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Abstract

The growing body of experimental and computational data describing how proteins

interact with each other has emphasized the multiplicity of protein interactions and the

complexity underlying protein surface usage and deformability. In this work, we pro-

pose new concepts and methods toward deciphering such complexity. We introduce

the notion of interacting region to account for the multiple usage of a protein's surface

residues by several partners and for the variability of protein interfaces coming from

molecular flexibility. We predict interacting patches by crossing evolutionary, physico-

chemical and geometrical properties of the protein surface with information coming

from complete cross-docking (CC-D) simulations. We show that our predictions match

well interacting regions and that the different sources of information are complemen-

tary. We further propose an indicator of whether a protein has a few or many partners.

Our prediction strategies are implemented in the dynJET2 algorithm and assessed on a

new dataset of 262 protein on which we performed CC-D. The code and the data are

available at: http://www.lcqb.upmc.fr/dynJET2/.
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1 | INTRODUCTION

Proteins are main actors in biological processes and a detailed descrip-

tion of their interactions is expected to provide direct information on

these processes and on the way to interfere with them.1 Our knowl-

edge of protein-protein interaction (PPI) networks2 is largely incom-

plete, since the experimental assessment of all possible interactions of a

protein is very challenging.3,4 To overcome this limitation, recent efforts

have been invested in the integration of direct and indirect experimen-

tal evidence and of computational predictions to better describe PPIs at

the genome scale [5-11,40]. These efforts have revealed the complexity

and multiplicity of PPIs. A protein may interact with several partners at

the same time—each partner binding to a different site at its surface, or

its surface may present a shared binding region that will be used by

different partners at different moments of its lifetime. It is estimated

that as much as 75% of the surface could potentially be used for PPIs.12

In this context, there is a need for the development of tools able to

decrypt protein surfaces at the residue level. A comprehensive descrip-

tion of protein surfaces and a precise identification of the residues

involved in interactions are mandatory to identify cellular partners at

large scale11 and design drugs modulating PPIs.13 Moreover, character-

izing protein surfaces' properties may inform us on the number of part-

ners a protein may have, and thus on the role of that protein in the cell.

Evolutionary, physicochemical, and geometrical properties have

been shown to be relevant to PPIs,14-25 and, based on them, in the

past 20 years, a number of tools have been developed to predict

interacting surfaces24,26-33 (see25,34 for surveys). Although some of

these tools achieve very high accuracy against subsets of known
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experimental binding sites, their predictions are generally much

smaller than the expected interacting surface size.12 Moreover, many

tools do not propose sites but rather evaluate the probability of a resi-

due to be involved in interactions. An orthogonal approach consists in

exploiting molecular docking calculations. Docking methods were

originally designed to predict the structure of a complex starting from

the known structures of its components. Candidate conformations are

evaluated based on properties reflecting the strength of the associa-

tion, for example, shape complementarity, electrostatics, desolvation,

and conformational entropy. By deriving statistics from the generated

conformational ensemble, one can estimate the propensity of each

protein surface residue to be found at a docked interface and use

these propensities to identify binding sites.35 This has been realized in

single docking studies,36-40 where two proteins known to interact are

docked to each other, in arbitrary docking studies,41 where proteins

from a benchmark set are docked to arbitrarily chosen proteins, and in

complete cross-docking (CC-D) studies,11,42-45 where all vs all docking

is realized on a given dataset.

In the present study, we combine these different types of informa-

tion to decipher the complexity of protein surfaces and give clues

about the many interactions a protein may have (Figure 1). Given a

protein, we predict patches at its surface based on some intrinsic

properties of that surface and on properties inferred from the behav-

ior of the protein with respect to others in docking calculations. We

F IGURE 1 Schematic representation of our workflow. We consider four residue-based properties (left panel), namely evolutionary
conservation, amino acid propensities to be found at an interface, local geometry, and propensities to be found in docked interfaces. We predict
interacting patches at the surface of proteins by using four different strategies: SCcons, SCnotLig, and SCgeom combines the first three properties,
while SCdock relies exclusively on the fourth property. We compare the predicted patches with a set of experimentally determined functional
interacting regions. We analyze and cluster the predicted patches' seeds, from which they were grown, to precisely localize interacting regions
and infer the number of partners used by each region [Color figure can be viewed at wileyonlinelibrary.com]
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assess our predictions against a new set of experimentally known

functional interfaces, detected at the surface of 262 proteins and of

their close homologs. We demonstrate that considering only one sin-

gle complex for a given protein leads to underestimate the proportion

of its surface involved in functional interactions and to the incorrect

assessment of protein interface prediction algorithms. To cope with

this issue, we introduce the new concept of interacting region (IR) as a

protein surface region used by one or several partners. IRs are defined

by merging overlapping interacting sites (IS) extracted from different

protein complex structures. We show that our predictions better

match IRs compared to ISs and capture the interface variability

induced by molecular flexibility. Our approach includes sequence-

based analysis, which allows the detection of signals even when the

interface is “hidden.” Interestingly, we highlight a few cases where

docking enables unveiling interfaces that could not be detected other-

wise. We further exploit the way in which our predicted patches are

grown, starting from a seed that is progressively extended. Specifi-

cally, we demonstrate that predicted patches' seeds can be used to

localize IRs with high precision and to determine whether a protein

has a few or many partners.

