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Purpose: Quantification of carotid plaques has been shown to be important for assessing as well as
monitoring the progression and regression of carotid atherosclerosis. Various metrics have been pro-
posed and methods of measurements ranging from manual tracing to automated segmentations have
also been investigated. Of those metrics, quantification of carotid plaques by measuring vessel-wall-
volume (VWV) using the segmented media-adventitia (MAB) and lumen-intima (LIB) boundaries
has been shown to be sensitive to temporal changes in carotid plaque burden. Thus, semi-automatic
MAB and LIB segmentation methods are required to help generate VWV measurements with high
accuracy and less user interaction.
Methods: In this paper, we propose a semiautomatic segmentation method based on deep learning
to segment the MAB and LIB from carotid three-dimensional ultrasound (3DUS) images. For the
MAB segmentation, we convert the segmentation problem to a pixel-by-pixel classification problem.
A dynamic convolutional neural network (Dynamic CNN) is proposed to classify the patches gener-
ated by sliding a window along the norm line of the initial contour where the CNN model is fine-
tuned dynamically in each test task. The LIB is segmented by applying a region-of-interest of carotid
images to a U-Net model, which allows the network to be trained end-to-end for pixel-wise classifica-
tion.
Results: A total of 144 3DUS images were used in this development, and a threefold cross-validation
technique was used for evaluation of the proposed algorithm. The proposed algorithm-generated
accuracy was significantly higher than the previous methods but with less user interactions. Compar-
ing the algorithm segmentation results with manual segmentations by an expert showed that the aver-
age Dice similarity coefficients (DSC) were 96.46 � 2.22% and 92.84 � 4.46% for the MAB and
LIB, respectively, while only an average of 34 s (vs 1.13, 2.8 and 4.4 min in previous methods) was
required to segment a 3DUS image. The interobserver experiment indicated that the DSC was
96.14 � 1.87% between algorithm-generated MAB contours of two observers’ initialization.
Conclusions: Our results showed that the proposed carotid plaque segmentation method obtains
high accuracy and repeatability with less user interactions, suggesting that the method could be used
in clinical practice to measure VWV and monitor the progression and regression of carotid plaques.
© 2019 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American
Association of Physicists in Medicine. [https://doi.org/10.1002/mp.13581]
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1. INTRODUCTION

Ischemic stroke caused 2.69 million deaths worldwide,1 pri-
marily caused by formation of plaques at the carotid arterial
bifurcations.2 When a carotid arterial plaque ruptures,
ischemic stroke may result due to cerebral embolism from a
thrombotic plaque or thrombosis at the site of plaque rupture.
Plaques at the carotid bifurcation are a major source of
thrombosis and subsequent cerebral emboli.3 Since the prob-
ability of many strokes caused by carotid plaques can be pre-
vented by lifestyle changes, dietary, or medical treatment,4

noninvasive and local carotid plaque quantification is impor-
tant for monitoring progression of the disease in patients at
risk and regression in response to treatment.5

Ultrasound (US) image assessment of carotid plaques
plays an important role because of its noninvasive nature, low
cost, short examination time, widespread availability, and US
image-based features revealing valuable information on pla-
que composition and stability.6,7 Intima-media thickness
(IMT) measurement8 using two-dimensional ultrasound
(2DUS) images is the most commonly used assessment
method at present in clinical practice,9 in which the distance
is measured between the lumen-intima boundary (LIB) and
the media-adventitia boundary (MAB).10,11 Compared to
two-dimensional US (2DUS) images, 3DUS images provide
a more repeatable and effective tool to analyze plaque charac-
teristics, composition, and morphology, as well as to monitor
the progression and regression of plaques for evaluating the
effect of treatment.12 Wannarong et al reported that in patients
attending vascular prevention clinics, progression of the total
plaque volume (TPV) was more predictive of cardiovascular
events than measurement of total plaque area, and progres-
sion of IMT did not predict events.13 Several 3DUS-based
measurements have been reported to be more sensitive to
changes in carotid plaques with treatment than the widely
used IMT measurement; these include carotid total plaque
volume (TPV),13,14 vessel wall volume (VWV),15,16 vessel-
wall-plus-plaque thickness (VWT)17 and VWT-Change.18,19

For measurement of TPV, segmentations of the MAB and
LIB are required.20 Moreover, MAB and LIB segmentations
are also required to obtain VWV, VWT, and VWT-Change
biomarkers.

Delineations of MAB and LIB can be performed manually by
experienced observers or medical experts. However, it is time
consuming for an observer to learn and practice manual MAB
and LIB segmentation, and the variability in the measurement
relies on the experience of the observer.17,19 As well, manual seg-
mentation is a time-consuming procedure that requires about
20 min per vessel. Thus, a computer-assisted segmentation
method for MAB and LIB segmentation has the potential to
reduce the subjectivity and variability in the manual approach
and segmentation timewithout training observers.

Some studies only segmented the carotid LIB, such that
Gill et al21 and Solovey22 proposed direct 3D segmentation
methods only for LIB segmentation. Gill et al proposed a
dynamic balloon model-based method to approximate to the
vessel wall and further used edge-based energies to refine the

LIB.21 Solovey segmented the LIB of 3D carotid ultrasound
images using weak geometric priors.22 However, both of
those methods were based on geometric priors, where the
shape of LIB was not regular due to plaques, especially in the
bifurcation. There were also some algorithms presented to
segment both LIB and MAB from 3DUS images of carotid
arteries. Yang et al used an active shape model to segment
the common carotid artery from 3DUS images to monitor
changes in carotid plaques in response to drug therapy23. In
this method, the authors used manual segmentation of the base-
line data for training and follow-up data for segmentation,
which yielded a Dice Similarity Coefficient (DSC) of
93.6% � 2.6% and 91.8% � 3.5% for MAB and LIB seg-
mentations, respectively. Ukwatta et al developed a 2D level
set-based approach to delineate the MAB and LIB of the com-
mon carotid artery (CCA) from 2DUS image slices of 3DUS
images with the DSC of 95.4% � 1.6% and 93.1% � 3.1%,
respectively.24 Since these approaches required user interactions
on every individual slice, they were time-consuming, requiring
4.4 � 0.6 min and 2.8 � 0.4 min, respectively. Furthermore,
in order to reduce user interaction, Ukwatta et al. used 3D
sparse field level set (3D SFLS) algorithm to directly segment
the MAB and LIB of the CCA from 3DUS images.25 However,
the user interaction of this method was still complex, which
required the observer to choose several anchor points on both
MAB and LIB of a set of transverse slices, locate the bifurca-
tion point (BF), and define the long axis of the artery.

