Skip to main content
. 2019 Jul 26;40(16):4669–4685. doi: 10.1002/hbm.24729

Table 4.

Descriptive statistics for each approach. Performance rates for each approach; median (IQR): DC, HD, ASSD, precision, and recall

Clusterize ALI lesion_gnb LINDA
Image metrics N = 152 N = 132 N = 132 N = 132
DC 0.18 (0.31) 0.4 (0.44) 0.42 (0.37) 0.5 (0.61)
HD (mm) 80.89 (36.6) 62.79 (48.49) 58.19 (25.22) 36.34 (42.48)
ASSD (mm) 12.64 (7.68) 9.58 (13.17) 8.75 (7.89) 4.97 (13.98)
Precision 0.11 (0.22) 0.31 (0.45) 0.29 (0.33) 0.6 (0.63)
Recall 0.89 (0.26) 0.61 (0.51) 0.8 (0.44) 0.59 (0.63)
Average processing time 106.43 s for automated clustering + 251.75 s for manual identification 396.99 + 247.83 s per healthy brain 246.12 s 3,843.66 s

Abbreviations: ALI, automated lesion identification; ASSD, average symmetric surface distance; DC, dice coefficient; HD, Hausdorff's distance; lesionGnb, Gaussian naïve Bayes lesion detection; LINDA, lesion identification with neighborhood data analysis.