We provide sets of experimentally known interaction sites and

regions and CC-D results for our dataset of 262 proteins, along with a

computational tool, called dynJET2, for predicting interacting patches

based either on protein sequence and structure analysis or on any

pre-computed residue based property. All data and implemented code

are available at: http://www.lcqb.upmc.fr/dynJET2/.

2 | MATERIALS AND METHODS

2.1 | Datasets

2.1.1 | Proteins: P-262

We defined a dataset of 262 protein chains and associated Protein

Data Bank (PDB) structures featuring both single and multiple part-

ners interactions. This dataset was extracted from a larger set of 2246

protein chains defined in the scope of the HCMD2 project (see

http://www.ihes.fr/ carbone/HCMDproject.htm), for which we

performed CC-D. We considered the subset of PDB structures com-

prising a protein complex previously reported in Reference 45, from

which we excluded: (a) only C-α structures, (b) chains for which dock-

ing results were missing, (c) chains forming coiled-coils complexes,

(d) deprecated PDB codes, (e) chains for which no biologically relevant

interface (see subsection Surfaces and interfaces for definition) could

be found in the whole PDB (considering 90% sequence identity, see

below). The remaining 262 protein chains comprise on average

200.5 ± 131.2 residues (Table S1). This indicates a large variation of

protein size inside the dataset (21 residues for the smallest protein vs

789 residues for the largest one). Based on the information recovered

from the PDB, the proteins were manually classified, following and

extending the classification proposed in Reference 46. We defined

11 functional classes: 16 bound antibodies (AB), 25 complex subunits

(C), 60 enzymes (E), 10 enzyme regulators (ER), 9 G proteins (G),

6 antigens from the immune system (I), 23 receptors (R), 24 structural

proteins (S), 16 substrates/inhibitors (SI), 7 transcription factors

(TF) and 66 proteins with other function (O).

2.1.2 | Protein interfaces: PPI-262 and PPI-262ext

We defined two datasets of experimental protein-protein interfaces,

namely PPI-262 and PPI-262ext (Figure S1). Both datasets com-

prise only interfaces buried within “biological units” or “biological

assemblies,” as annotated by the authors of the PDB structure or by

PISA software.47 This ensures that the interfaces we consider carry a

biological meaning. PPI-262 comprises 329 ISs (see definition below,

in subsection Surfaces and interfaces) extracted from the PDB files

associated to P-262 and PPI-262ext comprises 370 IRs (see defini-

tion below, in subsection Surfaces and interfaces) defined from PDB

files of close homologs of the proteins from P-262.

To construct PPI-262ext (see Figure S1), we first searched for

homologs of the 262 proteins from P-262 in the PDB. We down-

loaded the pre-computed set of PDB structures clustered at 90%

sequence identity from ftp://resources.rcsb.org/sequence/clusters/.

This set was determined using BLASTClust with the arguments -p T

-b T -S 90. We then filtered out structures with a resolution poorer

than 5 Å resolution. 23 642 functional ISs were detected on these

structures and were then mapped onto the query proteins from P-

262 by performing global pairwise sequence alignment (using the

blosum62 matrix, with the Biopython package48). ISs were then mer-

ged into IRs.

2.2 | Complete cross-docking

Given an ensemble of proteins, CC-D consists in docking each protein

against all others in the dataset, including itself. CC-D was performed

on P-262 using the MAXDo (Molecular Association via Cross Dock-

ing) rigid-body coarse-grained docking program.42 Statistics were

computed from the generated conformations (docking poses) to

determine the propensity of each residue from each protein to be

found in a docked interface. We define the interface propensity (IP) of

residue i, belonging to protein P, as11,42:

IPP ið Þ= Nint,P ið Þ
Npos,P

ð1Þ

where Npos,P is the total number of docking poses considered for pro-

tein P and Nint,P(i) is the number of docking poses where residue i lies

in the interface. In order to limit the number of docked interfaces to

reconstruct, which is the most time-consuming part of the analysis,

we considered only the lowest energy docking poses (less than 2.7 kcal

from the best-scored pose, as described in Reference 11). This led to

�50 000 docking poses for each protein pair. Thus, for a given protein

P, we considered about 50 000 × 262 = 13 100 000 docking poses.

Below, we shall use IPP(i) values to formally define a normalized

interaction propensity score, called NIP, that dynJET2 uses in order to

predict interface sites.
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2.3 | Residue-based properties

Four measures, TJET, PC, CV, and NIP, are used to evaluate single resi-

dues in a protein and to define scores for the prediction of protein

interfaces.

TJET reflects the evolutionary conservation level of a residue, and is

computed from phylogenetic trees constructed by using sequences,

homologous to a query sequence and sampled by a Gibbs-like

approach.23 The Gibbs-like approach extracts N representative subsets

of N sequences23 in a way that, within each subset, the proportions

of sequences sharing [20-39]%, [40-59]%, [60-79]%, and [80-98]%

sequence identity with the query sequence are similar (ideally, about

one quarter for each group of identity). Sequences in a subset are then

aligned using CLUSTALW249 and a distance tree is constructed from

the alignment based on the Neighbor Joining algorithm.50 From each

tree T, a tree trace level is computed for each position in the query

sequence: it corresponds to the level n in the tree T where the amino

acid at this position appeared and remained conserved thereafter (see

Reference 23 for a more precise definition). Let us recall that this defini-

tion of evolutionary trace is notably different from the measure defined

in References 14,51 to rank protein residues.