These previous methods used to segment the MAB and
LIB have two limitations. First, user interactions in the previ-
ous publications are complex and laborious and rely on the
experience of the observers. Second, they are sensitive to the
initial points making generalization ability of the methods
poor. Thus, these limitations are motivating investigators to
develop a segmentation method based on deep learning,
which is easier to use and more robust to different subjects
and US imaging systems.

Some recent studies used deep learning methods to seg-
ment B-mode 2DUS images of CCA. Rosa-Maria et al.
applied extreme learning machine (ELM)-based autoen-
coders to segment the intima and media boundaries to obtain
an IMT measurement from longitudinal B-mode 2DUS
images of CCA.26 Although, the ELM-based autoencoders
achieved a good performance to measure the IMT, it can
only be used in the early-stage atherosclerosis detection.
Shin et al used a CNN to segment the intima and media
boundaries automatically from videos of the carotid artery.27

For both these methods, a sliding window approach was
applied to the whole image to detect the intima and media
boundaries and both were applied to longitudinal US images
of CCA. Azzopardi et al used deep CNN and phase congru-
ency maps to segment MAB from B-mode 2DUS images of
CCA.28 However, there was a correlation among images used
in training and testing since all images were obtained from
only five subjects.

In this paper, we propose novel methods to segment MAB
and LIB from 3DUS images of the CCA based on a dynamic
CNN and U-Net. The main contributions are as follows:
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First, a data preprocessing method is proposed to enhance
the edge-contrast of CCA US images. Second, a semiauto-
matic method, dynamic CNN, is proposed for MAB segmen-
tation, which fine-tunes the CNN model dynamically to fit
carotid images of different subjects. The user interaction in
our method is simpler than previous methods,24,25 as it
reduces the number of anchor points and does not need the
user to define the long axis of the artery. The user interaction
time is reduced by more than half compared to the algorithm
proposed by Ukwatta.25 Third, LIB segmentation is auto-
mated based on an improved U-Net29 network, which converts
the segmentation task to a two-object classification problem
of the lumen and nonlumen regions. Moreover, this study is
the first to apply a deep learning technique for carotid segmen-
tation from 3DUS CCA images of subjects with carotid steno-
sis over 60%.

The remainder of this paper is organized as follows.
Section II describes the experimental dataset and the
details of the proposed method, which includes the prepro-
cessing, the design of dynamic CNN architecture for
MAB segmentation, details of the improved U-Net for LIB
segmentation and evaluation metrics. Section III presents
the experimental results, which are compared to other
methods. In section IV, we discuss the results and charac-
teristics of the proposed method. Finally, the last section
(Section 5) discusses the potential use of the method for
research and clinical use.

2. MATERIALS AND METHODS

Our method is based on deep learning algorithms used
to segment the MAB and LIB from carotid 3DUS images
to determine the VWV measurement of carotid plaques.
Since it is difficult to obtain a large number of labeled
3DUS images to train a 3D deep CNN network, we con-
verted the task into a 2D segmentation task by slicing the
3DUS images into 2DUS images. Figure 1 shows the flow-
chart of the algorithm. A dynamic convolutional neural net-
work is proposed for the MAB segmentation to fine-tune
the learned CNN parameters and obtain a more accurate
segmentation. Since other authors have shown that U-Net
performs well for medical image segmentation tasks, a mod-
ified U-Net deep learning network was used for LIB seg-
mentation, which allows training of the network for pixel-
wise classification.

2.A. Experimental dataset

Thirty-eight subjects (a mean age � SD of 69 � 9 yr)
were enrolled in our experiments who had carotid stenosis
over 60% confirmed from Doppler US flow velocity measure-
ments.30 These data were chosen since the plaques were rela-
tively large and posed a risk to these patients. All subjects
were recruited from the Stroke Prevention and Atherosclerosis
Research Centre at Robarts Research Institute, London,
Canada (Western University). Patients provided written
informed consent to a study protocol approved by the Univer-
sity of Western Ontario Standing Board of Human Research
Ethics.

For all subjects, 3DUS images were obtained of both the
left and right carotid arteries at baseline and at 3 months fol-
low-up, using a Philips/ATL HDI 5000 US transducer with
an L12-5 probe (8.5 MHz central frequency) attached to a
motorized linear 3DUS acquisition system that moved the
transducer along the neck at a constant speed of 3 mm/s.30

The 2DUS images were acquired into a computer via a digital
frame grabber and saved and reconstructed into a 3DUS
image with 0.1 mm 9 0.1 mm 9 0.15 mm voxel size. This
study generated a set of 3DUS carotid images with seg-
mented MAB and LIB, which were available to us. A total of
152 3DUS images of carotid plaques were acquired from the
38 objects. Of these 3DUS images, there were three 3DUS
images in which the length of the acquired common carotid
artery part was too short (<3 mm) and it was difficult to
place the initial anchor points by the observers in another five
3DUS images. The remaining 144 3DUS images were used
in the experiments.

Since training the deep net requires a large number of
labeled samples, 144 3DUS images were not sufficient to train
a 3D deep learning network. We used the original
acquired 2DUS images for LIB and MAB segmentation,
which were used to reconstruct the 3DUS images. According
to Chui’s researches,17,19 LIB and MAB contours with 1-mm
intervals were used to generate the measurements of VWV,
VWT, and VWT-change. Thus, in our experiment, a total of
2021 2DUS images with pixel dimensions of
0.1 mm 9 0.1 mm were obtained with the slice interval of
1 mm.

