segmentation algo-

rithms on a large, naturalistic dataset. However, we note a few limita-

tions in this evaluation.

First, the evaluation of lesion segmentation algorithms—or any

machine-learning algorithm—is by nature, highly dependent on the

dataset that is used for testing. Typically, the greater the similarity

between lesions in the testing dataset (i.e., ATLAS) and lesions used

by the original developers to train and develop the algorithms, the

better the performance will be. It is possible that our findings could be

related to dataset-specific effects that may have biased one algorithm

over another, if there was greater similarity between ATLAS and the

specific training data. Interestingly, however, the average lesion vol-

ume of lesionGnb (30,314 mm3) was closer to the average lesion vol-

ume of the ATLAS dataset (23,387 mm3) than LINDA (68,000 mm3),

yet LINDA had higher DC values than lesionGnb (lesion volumes for

developing ALI was unavailable; see Table 2, Supporting Information).

Second, as previously noted, small lesions and brainstem and cere-

bellar lesions performed worst across the algorithms. This could also

be due to a discrepancy in lesion size and representation of the type

of stroke lesions in the training and testing datasets. However, we

believe that this evaluation is useful precisely for this reason: the ideal

lesion segmentation algorithm should be robust to new data, regard-

less of stroke size and territory.

Finally, ALI required a healthy dataset to define healthy tissue

from nonhealthy tissue. While we attempted to match parameters of

the healthy data from the Functional Connectome Project

(e.g., scanner strength, age range of individuals, number of scanners),

we were still limited in our ability match the acquisition parameters of

the datasets due to our use of retrospective data. This may have

biased performance against the ALI method.

5 | CONCLUSION

Our systematic evaluation facilitates and informs future use and

development of automated approaches. Notably, we found that the
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supervised algorithms performed best, but there was a high failure

rate across all approaches. We found systematic differences in seg-

mentation accuracy depending on stroke territory and size. Based on

these findings, we recommend two primary areas for improvement in

the future development of automated lesion detection algorithms:

(a) that algorithms be trained on larger and more diverse datasets, all-

owing for interscanner variability from multisite, multiscanner data,

and (b) that prior knowledge about lesion size and territory be inte-

grated into algorithms to increase segmentation performance. For cli-

nicians and researchers who wish to use currently available lesion

detection approaches, we suggest selection of an automated lesion

detection approach most suitable for their purposes and performance

of a thorough visual inspection of the automated segmentations to

ensure the accuracy of each mask. We strongly recommend manual

quality control following any of these approaches. By facilitating and

informing the use and development of automated segmentation

approaches, we hope that this systematic review will advance the dis-

covery of clinically meaningful findings about stroke recovery.
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