Then, tree trace levels are averaged over the N trees to get statis-

tically significant values, which we denote relative trace significances,

or TJET, and which are calculated as follows23:

TJET jð Þ= 1
Mj

XMj

t=1

Lt− l
t
j

Lt
ð2Þ

where ltj is the tree trace level of residue rj in tree t, Lt is the maximum

level of t and Mj is the number of trees where a nonzero tree trace

level was computed for rj. TJET values vary in the interval [0,1] and rep-

resent averages, over all trees of residues, of evolutionary conserva-

tion levels.

PC indicates the physicochemical propensity specific to amino

acids located at a protein interface. The original values, taken from,52

range from 0 to 2.21 and are scaled here between 0 and 1 for the cal-

culation of residue scores.

CV is the circular variance, a measure of the density of protein

around a residue. Formally, the circular variance of a fixed point in 3D

space is computed from the vectorial distribution of a set of neighboring

points around it.53 Specifically, the CV value of an atom i is expressed as:

CV ið Þ=1− 1
ni

X

j 6¼i, ri ≤ rc

rij
!

krij!k

�����

����� ð3Þ

where ni is the number of atoms distant by less than rc Å from atom

i and rij
!

is the coordinate vector from atom i to its neighbor j. If atom

i is buried within the protein, then the resultant of the vectors toward

its neighbors will be small and its CV value will be close to one. On

the contrary, if the atom is located in a protruding region, the vectors

toward its neighbors in the protein will share the same direction, their

resultant will be high, and hence the CV value will be close to zero.

We compute the CV value of a residue ak as the average of the atomic

CVs, over all atoms of ak: CV akð Þ= 1
Nak

P
iCV ið Þ, where Nak is the num-

ber of atoms in ak. Compared to solvent accessibility, CV changes

more smoothly from the surface to the interior of the protein,54 and is

thus less sensitive to small conformational changes. CV values are

scaled between 0 (most protruding residues) and 1 (least protruding

residues) for the calculation of residue scores.

NIP is the normalized form of the Interface Propensity score IP,

defined in Equation (1), that reflects the propensity of a residue to be

found at the interface. In order to compare IP scores among proteins,

we normalize it, as done in Reference 11: a positive NIP value indicates

that the residue i is favored to occur at potential binding sites, and a

negative NIP value indicates that it is disfavoured. NIP is defined as:

NIPP ið Þ= IPP ið Þ− < IPP jð Þ> j2P
max IPP jð Þð Þj2P− < IPP jð Þ> j2P

ð4Þ

where <IPP( j)>j 2 P and max(IPP[j])j2P are the average IP and the maxi-

mum IP, respectively, computed over all the residues j in P. The NIP

value represents how often a residue is docked on the retained con-

formations (ie, those conformations that have less than 2.7 kcal/mol

energy difference from the best one, as explained above).

These four residue-based properties were previously shown to be

useful for the prediction of protein interfaces.11,23,24,33,41,43,44 TJET,

PC, CV are computed using dynJET2, a modified version of JET224 that

handles NIP values, as described below. For each measure, values are

scaled between 0 and 1.

2.4 | Surfaces and interfaces

A residue is considered to be at the surface of the protein if it displays

at least 5% of relative accessible surface area (rasa), as computed by

Naccess.55 Experimental and predicted interfaces are exclusively com-

prised of surface residues.

Experimental interfaces are detected on known PDB complex

structures, considering only biological assemblies. We define two

types of interfaces, namely interacting sites (ISs) and interacting regions

(IRs). ISs are detected in single PDB structures by using the INTBuilder

software56 (www.lcqb.upmc.fr/INTBuilder/) with a distance threshold

of 5 Å. They may represent single- or multiple-partner interactions

(Figure 2A). For instance, let us consider a ternary complex comprised

of proteins P1, P2, and P3. If both P2 and P3 bind to P1 but are not in

contact with each other, then we will define two single-partner ISs at

the surface of P1 (Figure 2A, middle panel). By contrast, if P2 and P3

are in contact with each other (less than 5 Å away), then we will

define one multi-partner IS at the surface of A (Figure 2A, right panel).

IRs are defined by merging several ISs. Two ISs, namely IS1 and IS2, of

reasonable sizes (more than five residues), will be merged into an IR if

their maximum overlap with respect to their respective sizes (max

[overlap(IS1, IS2), overlap(IS2, IS1)]) is greater than an arbitrarily chosen

threshold of 60%. In practice, this threshold gave us the most realistic

IRs given the experimental information. This merging criterion is
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relaxed when dealing with very small ISs. Namely, we request that an

IS comprising at most five residues shares at least one residue in com-

mon with another IS to be merged with it. The merging procedure is

iterated over all ISs for a given protein. To construct PPI-262 and

PPI-262ext, we retained only ISs and IRs of reasonable sizes, that is,

comprising more than five residues.