The multiplanar 3D viewing software was used to pre-
sent 2D images slice-by-slice from the transversal view of
the carotid artery 3DUS image.31,32 An expert then out-
lined the MAB and LIB boundaries of all the 3DUS
images.

2.B. Preprocessing of CCA ultrasound images

Since the original CCA ultrasound images have low tissue
contrast, we first applied a linear grey level stretch to enhance
the contrast of the images. Then, an improved adaptive
region-based distribution function (ARBD)33 was used to
eliminate high-intensity speckle in the images and increase
the contrast of edges. The modified the ARBD function was
used to obtain a “compensation” image, g. Then, the edge-

FIG. 1. The process flow diagram of the presented algorithm. [Color figure
can be viewed at wileyonlinelibrary.com]
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enhanced image, I’, was generated by subtracting the com-
pensation term, cg, from the original image I:

I 0 ¼ I � cg

g ¼ ðI � hÞ � ðI � pÞ (1)

where h and p are two Gaussian filters with different kernel
sizes and g is the difference between the convolution of the
original image I with the two Gaussian filters h and p. The
constant c is a coefficient of the compensation term. In our
experiments, the value of 2 was chosen for c. The kernel sizes
of g and h were 3 9 3 and 9 9 9 pixels, respectively.

2.C. Segmentation of MAB using dynamic
convolutional neural network

Training a CNN with a great generalization ability
requires a large number of labeled training samples. How-
ever, it is hard to obtain many labeled CCA ultrasound images
with a specific pathology. Thus, our aim was to design a deep
network, which could fine-tune the model dynamically dur-
ing testing.

The dynamic convolutional neural network, which adjusts
the model to adapt to different subjects, was used to segment
the MAB of CCA from 3DUS images. The proposed method
consists of two parts: pretraining the CNN model, and
dynamically fine-tuning the CNN model during segmenta-
tion. Figure 2 shows the workflow details of our approach,
which is the MAB segmentation part of the high-level flow-
chart shown in Fig. 1. In our approach, we convert the seg-
mentation problem to a two-class classification problem by
classifying each pixel around the initial contour as to whether
it is on the media-adventitia boundary or not. First, a CNN is
pretrained for the initialization of the dynamic CNN, and
then, for each 2D CCA image, MAB is segmented by the
dynamic CNN, which is fine-tuned to classify patches gener-
ated by sliding windows along the norm line of the initial
MAB. Details of this approach are provided in the next two
subsections.

2.C.1. Pretraining CNN

First, patches were generated for pretraining a CNN
model by sliding a window along the norm lined of each
point on the manually delineated MAB of all CCA slices
in the training dataset. Since the CNN input images are
small, the patches with a size of 64 9 64 pixels were used
in our experiments, we used a simple CNN architecture
rather than the popular CNN architectures, such as Alex-
Net,34 VGG,35 GoogLeNet.36 The architecture of our pre-
trained CNN is shown in Fig. 3, which contains three
convolution-pooling blocks, two fully connected (FC) lay-
ers, and a softmax output layer. The kernel sizes of the
three convolution layers are 9 9 9, 7 9 7, and 3 9 3 pix-
els, respectively. Compared to the sigmoid function, the
ReLU active function converges faster to the optimal
value.37 Thus, the local response normalization (LRN) layer
was applied after a ReLU layer, which normalizes the input
in a local region across or within feature maps.34 The out-
put of LRN normalization bix;y

� �
is described by the Eq.

(2), thus:

bix;y ¼ aix;y=ðk þ a
XminðN�1;iþn=2Þ

j¼maxð0;i�n=2Þ
ða j

x;yÞ2Þb (2)

where aix;y is the activity of a neuron computed by applying
kernel i at position (x, y), the sum runs over n “adjacent” ker-
nel maps at position (x, y), and N is the total number of ker-
nels in the layer. The hyperparameters a, b, k and n are
constants, and we used a = 10�4, b = 0.75, k = 2, and n = 5
in our experiments.34

A stack of convolutional layers is followed by two fully
connected layers. The first fully connected layer has 512
channels and the following one contains 256 channels. In
optimization of the pretrained CNN, Mini-batch Stochastic
Gradient Descent (SGD) was used and a weight decay, k,
(regularization term coefficient) was used to prevent over-fit-
ting. The update rule for weight w is given by:

FIG. 2. The flow chat of MAB segmentation including the process of training stage and testing stage. [Color figure can be viewed at wileyonlinelibrary.com]
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wiþ1 ¼ wi þ m � vi � kgwi � g
@E
@w

(3)

where i is the iterations count, vi is the momentum, m is the
momentum coefficient, k is weight decay, g is the learning
rate, and @E

@w is the derivative of the energy function with
respect to w. In our experiments, m and k were set to 0.9 and
0.0005, respectively.34

2.C.2. MAB segmentation using dynamic CNN

In order to fine-tune the CNN model dynamically, the
observer is required to choose several anchor points on the
MAB in the 3DUS images. These anchor points are also used
to generate initial MAB contours to limit the search region of
the sliding window. Figure 4 shows the process of generating
initial MAB contours in a 3DUS CCA image. The observer
chooses four or eight anchor points on the MAB of a set of
transverse slices with a user-specified interslice distance
(ISD), as shown in Fig. 4(a). According to Ukwatta’s publica-
tion,25 the value of ISD used in this paper was 3 mm.

Figure 4(b) shows initial contours on each user interaction
plane generated from the anchor points using the cubic spline
interpolation method. A symmetric correspondence algo-
rithm was used to match the corresponding points between
two adjacent parallel slices.17,19 This symmetric correspon-
dence method provides a method to overcome mismatching
problems caused by complicated shapes of the initial con-
tours. As shown in Fig. 4(c), a 3D surface of initial the MAB
boundaries was generated and the initial MAB contours of
slices without userinteraction were obtained from the 3D sur-
face.