Predicted interfaces are identified by the dynJET2 software (www.

lcqb.upmc.fr/dynJET2/). Given the sequence and the structure of a

query protein, dynJET2 predicts the location of potential protein bind-

ing sites on the protein surface.24 dynJET2 implements a clustering

algorithm and scoring strategies specifically aimed at detecting the

different layers of a protein interface, namely the support, the core

and the rim.57 These three layers are defined for known experimental

interfaces by comparing their solvent accessibilities in the presence

and absence of the partner.24 Support residues are buried with and

without the partner, core residues become buried upon binding to the

partner and rim residues are exposed in the presence and absence of

the partner. A threshold of 25% relative solvent accessibility is used

to determine whether a residue is buried or not. To approximate these

layers, our algorithm24 first identifies a small cluster of highly scored

residues, called the seed. Seeds closer than 5 Å are merged. Then, the

detected seeds are progressively extended, and the resulting residue

clusters are merged if they are in contact (< 5 Å away). Importantly,

the way residues are picked up based on their scores (defined below)

differs between seed and extension, such that the detected signal is

very strong in the seed and progressively fades away as the extension

is grown. Finally, an outer layer is added to form what we call a

predicted patch. We used the iterative mode of dynJET2 (i-dynJET2)

and considered a residue to be predicted as interacting if it was

detected at least twice over 10 iterations (as done in Reference 24).

Four scoring schemes or strategies are implemented in dynJET2

(compared to three in JET224):

F IGURE 2 Examples and schema illustrating the notions of interacting site and interacting region. A, Schematic representation of single- and
multiple-partner interacting sites. Three proteins are considered, namely P1, P2, and P3. The ISs defined on P1 are highlighted by thick black lines.
See the materials and methods section for a precise definition of the sites issued from multiple partners. B, Two examples of the usage of the
protein surface by different partners. The query proteins are displayed as gray cartoons, their interacting sites as opaque colored surfaces, and
their partners as colored cartoons and transparent surfaces. Left: trypsin (1ezx_C, in gray) interacts with itself (5gxp_B, in green), serpin (1ezx_A,
in blue) and eglin C (4b2b_B, in red). The three corresponding ISs lead to the definition of 2 IRs, as depicted on the schema at the bottom, where
each IR is contoured by a thick line. Right: the natriuretic peptide receptor forms a homodimer (1yk1_A, in gray, and 1yk1_B, in blue) to bind its
substrate (1yk1_E, in orange). The 2 ISs detected at the surface of one receptor monomer (1yk1_A, in gray) are merged into an IR
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SCcons targets very conserved residues (identified by

the TJET score) to form a seed which is then extended

using both TJET and PC scores. An outer layer is added

considering both PC and CV scores. SCcons is intended

to detect diverse protein binding sites.

SCnotLig detects both seed and extension layers using a

combination of TJET and CV scores. It aims at detecting

highly conserved residues that are not buried too

deeply beneath the surface of the protein. The outer

layer is defined based on PC and CV scores, as in

SCcons. SCnotLig specifically distinguishes protein inter-

faces from small ligand binding sites.

SCgeom disregards evolutionary information and solely

employs PC and CV scores for detecting all three

layers of the interface. SCgeom yields consistent predic-

tions for interfaces displaying very low conservation

signal, eg, antigen binding sites.

SCdock applies the NIP score of the residues to all three

layers (core, extension, and outer layer). The usage of

NIP is motivated by the observation that proteins tend

to dock to their cognate partners and also to nonin-

teractors via the same region at their surface.11,41-43

This scoring scheme is new in dynJET2.

To evaluate the performance of our predictions, we mainly relied on the

F1-score, which is the harmonic mean of precision and recall. Predicted

patches were compared to ISs from PPI-262 and IRs from PPI-262ext.

The union of all predicted interface residues was also compared to

the union of all experimental interface residues, for each protein.

2.5 | Seeds clustering

Seeds generated by dynJET2's different scoring schemes were col-

lected. The SCcons seeds were discarded because almost half of their

residues were shared with the SCnotLig seeds (Figure S3a), they were

bigger than the other seeds (Figure S3b) and we observed that they

often extended over several other seeds. We considered that these

characteristics would make SCcons seeds perform badly in locating dif-

ferent IRs. The atoms belonging to the seeds collected from SCnotLig,

SCgeom, and SCdock were then classified by applying hierarchical clus-

tering using the average linkage method. A threshold distance of 23 Å

was used to define the clusters. This value yielded the best match

between the number of clustered seeds and the number of IRs.

2.6 | Conformational variability of IRs

For each IR, the RMSD of its backbone atoms (or, if not possible, its

C-α atoms) was computed between the query structure from P-262

and each of the homologous structures on which the IR was detected.

For each homologous structure, only the subset of residues detected

on this structure were considered to compute the RMSD. RMSD

values were then averaged over the homologous structures (including

the query structure if the IR was also detected on it). This gives us a

single RMSD value for each IR.

2.7 | Number of partners

To count how many different partners a protein has, we considered

all known homologs of the protein in the PDB and their partners. We

clustered the partners depending on their sequence homology: two

partners were classified in different clusters if they shared less than

90% sequence identity. This threshold in agreement with the criteria

we applied to protein chains and their homologs. The number of clus-

ters provides an estimation of the number of partners for the protein.

2.8 | Comparison with other methods

SPPIDER58 (accessed at http://sppider.cchmc.org) was applied on the

262 protein chains from P-262. Multi-VORFFIP59 (accessed at www.

bioinsilico.org/cgi-bin/SUPER_VORFFI/htmlVORFFI/home) was applied

on a subset of 252 protein chains. The 10 proteins that were discarded

for the analysis either belonged to the training set of Multi-VORFFIP or

produced an error when running the tool. For both tools, we considered

residues displaying a probability above 0.5 as predicted to interact. Res-

idues separated by less than 5 Å were subsequently clustered to form

predicted patches.

3 | RESULTS

3.1 | From interacting sites to interacting regions

Our analyses were performed on a set of protein complex crystallo-

graphic structures, which we call P-262, involving 262 protein chains

(see Materials and Methods and Table S1). From these experimental

structures, we defined two sets of functional interfaces, PPI-262 and

PPI-262ext (see Materials and Methods and Figure S1). PPI-262

comprises 329 ISs, where each IS corresponds to one functional inter-

action described by one structure. This classical definition of a protein

interacting site is very restrictive and does not account for the inter-

face variability that may come from structure ensembles. Indeed, the

definition of the interface between two given proteins may vary from

one structure to another, depending on the crystallization conditions,

on the quality of the data/model and/or on the inherent flexibility of

the assembly. What is more, the notion of IS masks the complexity of

protein surface usage by multiple partners. This motivated us to

define the new concept of IR, obtained by merging overlapping ISs

(≥ 60% overlap). Based on the observation that functional interfaces

are conserved across closely related homologs,60 we collected all

functional ISs involving the query proteins from P-262 or their close

homologs (≥ 90% sequence identity) from the PDB.61 This amounted

to 23642 ISs, which were merged into 370 IRs to define our second

“extended” dataset, PPI-262ext. The two examples in Figure 2B illus-

trate the complexity of the experimental interaction surfaces in our
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datasets. Binding sites may be disjoint, overlapping or included in

others (Figure 2B, on the left), and they may be defined by the inter-

action with another copy of the same protein, other proteins or pep-

tides (Figure 2B, on the right). The two examples show five ISs (three

on the left and two on the right), which were merged into three distin-

guished IRs (two on the left and one on the right, contoured by thick

forest green lines). In all those cases, the IRs result from the merging

of ISs that represent binary interactions with different partners. In

addition, IRs may also be defined from several ISs representing a sin-

gle interaction, but whose binding mode slightly differs from one PDB

structure to another (see below).

3.2 | Prediction of interacting patches

We predicted interacting patches at the surface of the proteins from P-

262 by relying on four residue properties (see Materials and Methods

for precise definitions): evolutionary sequence conservation inferred

from the analysis of homologous sequences, physicochemical properties

expected at the interface based on experimentally known complex struc-

tures, local geometry computed on the protein 3D structure, and pro-

pensities to be found at docked interfaces inferred from CC-D

calculations (Figure 1). The first three properties are used to derive three

different scoring strategies (SCcons, SCnotLig, and SCgeom) aimed at identify-

ing different types of protein-protein interfaces (see Materials and

Methods and Reference 24). Each SC explicitly describes the role of each

one of the properties with respect to the expected support-core-rim

structure of interacting sites.57 Evolutionary sequence conservation is

used in SCcons and SCnotLig to target a very conserved residues on the

protein surface. In SCnotLig, it is combined with local geometry to avoid

small-ligand binding pockets, which are usually more deeply buried than

protein-protein interfaces. As both SCcons and SCnotLig are designed to

target conserved sites, their predictions often overlap substantially.24 By

contrast, SCgeom disregards conservation and uses only physicochemical

properties and local geometry to capture highly protruding interfaces not

necessarily conserved through evolution. The fourth property, inferred

from docking, is used exclusively in a fourth strategy, SCdock (see Mate-

rials and Methods). It reflects the propensity of each protein residue to

bind partners and non-partners in docking calculations. To evaluate

docking conformations, we used a coarse-grained empirical energy func-

tion comprising a Lennard-Jones potential for van der Waals interactions

and a Coulomb potential for electrostatics.62 The four SCs are

implemented in dynJET2, an upgraded version of the JET2 method.24

3.3 | Estimation of the protein surface involved in
functional interactions

We used both experimental interfaces and predicted patches to esti-

mate the proportion of protein surface involved in functional interac-

tions. On average, experimental ISs from PPI-262 cover �30% of the

protein surface (Figure 3A). Hence, by looking at this dataset, one may

infer that the residues involved in functional interactions generally rep-

resent less than a third of the protein surface. However, when looking

at PPI-262ext (Figure 3B), which comprises experimental IRs defined

from close homologs, the coverage increases up to �50%. Moreover,

a significant number of proteins (32) have their surface completely or

almost completely covered by functional interactions (coverage

≥80%). This suggests that most of the proteins from P-262 engage in

multiple interactions with different partners. One can notice some dif-

ference between the functional classes (Figure S2a). At one end of the

spectrum, the G proteins and the receptors use only one third of their

surface for interactions, on average. At the other end, the antigens

and the structural proteins use about two-thirds of their surface.