The dynamic CNN is then applied in the test procedure to
fine-tune all layers of the pretrained CNN with patches
extracted from the generated initial contours. The final MAB
is obtained by classifying pixels along the norm line of the
initial MAB contours. Patches extracted along the norm line
are applied to the dynamic CNN to generate energy probabil-
ity maps. Each point with the highest probability along a
norm line is considered as a point on the MAB. An example
result is shown in Fig. 5, where the initial contour is in red,

FIG. 3. The architecture of our pretraining convolutional neural network (CNN), which contains two convolutional-pooling blocks and two full connection layers.
The inputs of the CNN are 64 9 64 patches generated along norm lines of the initial contours. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 4. The initialization of MAB segmentation. (a) User interaction on transverse slices of three-dimensional ultrasound common carotid artery images every
3 mm (i.e., every three slices). The red points are located manually and the blue contours are generated using cubic spline interpolation. (b) Generated initial con-
tours of all slices in (a). (c) Interpolated initial MAB contours from the corresponding points of the two adjacent user interaction slices in (b). [Color figure can
be viewed at wileyonlinelibrary.com]
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the generated norm line is in yellow, and the blue rectangle
represents a patch extracted along the norm line. The archi-
tecture of deep tuning is the same as the pretrained CNN, as
shown in Fig. 3.

2.D. Segmentation of LIB using U-Net deep network

The contours of LIB in CCA US images are difficult to
visualize due to the low contrast of some plaque-lumen
boundaries, shadowing from calcified plaques and the irregu-
lar shape of some plaques. However, the lumen in US images
of the CCA is dark and homogeneous. Thus, we convert the
LIB segmentation problem to a lumen classification task,
where the goal is to classify each pixel into two categories: a
pixel in the lumen and outside the lumen regions.

First, the ROIs of CCA images were obtained according to
the segmented MAB and these were all normalized to a size
of 128 9 128 pixels. The lumen segmentation was per-
formed using an improved U-Net, which has achieved excel-
lent performance in a related medical image segmentation
task.29 The U-Net provides a fully automatic method for LIB
segmentation without any user interaction. The U-Net archi-
tecture consists of an encoder network to extract features
from an input image, a corresponding decoder network to
reconstruct feature maps with the same size of the original
image, and a soft-max layer to classify the features maps to
lumen and nonlumen regions on a pixel-by-pixel basis.

As illustrated in Fig. 6, the encoder part (left side) is the
architecture of a convolutional network including four blocks,
each of which is composed of a repeated application of two
3 9 3 convolutions followed by a rectified linear unit
(ReLU), a 2 9 2 max-pooling operation with a stride of 2
and a drop-out layer. The dropout layer randomly sets input
elements to zero with a given probability to prevent the net-
work from overfitting. A shortcut connection is applied,
which connects the input of each convolutional block to the
output directly by skipping two stacked convolutional layers.
As shown in Fig. 6, the red arrow lines are the shortcut
connections.

The decoder part (right side) is an up-sampling process
where an up-sampling block consists of a 2 9 2 up-convolu-
tion, a concatenation with the corresponding feature map
from the encoder part and two 3 9 3 convolutions, each is
followed by a ReLU. The last layer is a 1 9 1 convolution to
map each 64-component feature vector to a 2D vector. Then
a pixel-wise soft-max layer is used to classify each pixel into
two categories, within the lumen or outside the lumen.

Assuming aix;y is the activity of a neuron computed by
applying channel i at position (x, y), the output of the pixel-
wise soft-max layer is given by:

piðx; yÞ ¼ expðaix;yÞ
PK
j¼1

expða j
x;yÞ

(4)

where K is the number of classes.
The energy function is computed by the cross-entropy loss

function. In our application, it is a binary classification prob-
lem, where the foreground is the lumen and the region out-
side the lumen is the background. Assuming the lumen
region is labeled by 1 and the background is labeled by 0.
Then, the cross entropy penalizes the deviation of the output
of the soft-max layer from 1 using:

E ¼
X

ðx;yÞ2Z2

wðx; yÞlogðplðx;yÞðx; yÞÞ (5)

where l is the true label of each pixel, pl(x,y)(x,y) is the proba-
bility output of the soft-max layer for pixels classified to 1,
and w is a weight map.

The weight map is precomputed using masks of images
used for training, and is used to calculate the probability of a
pixel belonging to a certain class at every position in the
training images. Equation (6) gives the weight map belonging
to the lumen.

wðx; yÞ ¼ 1
N

XN
i

maskiðx; yÞ (6)

where N is the number of training images, i is the index of
images, and mask(x, y) is the label in a training image at posi-
tion (x, y) where lumen pixels in a mask image are labeled as
1 and background pixels are 0.

We improved the basic U-Net to adapt it to the LIB seg-
mentation task as follows:

1. Network architecture: Since the size of our input ROI
images of the CCA are 128 9 128 pixels, which is
smaller than the size of input images in the original U-
Net,29 we simplified the U-Net architecture from five
convolutional to four convolutional blocks and reduced
the number of basic convolutional kernels from 64 to
32. This modified network architecture takes a shorter
time to train and converges faster to the optimal value.

2. Dropout: To avoid overfitting in the designed U-Net,
we added a drop-out hidden layer after each convolu-
tional block of the encoder part, which randomly sets
input elements to zero with a probability of 50%.

FIG. 5. Generate patches along norm line of each initial MAB. The red con-
tour is the initial contour, the yellow line is the generated norm line and the
blue rectangle is a patch extracted along the norm line. [Color figure can be
viewed at wileyonlinelibrary.com]
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3. Shortcut connections: In order to avoid overfitting,
shortcut connections were added to the original U-Net
architecture, which connect the input to the output of
each convolutional block, skipping two convolutional
layers. As shown in Fig. 7, the output of a traditional
plain convolutional block F(x) is modified by a short
connection between the input to the output, giving an
output of F(x) + x which could be realized by a feed-
forward propagation, and the entire network can still be
trained by backward propagation. Identity shortcut con-
nections add neither extra parameters nor computa-
tional complexity and they can solve the vanishing/
exploding gradient problem33,34 during training.

4. Optimization method: The adaptive moment estimation
method (Adam) is used in the training, which is an
adapted learning rate algorithm.35 The Adam algorithm
dynamically adapts parameters and learning rate using
first-order and second-order moment estimation that
can effectively accelerate the convergence of optimiza-
tion.