The estimation provided by the union of predicted patches is

slightly higher, �60% on average (Figure 3C). The associated distribu-

tion resembles that of the union of experimental IRs from PPI-

262ext (compare Figure 3C with 3B), except for two notable

differences at the extremities. This observation is statistically

supported by a Mann-Whitney U-test: while the full distributions are

different (P-value = .002), the truncated distributions (without values

below 20% and above 95%) are indistinguishable (P-value = .37). The

differences at the extremities are the following: the minimum cover-

age is higher for predictions than for experimental interfaces (18% vs

6.2%), and there are more proteins completely or almost completely

covered (≥ 80%) by predictions than by experimental interfaces. The

first difference can be explained by the specifics of dynJET2 clustering

algorithm, which discards very small predictions (see Materials and

Methods and Reference 23). The second difference suggests that all

functional interfaces have not been yet experimentally characterized.

When looking at individual patches instead of their union, we

found that patches predicted from docking (SCdock) display sizes simi-

lar to those of experimental ISs (compare Figure 3D,F). Both types of

interfaces represent about one quarter of the protein surface, on

average. By contrast, conserved (SCcons, SCnotLig) predicted patches

are bigger, covering about one third of the protein surface, on average

(Figure 3G,H). Their size distributions are similar to that of experimen-

tal IRs (compare with Figure 3E). These three types of interfaces are

highly variable, with standard deviations in the [24-28]% range.

Finally, patches predicted based on local geometry (SCgeom) are the

smallest (Figure 3I), representing 16% of the protein surface.

3.4 | Assessment of the predictions and contribution
of each SC

The identification of a protein's set of interacting residues is important

to understand the determinants of molecular association. For each

protein, we compared the union of all predicted patches with the

union of all ISs (respectively IRs) from PPI-262 (resp. PPI-262ext).

To do so, we relied on the F1-score, which reflects the balance

between precision (or positive predictive value) and recall

(or sensitivity). The average F1-score on PPI-262 is 0.41 ± 0.24 and

it increases up to 0.57 ± 0.19 on PPI-262ext (Figure 4A). This

increase reflects a global shift of the F1-score distribution toward

higher values (P-value= 10−4 with the Mann-Whitney U test). The

proportion of proteins with very good predictions (F1-score > 0.6)

increases from 18% to 46%, while that of proteins with very poor pre-

dictions (F1-score < 0.2) drastically reduces from about one quarter to
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4%. These results highlight the importance of considering all available

experimental information to properly evaluate protein interface pre-

dictions. Predicted residues that would be considered as false posi-

tives when looking at the restricted dataset, PPI-262, are actually

involved in interactions with other partners, as revealed by the

extended dataset, PPI-262ext.

We further investigated to what extent the partitioning of protein

surfaces into patches predicted by the different SCs matches experi-

mental IRs (Figure 4B,C,D). None of the SC is sufficient on its own to

detect all IRs (Figure 4C, in orange, purple, cyan, and red). This observa-

tion is also illustrated by the two examples of Figure 5A,C, where sev-

eral SCs are necessary to capture the entirety of the experimental

signal. Combining SCcons, SCnotLig, and SCgeom enables increasing the

average F1-score by about 0.1 compared to individual SCs, and drasti-

cally reducing the number of completely missed IRs to only 28 over

370 (7.6%, Figure 4B, in marine). This is indicative of the complementar-

ity of the three SCs in their coverage of the protein surface, as already

observed in.24 Accounting for SCdock patches further enhances the qual-

ity of the predictions up to an average F1-score of 0.54 (compare

boxplots in marine and darkblue). In particular, the detection of the

binding sites at the surface of antibodies and G proteins is very sharp,

with average F1-scores of 0.67 and 0.64 (Figure S2b). By contrast, the

interfaces of the receptors and the enzymes regulators are the most dif-

ficult to detect, with both average F1-scores equal to 0.46.

To better characterize the contribution of docking-based informa-

tion, we compared the predictive performance of SCcons, SCnotLig, SCgeom,

either considered individually or altogether, with that of SCdock

(Figure 5B). We observed that the vast majority of IRs is better detected

by the former than the latter (points below the diagonal, 68% on top and

72% at the bottom). Hence, evolutionary conservation, physicochemical

properties and local geometry are generally able to better capture protein

interface signals than the coarse-grained empirical energy function used

in the docking experiment. Nevertheless, there are a number of cases

where docking-based data provide valuable information to improve pre-

dictions by unveiling interfaces that could not be detected otherwise. An

example is given by the anticoagulation Factor X (Figure 5C), where one

of its three IRs (in white) is very well detected by SCdock (in red,

F1-score = 0.74) but completely missed by the other SCs.

3.5 | Predictions capture interface variability coming
from molecular flexibility

Accurately accounting for molecular flexibility remains a challenge for

protein interface and interaction prediction. We looked at how our

F IGURE 3 Proportion of
protein surface covered by
experimental interfaces and
predicted patches. Distribution
are reported for: (A) the union of
ISs from PPI-262, (B) the union
of IRs from PPI-262ext, (C) the
union of patches predicted by
dynJET2, (D) individual ISs from
PPI-262, (E) individual IRs from
PPI-262ext,(F-I) individual
patches predicted by each
SC. The union of ISs, IRs or
predicted patches is realized for
each protein. Notice that the
sizes of the predicted patches do
not add up when considering
their union, since several of them
overlap [Color figure can be
viewed at wileyonlinelibrary.com]
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predicted patches matched experimental interfaces undergoing varia-

tions from one structure to another. We focused on the 78 IRs from

PPI-262ext which are only slightly (<1.5 times) bigger than the

corresponding IS(s) from PPI-262. Four examples are illustrated on

Figure 6. The difference between the IR and the original IS(s) typically

reflects the interface variability between different crystallographic

structures of the same complex. For example, about 20 structures of

the same hetero-4-mer involving Caspase-1 are available in the PDB

and contribute to the definition of one IR (Figure 6, top right). For the

vast majority of these IRs (>85%), the precision reached by dynJET2

predictions is equal to or greater than that computed on the

corresponding ISs (compare black/white and colored surfaces on

Figure 6). These results reveal that there exists a non-negligible vari-

ability inherent to protein interfaces and that dynJET2 predictions is

generally able to capture it.