5. Weight map in the loss function: A weight map was
added to the original cross-entropy loss function
according to the class frequencies at every position of
the map in the training data set.

2.E. Data augmentation

We used scaling and rotation transformations to increase
the training samples, where the scale ratios were [0.5000，
0.7000，0.9000，1.1000，1.3000，1.5000] and six rotation
angels were randomly chosen from 0° to 90° for each image.
This increased the number of images by a factor of 13 for a
total of 26,273 2D images.

2.F. Evaluation metrics

In order to compare our results with a previous
method,23 the same volume-based, region-based, and dis-
tance-based metrics were used to evaluate the performance
of our segmentation method. Volume-based metrics
included VWV difference (ΔVWV), MAB volume differ-
ence (ΔMABV), LIB volume difference (ΔLIBV), absolute

VWV difference (|ΔVWV|), absolute MAB volume differ-
ence (|ΔMABV|), and absolute LIB volume difference
(|ΔLIBV|), all expressed as percentages.

The Dice similarity coefficient (DSC) was used to quan-
tify the area overlap between the algorithm segmentation with
the ground truth boundaries, thus:

DSC ¼ 2 M \ Aj j
Mj j þ Aj j ¼

2TP
2TPþ FPþ FN

(7)

where M and A denote the region enclosed by the manual
and algorithm-generated boundaries, and TP, FP, FN are the
true positive, false positive, and false negative rates, respec-
tively.

The symmetric correspondence method17,19 was used to
establish a point-wise correspondence between the manual
and algorithm-generated boundaries. The corresponding
boundary points were then used to calculate two boundary
distance-based metrics: the absolute distance (MAD) and the
maximum absolute distance (MAXD). Considering M = {mi,
i = 1,2,3...K} is a set of points on the manual boundary and
A = {ai, i = 1,2,3...K} is a set of points on the algorithm-
generated boundary, MAD is expressed as:

MAD ¼ 1
K

XK
i¼1

dðmi; aiÞj j (8)

The MAXD is calculated by Eq. (9):

MAXD ¼ max
i2fi;kg

f dðmi; aiÞj jg (9)

FIG. 7. The architecture of convolutional block with a shortcut.

FIG. 6. The modified U-Net architecture. Blue boxes represent feature maps. The number of channels is denoted above each feature map. [Color figure can be
viewed at wileyonlinelibrary.com]
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where mi and ai are two correspondence points in M and A,
and d(mi, ai) is the distance between the two points.

3. RESULTS

A threefold cross-validation technique was used in the fol-
lowing experiments. All objects in the dataset were randomly
divided into three groups. Images of one group were left out
for testing and images obtained from the remaining objects
were used as the training set, and the process was repeated
three times, where the objects in the training set were differ-
ent from those in the testing set.

Since Ukwatta et al25 performed the most comprehensive
experiments using the 3D SFLS method for MAB and LIB seg-
mentation, we compared the same volume-based, region-based,
and distance-based metrics of the proposed segmentation
method with the 3D SFLS method25 in the experiments. For
MAB segmentation, we also compared the results of the pre-
sented dynamic CNNwith the traditional CNNwithout fine-tun-
ing. For LIB segmentation, the performance of the improved U-
Net was compared to several previous works, such as original U-
Net,29 traditional CNN,26 and Jodas’s work.38

3.A. Parameters selection in preprocessing
algorithm

The Edge Preservation Index (EPI) is commonly used to
measure the ability of a filter to maintain details of the
image.39 The EPI measurement was calculated for images fil-
tered with different gamma values of 0.5, 2, 4, and 6. Table I
shows that a larger value of c obtained a higher EPI. The Peak
Signal Noise Rate (PSNR)40 was also used to evaluate the per-
formance of filters with different c values. Table I indicates
that the highest PSNR value is achieved when c = 0.5. In
order to balance the image quality and the edge-contrast, c of 2
and 4 were considered. Through the subjective assessment by
an observer, the compensation coefficient c valuewas set to 2.

3.B. Results of MAB segmentation

Different patch sizes (16, 32, 48, 64 pixels) were used to
train the proposed CNN network. It did not converge to a
local optimum using patches with a size of 16 9 16 pixels in
the training. The classification accuracies of the patches were
95.1%, 92.8%, and 98.7% with respect to window sizes of
32, 48, and 64 pixels in the training stage. When a patch size
equaled 64, we obtained the best classification accuracy.

Thus, the sliding window size was chosen as 64 pixels in the
following experiments.

Comparisons between the algorithm and manual MAB
segmentations for one subject are shown in Fig. 8. The yellow
contours are the manual segmentations and the red contours
are the algorithm segmentations. These results indicate quali-
tatively that the algorithm-segmented contours are close to
the manual contours for this subject.

A quantitative comparison of the MAB segmentation
results using four and eight initial points are shown in
Table II, which demonstrates that initialization with eight
points results in better performance with the DSC of
96.46 � 2.22%, MAD of 0.19 � 0.11 mm, MAXD of
0.63 � 0.57 mm, ΔMABV of �0.99 � 1.37%, and |
ΔMABV| of 1.36 � 0.99%. The performance obtained from
four initialization points was a little lower but close to the
eight-point initialization and also acceptable.

The dynamic CNN proposed in this paper fine-tuned the
CNN model dynamically during testing in order to adapt the
model to fit different vessels. During fine-tuning the network,
the number of epochs was set to 500, since we found when
we exceeded 500, the loss value calculated by the loss func-
tion decreased slightly. We believe that when the number of
epochs is set too large, overfitting during training might
occur.

Table III shows the results of the traditional CNN and the
proposed dynamic CNN. The proposed dynamic CNN with
fine-tuning obtained slightly better segmentation results than
the CNN without fine-tuning, with a DSC of 96.5 � 2.22%.
The distance- and volume-based errors for the dynamic CNN
(MAD, MAXD, and ΔMABV) were all smaller than the
errors from the traditional CNN. A paired t-test was applied,
which failed to show a statistically significant difference of
the DSC between the proposed dynamic CNN and the tradi-
tional CNN (P > 0.1).

Comparisons of the results from the proposed dynamic
CNN, 3D SFLS,25 and U-Net29 are also shown in Table III.
This table shows that the results with the dynamic CNN
method are better than the previous 3D SFLS and the U-Net
methods. A paired t-test with a Holm–Bonferroni correction
showed that the DSC from the dynamic CNN method was
statistically significantly different than the SFLS and U-Net
methods (P < 0.0002).

Table III also shows that the standard deviation values of
MABV and |ΔMABV| errors of the proposed method are
smaller than the 3D SFLS method. An F-test showed that the
variances results from the dynamic CNN were statistically
significantly different than 3D SFLS method (P < 0.0001)
demonstrating that the consistency and robustness of the pro-
posed dynamic CNN was better.

3.C. Results of LIB segmentation

The LIB segmentation problem was converted to a seg-
mentation of the lumen region from the CCAUS image. This
procedure was a fully automatic using the modified U-Net
with the selected ROI in the CCA images obtained from the

TABLE I. Average edge preservation index (EPI) and peak signal noise rate
(PSNR) of the enhanced US images using different compensation
coefficient c.

Gamma (c) 0.5 2 4 6

EPI 1.084 1.083 1.611 1.974

PSNR 37.59 37.24 36.50 35.94
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segmented MAB contours. Figure 8 shows a comparison
between algorithm and manual segmentation results, where
the red contours are the manually delineated LIB and the yel-
low contours are the algorithm results, showing that the two
segmentations are qualitatively similar.

Table IV shows a comparison of the segmentation results
of the CCA lumen using the proposed method and four other
methods. The traditional CNN26 was used to classify LIB
patches using sliding windows resulting in a DSC of
85.50 � 7.22%. Jodas et al. segmented the lumen region
using the K-means algorithm and mean roundness38 and

obtained the DSC of 86.30 � 6.71%. Ukwatta et al. applied
the 3D SFLS method25 to segment the LIB and obtained a
DSC of 90.64 � 4.97% for an ISD of 3 mm. We used the
traditional U-Net algorithm29 to segment the LIB, but the
DSC result of 89.50 � 4.91% was a little lower than the 3D
SFLS method. Thus, we modified the architecture and
improved the U-Net resulting in a highest DSC of
92.84 � 4.46%. T-tests of the DSCs with a Holm–Bonfer-
roni correction (adjusted p-values in Table IV) for the four
tests showed that the proposed improved U-Net was the sta-
tistically significantly different from the other methods
(P < 0.05).

Using the segmented LIB we calculated the volume-,
region-, and distance-based metrics using the proposed
method and compared the results to the 3D SFLS method
with ISD of 3 mm, as shown in Table V. The DSC of the
improved U-Net method is higher than the 3D SFLS method.
A paired t-test showed that there is a statistically significant
difference (P < 0.02) between the improved U-Net method
and the 3D SFLS method. Table V also shows that the MAD
error metric is smaller for the proposed method than 3D
SFLS and the MAXD error metric of the proposed method is
similar with the 3D SFLS method. Although the average
ΔLIBV of the proposed U-Net method is similar to that of 3D

FIG. 8. A comparison between the performance of algorithm and manual MAB and lumen-intima boundary segmentations. The manual segmentations were gen-
erated at an interslice distance of 1 mm. The yellow contours show the manual segmentations and the red contours are the algorithm segmentations. [Color figure
can be viewed at wileyonlinelibrary.com]

TABLE II. Media-adventitia boundary (MAB) segmentation results with dif-
ferent number of initial points.

Number of initial points 8 4

DSC (%) 96.46 � 2.22 95.4 � 2.39

MAD (mm) 0.19 � 0.11 0.24 � 0.13

MAXD (mm) 0.63 � 0.57 0.77 � 0.63

ΔMABV (%) �0.99 � 1.37 2.11 � 1.70

|ΔMABV| (%) 1.36 � 0.99 2.34 � 1.37

DSC, dice similarity coefficients; MAXD, maximum absolute distance, MABV,
media-adventitia volume difference.
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SFLS method, the standard deviation of ΔLIBV is 5.9%,
which is much smaller than the 3D SFLS method with a stan-
dard deviation of 49.5%. An F-test indicated that there is a
statistically significant difference (P < 0.0001) between the
two methods. The standard deviation of |ΔLIBV| is also smal-
ler than the 3D SFLS method (P < 0.02). This large differ-
ence is due to the sensitivity of the level-set based method to
the initial contour and the proposed U-Net method is more
robust to different objects.

3.D. Generating the 3DUS VWV measurement

Since VWV measurements have been observed to be sen-
sitive to temporal changes in carotid plaques,15,16 we evalu-
ated the accuracy of VWVs obtained from our algorithm
generated MAB and LIB in this experiment.

Figure 9(a) shows a correlation plot of the algorithm and
manually generated 3DUS VWV for the data using an ISD of
3 mm. This figure shows that the algorithm and manually
generated VWVs are a highly correlated with correlation
coefficient of 96%. Figure 9(b) shows a Bland–Altman plot
of the difference between algorithm and the manual segmen-
tations where the standard deviation is represented by SD.
This plot shows good agreement between the mean VWVs
generated by the algorithm and manual with a mean differ-
ence of �2.45 � 9.21%, where the range of VWV is 167–
1623 mm3.

Table VI shows ΔVWV and |ΔVWV| errors between the
proposed and manual segmentations as well as the results
from the 3D SFLS method.25 The average error of ΔVWV
using the proposed segmentation method was 1.62 � 8.7%,
which is similar with the 3D SFLS method (0.56 � 12.42%).
A t-test failed to show a statistically significant difference
between the methods (P > 0.1). Furthermore, the standard
deviations of ΔVWV and |ΔVWV| are both lower for the

proposed method. The F-test showed that the variance of the
ΔVWV (P < 0.01) and |ΔVWV| (P < 0.05) metrics are both
statistically significant different with the 3D SFLS method.