We also assessed the robustness of our predictions with respect

to conformational changes. For each IR from PPI-262ext, we calcu-

lated the conformational deviation of its backbone atoms between

the query structure from P-262, on which our predictions were com-

puted, and the structures of its homologs (see Materials and

Methods). Almost all (95%) IRs display average conformational devia-

tions lower than a 4 Å (Figure S4). The extent of the deviation is not

correlated to the quality of the predictions (Pearson correlation coeffi-

cient of 0.05 between RMSD and F1-score, Figure S4). This indicates

that dynJET2 predictions are robust to small to medium conforma-

tional changes.

3.6 | Predicted patches' seeds describe the
multiplicity of interactions

Almost all (94%) IRs from PPI-262ext were detected, at least par-

tially, by considering predictions issued by all four SCs (Figure 4G).

Some predicted patches display a good or very good match with a sin-

gle IR. For example, the interface between profilin and human VASP

(Figure 5A, in black) is very well detected by SCcons (Figure 5A, in

beige, Sens = 0.63, PPV = 0.61). Another example is given by the inter-

face between the heavy and light chains of the anticoagulation factor

X which is well detected by SCdock (Figure 5C), in red, Sens = 0.82,

PPV = 0.68). Some other patches cover several IRs, as exemplified by

SCgeom in Profilin (Figure 5A, in cyan) and SCcons in the factor X's

heavy chain (Figure 5C, in beige). These cases are ambiguous if one

considers a single SC. However, by crossing the information coming

from different SCs, one may infer the existence of several IRs and

thus resolve the ambiguity. For instance, the presence of a SCcons

F IGURE 4 Agreement between
experimental interfaces and
predicted patches. A, Distributions of
F1-scores computed for the union of
dynJET2 predictions (boxes in light
gray), Multi-VORFFIP predictions
(box in light green) and SPPIDER
predictions (box in spring green).
dynJET2 predictions were assessed
against the union of ISs from PPI-

262 and of IRs from PPI-262ext.
Multi-VORFFIP predictions were
assessed against the union of IRs
from PPI-262ext*, a subset from
PPI-262ext involving 252 protein
chains. SPPIDER predictions were
assessed against the union of IRs
from PPI-262ext. B-D, Agreement
between predicted patches and
experimental IRs from PPI-262ext.
For each IR, the best-matching patch
or combination of patches predicted
by the strategies/methods indicated
in x-axis is retained. The performance
measures are the following:

(B) F1-score, (C) sensitivity (recall),
(D) positive predicted value
(precision). The sizes of the gray dots
are proportional to the number of IRs
that could not be detected at all
[Color figure can be viewed at
wileyonlinelibrary.com]
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patch partially overlapping with the SCgeom patch at the surface of

Profilin (Figure 5A) could be used as an indicator of the existence of

two IRs and of the fact that the SCgeom patch extends over these

two IRs.

To test whether this type of reasoning could be generalized, we

systematically investigated how predicted patches were distributed

over experimental IRs. For this, we explicitly considered the patches'

seeds, which are the first groups of residues being detected by

dynJET2 clustering algorithm. We collected all seeds generated by

SCnotLig, SCgeom, and SCdock and clustered them based on 3D proximity

(note that SCcons seeds were not considered for this analysis, see

Materials and Methods). The total number of resulting clustered seeds

is 562, which corresponds to 2.14 seeds per protein on average. By

comparison, the average number of IRs is 1.4. About one quarter of

the seeds are completely inside an IR (100% precision) and almost

than half of the seeds detect an IR with very high (≥80%) precision

(Figure 7A). In the examples of Profilin and factor X, the number of

seeds is equal to the number of IRs and each seed points to a different

IR (Figure 5A,C).

We also investigated whether seeds could be used to infer the num-

ber of partners a protein has (Figure 7B). For this, we looked at the

properties of the seeds lying completely or almost completely (PPV

F IGURE 5 Examples and comparison of predictions. A, Profilin (light gray cartoon) displayed with the patches predicted by SCcons (in beige)
and SCgeom (in cyan), the patches' clustered seeds, two experimental IRs from PPI-262ext (in gray tones) and the corresponding partners (colored
cartoons); (B) Scatterplot of F1-scores computed for the best-matching patch or combination of patches, among SCcons, SCnotLig, SCgeom (x-axis),
and from SCdock (y-axis) against experimental IRs from PPI-262ext. In cases where a combination of several patches is retained, the patches
either come from a single SC (on top) or from several SC (at the bottom, x-axis). (C) Heavy chain of the anticoagulation factor X (light gray
cartoon) displayed with the patches predicted by SCcons (beige) and SCdock (red), the patches' clustered seeds, the three experimental IRs from
PPI-262ext (in gray tones) and the corresponding partners (colored cartoons) [Color figure can be viewed at wileyonlinelibrary.com]
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≥80%) within an IR. We observed that the number of partners binding

to an IR increases with the number of scoring schemes predicting one

or more seeds within the IR (Figure 7B, Pearson correlation of 0.52).