3.E. Computational time

A timer was created in the program to record the elapsed
time in each stage. Our proposed algorithm required the
observer to locate four or eight anchor points on the MAB
contours for initialization, requiring an average of 13.8 � 6 s
to choose eight points, and half that time for four points. The
computation time for fine-tuning the dynamic model was
8.73 � 2.1 s. The MAB and LIB mean segmentation times
were 9.5 � 1.2 and 1.3 � 0.5 s, respectively. Thus, the total
mean time of 34.4 � 9.8 s was required to segment a single
3D image. The dynamic CNN was built using Caffe,41 the U-
Net was implemented using the Keras platform42 and a com-
puter with an Intel Core i7 7700K (base frequency:
4.20 GHz) and an NVIDA Geforce GT 1080Ti graphics card
was used in the experiments. Table VII shows a comparison
of the average time to segment the MAB and LIB from a

TABLE IV. Comparisons for the DSC of LIB segmentations using different methods.

Methods Improved U-Net Traditional U-Net 3D SFLS method CNN using sliding windows Jodas's method

DSC (%) 92.84 � 4.46 89.50 � 4.91 90.64 � 4.97 86.30 � 6.71 85.50 � 7.22

Adjusted P-value* – 0.007 0.033 0.0003 0.0004

3D, three-dimensional; CNN, convolutional neural network; DSC, dice similarity coefficients; LIB, lumen-intima boundary; SFLS, sparse field level-set.
*The original P-values were multiplied by the appropriate factors (4, 3, 2, 1) to give the adjusted P-values, which were compared to a P-value of 0.05.

TABLE III. DSC, MAD, MAXD, ΔMABVof MAB segmentation using different methods.

Methods Dynamic CNN with fine-tuning Traditional CNN without fine-tuning 3D SFLS U-Net

DSC (%) 96.5 � 2.22 96.0 � 2.66 94.4 � 2.24 91.45 � 4.8

MAD (mm) 0.19 � 0.11 0.21 � 0.14 0.28 � 0.18 0.42 � 0.26

MAXD (mm) 0.63 � 0.57 0.67 � 0.53 0.92 � 1.00 1.63 � 1.39

ΔMABV (%) �0.99 � 1.37 1.11 � 1.66 0.85 � 9.25 13.2 � 6.11

|ΔMABV| (%) 1.36 � 0.99 1.61 � 1.17 1.55 � 2.45 13.27 � 6.08

3D, three-dimensional; CNN, convolutional neural network; DSC, dice similarity coefficients; MAXD, maximum absolute distance, MAB, media-adventitia boundary;
MABV, MAB volume difference; SFLS, sparse field level-set.

TABLE V. DSC, MAD, MAXD, MLIBV of LIB segmentation using different
methods.

Methods Improved U-Net 3D SFLS

DSC (%) 92.84 � 4.46 90.64 � 4.97

MAD (mm) 0.23 � 0.14 0.35 � 0.16

MAXD (mm) 0.86 � 0.86 0.97 � 0.62

ΔLIBV (%) 3.8 � 5.9 �0.37 � 49.5

|ΔLIBV| (%) 5.4 � 4.5 4.43 � 6.26

3D, three-dimensional; DSC, dice similarity coefficients; LIBV, lumen-intima
boundary volume; MAXD, maximum absolute distance; SFLS, sparse field level-
set.
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3DUS image using the proposed method, Ukwatta’s method
(3D SFLS25 and 2D level set24) and Yang’s method,23 show-
ing that the proposed method reduced the processing time.

3.F. Reproducibility

Two observers (R. Z. and Y. J.) were required to place 4
initial anchor points on the MAB contours in 117 transverse
slices from 20 3DUS images, where both observers were
blinded to each other’s placement. The interobserver variabil-
ity results of generating the MAB are shown by the DSC,
MAD, MAXD, ΔMABV, and |ΔMABV| metrics. The MAB
algorithm segmentations using different observers’ initializa-
tions were compared to manual segmentations. Table VIII
shows that the performance of the two MAB algorithm seg-
mentations were similar with DSC (compared to manual seg-
mentation) of 95.77 � 0.20% and 95.52 � 1.75%,
respectively. A t-test indicated that the algorithm failed to
show a statistically significant difference for the observers’

initializations (P > 0.1). All metrics were also calculated to
compare the MAB segmentations between the two observers’
initializations. The algorithm generated DSC due to the two
observers’ initializations was 96.14 � 1.87%, and all the dif-
ferences between the other distance-based and volume-based
metrics were small, which demonstrated that the MAB seg-
mentations initialized by two observers were very close.

4. DISCUSSION

In this study, we report on a new algorithm used to delin-
eate the MAB and LIB of the CCA from 3DUS images and
generate VWV measurement, which can be used to quantify
and monitor changes of atherosclerosis in the common caro-
tid artery. This technique may also be used to calculate other
3DUS-based biomarkers, such as TPV,20 VWT,17 and VWT-
Change.19

Compared to the previous reports, the deep learning tech-
nique was first utilized to segment both MAB and LIB from
3DUS images of carotid arteries, which greatly reduces user
interactions and processing time. In the MAB segmentation,
we proposed a dynamic convolutional neural network rather
than a popular deep learning network, such as U-Net29, Seg-
Net43 et al, for two main reasons. First, the proposed method
could dynamically fine-tune the CNN model in practice. Sec-
ond, the boundary contrast of the MAB and LIB on the distal
side of the artery is poor due to the ultrasonic attenuation.
The initial contours could help to locate the ROI of the caro-
tid artery and improve the accuracy of segmentation. In the
LIB segmentation, we improved the network architecture of
the original U-Net in order to avoid the overfitting problem
during training.

In the experiment, the dynamic convolutional neural net-
work was fine-tuned using patches generated from the user
interaction initial MAB contours. For both four and eight

FIG. 9. (a) Correlation plot for algorithm- and manually generated three-dimensional ultrasound vessel-wall-volume (VWV). (b) Bland–Altman plot of the differ-
ence between VWVs generated by algorithm and manual segmentations. The red continuous line labeled as mean indicates the bias, the dotted lines labeled as
1.96 SD indicate the level of agreement. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE VI. Results for VWV measurement using different methods.

Methods The proposed method 3D SFLS

ΔVWV (%) 1.62 � 8.7 0.56 � 12.42

|ΔVWV| (%) 6.48 � 6.14 5.64 � 8.10

3D, three-dimensional; SFLS, sparse field level-set; VWV, vessel-wall-volume.

TABLE VII. Comparison of segmentation time using different methods.

Methods
The proposed

method 3D SFLS
2D level

set
Yang's
method

Time (s) 34.4 � 9.8 68.4 � 49.8 168 � 24 264 � 36

2D, two-dimensional; 3D, three-dimensional; SFLS, sparse field level-set.
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initial anchor points, it resulted in satisfactory segmentation,
where the segmentations using four initial points obtained the
average DSC of 95.4 � 2.39% and the results improved with
DSC of 96.46 � 2.22% for eight initial anchor points. Thus,
observers can vary the number of anchor points and ISD
depending on the complexity of the plaque surface and the
number of plaques.

Comparing the proposed method with the traditional CNN
and 3D SFLS methods, we showed that the dynamic CNN
generated better performance with a DSC of 96.46 � 2.22%,
MAD of 0.19 � 0.11%, MAXD of 0.63 � 0.57%, ΔMABV
of �0.99 � 1.37%, and |ΔMABV| of 1.36 � 0.99%. The
DSC of the proposed method was statistically significantly
different from the previous 3D SFLS method (P < 0. 0001).
The standard deviation values of MABV and |ΔMABV| errors
of the proposed method are smaller and F-test showed there
was a statistical significant difference between the variances
results from the dynamic CNN and 3D SFLS method
(P < 0.0001). This result indicates that the proposed method
is more robust to different objects.

Comparison of the DSC of LIB segmentation to other
published results showed that our method produced the best
results with DSC of 92.84 � 4.46%. From the result of t-
tests of the DSCs with a Holm–Bonferroni correction, it
showed that the DSC of the proposed improved U-Net is the
statistically significantly different from that of the other meth-
ods (P < 0.05).

The average errors of VWV and |VWV| using the seg-
mented MAB and LIB with the proposed method were com-
parable to the 3D SFLS method; however, the standard
deviations of the error metrics were smaller, which was more
desirable for clinical use or trials. These results indicate that
the variability of VWV and the generalization ability of the
proposed algorithm were better.

The analysis of computational time shows that the pro-
posed method greatly reduced the user interactions and the
processing time with a total of 34 s to segment a 3DUS
image. This is approximately 93% reduction in time (34 s vs
8.3 min) in comparison to manual segmentation. Compared
to the 3D SFLS method, the proposed method reduced the
total of user interaction time and processing time by half (34
vs 68 s). However, the time cost for MAB segmentation is
much more than the LIB segmentation, since the MAB seg-
mentation algorithm is still not fully automated due to the

low-contrast of media-adventitia boundaries on the side far
away from the probe and the inhomogeneity of peripheral tis-
sue. Thus, future work will focus on improving the MAB seg-
mentation method and reducing its time.

Due to the limitation of the small dataset of 3DUS images
and the requirement of a large number of 3DUS images to
train a 3D deep learning network, we sliced the 3DUS images
into 2DUS images. Although the DSCs of the MAB and LIB
segmentations in 2DUS images are already sufficient for clin-
ical use and showed statistically significant difference com-
pared to the 3D SFLS method, the volume metrics fail to
show a statistical significance difference. Since we resliced
our 3DUS images and segmented them with a spacing of
1 mm, our method did not guarantee connectivity between
slices. Moreover, although the threefold cross-validation tech-
nique was used to randomly divide all objects into two
groups for training and testing in the experiments, the lack of
using an independent testing dataset is another limitation of
our work. Thus, in the future, we will collect more clinic
3DUS images for developing an automated 3D deep learning
network to segment MAB and LIB and have the independent
testing. Since the proposed dynamic CNN required at least
two slices of 2D carotid US images for initialization, 3DUS
images acquired over a short distance of the common carotid
artery were not considered in the experiments. Another limi-
tation of the presented work is that this study lacked a con-
sensus ground truth in the experiments.

Future work will also include the use of our proposed seg-
mentation method to evaluate other useful 3DUS metrics of
the carotid arteries, such as VWT,17 VWT-Change,19 TPV,13

and 3D texture features44 for plaque monitoring and treat-
ment evaluation.

5. CONCLUSION

In this paper, we presented a dynamic CNN for MAB seg-
mentation and improved U-Net for LIB segmentation. To our
knowledge, this work is the first applying a deep learning
technique to segment carotid plaques from 3DUS images of
CCAwith carotid stenosis over 60%. This method overcomes
the limitation of other methods, which are sensitive to initial-
ization points and reduces the need for operator interaction. It
provides higher mean segmentation accuracy and smaller
standard deviations than the previous methods in terms of

TABLE VIII. Comparison of the proposed algorithm segmentations initialized by different observers.

Metrics Algorithm1 —Manual Algorithm2 — manual Algorithm1 — Algorithm2

DSCMAB (%) 95.77 � 0.20 95.52 � 1.75 96.14 � 1.87

MADMAB (mm) 0.25 � 0.12 0.26 � 0.10 0.23 � 0.12

MAXDMAB (mm) 0.79 � 0.42 0.81 � 0.73 0.81 � 0.41

ΔMABV (%) 0.31 � 2.40 0.07 � 2.36 0.20 � 3.11

|ΔMABV| (%) 1.74 � 1.62 1.78 � 1.49 2.66 � 1.51

DSC, dice similarity coefficients; MAXD, maximum absolute distance; MABV, media-adventitia boundary volume.
Algorithm1: Results of the proposed method using initial points placed by Observer R. Z. Algorithm1: Results of the proposed method using initial points placed by Obser-
ver Y. X. Manual: results of manual segmentation.
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volume-, region-, and distance-based metrics. With sufficient
accuracy and low variability, the proposed method could be
used clinically for monitoring patients’ response to therapy.
In addition, our segmentation methods could also provide a
tool to be used in clinical trials used to investigate new ther-
apy methods by providing a reproducible method to monitor
progression and regression of carotid plaques.
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