This means that IRs displaying a multiplicity of signals relevant to pro-

tein interactions tend to attract more partners. Hence, the accumulation

of seeds with different properties in a protein region can be used as an

indicator that this region will likely interact with many partners.

3.7 | Comparison with other state-of-the art
interface predictors

We compared dynJET2 predictions to those of Multi-VORFFIP59 and

SPPIDER,58 two state-of-the-art machine learning methods. Multi-

VORFFIP integrates a broad set of residue descriptors including solvent

accessibility, energy terms, sequence conservation, crystallographic B-

factors and Voronoi Diagrams-derived contact density, in a two-steps

random forest ensemble classifier. It was applied to a subset of 252 pro-

tein chains from P-262 (see Materials and Methods). SPPIDER imple-

ments a consensus based classifier that combines 10 different neural

networks. It integrates various sequence- and structure-based features,

those contributing the most being based on solvent accessibility predic-

tion. It was applied on all proteins from P-262. The distributions of

F1-scores obtained for the union of the residues predicted by Multi-

VORFFIP and SPPIDER, respectively, are similar to that obtained for the

union of dynJET2 predictions (Figure 4A, compare the second, third and

fourth boxes). However, the performance of Multi-VORFFIP and

SPPIDER in detecting individual IRs is lower than that of dynJET2

(Figure 4B,C,D, compare darkblue and green boxplots). The average

F IGURE 6 Examples of predictions whose precision is higher on the IR compared to the IS. The query protein structure from P-262 is
displayed as a gray cartoon. The experimental and predicted interfaces are displayed as opaque surfaces: on top, the IS is colored in white and the
additional residues belonging to the IR are in black; at the bottom, the SCcons, SCnotLig, and SCdock patches predicted for 1avo_A, 1jjo_A, 2vp7_A
are in wheat, purple and red, respectively, and the best combination of patches predicted for 1ibc_A is in yellow. The precision increases from
79% to 91% for 1avo_A, from 76% to 92% for 1jjo_A, from 70% to 83% for 2vp7_A and from 75% to 84% for 1ibc_A [Color figure can be viewed
at wileyonlinelibrary.com]

F IGURE 7 Ability of the
patches' seeds to detect IRs and
estimate the number of partners.
(A) Cumulative distribution of
patches' seeds precision in
detecting IRs. Each x-value
corresponds to the proportion of
seeds with precision higher than
the y-value. Dotted segments
emphasize the points with y = 1
and y = 0.8. (B) Number of
partners for each IR vs number of

scoring schemes predicting a
seed in the IR
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F1-score is lower, the number of very good predictions is significantly

lower and the number of missed IRs is much larger (52 for Multi-

VORFFIP, 46 for SPPIDER, vs 21 for dynJET2). In particular, dynJET2 is

more sensitive than the two other tools (Figure 4D).

4 | DISCUSSION

Protein surfaces are used in multiple ways in cellular partners associa-

tion. A comprehensive and accurate description of protein surfaces

should account for multiple partners, molecular flexibility (from slight

rearrangements to conformational changes), disorder and post-

translational modifications. In this work, we have analyzed a pool of

proteins with different functions to address the two first aspects.

In line with a previous study,12 we found that the protein surface

involved in functional interactions is probably much bigger than antici-

pated. An accurate estimation of this surface is mandatory for the cor-

rect assessment of protein interface prediction methods. However,

such an estimation is still beyond reach as we do not know the exact

number of cellular partners a protein has and how these partners use

its surface in solution. To move forward, we have introduced the

notion of interacting region, which results from combining several

overlapping interacting sites detected in experimental complex struc-

tures. By taking into account all known homologs of our query pro-

teins and their crystallographic complexes, we could synthesize over

23 000 ISs into a relatively small number of IRs (1.4 per protein chain).

This procedure permitted shedding light on the variability of binding

modes and on the multiplicity of protein surface usage. We observed

that, within an IR, some residues are specific to the interaction with

one partner while others are shared between different partners, and

possibly between another copy of the same protein and other pro-

teins or peptides. The proportion of shared residues can be high, indi-

cating that IRs can serve as “binding platforms” for very different

partners. In the evaluation of dynJET2 predictions, we could appreci-

ate that a large amount of predicted patches better matched IRs, com-

pared to ISs. This result is expected from a good protein interface

prediction algorithm, as the notion of IR seems more biologically perti-

nent than that of IS in many cases, especially when the IR synthesizes

the variability inherent to structure ensembles of the same complex.

Our predictions were generated based on three sequence- and

structure-based properties of monomeric protein surfaces and also on

residue propensities inferred from docking calculations. The latter

reflect how energetically favorable the interatomic interactions

established between a protein and many other proteins are. The

energy was evaluated by a combination of Lennard-Jones and Cou-

lomb potentials. We have systematically assessed the contribution of

this physical description of protein interactions to the prediction of

interfaces. We have shown that in most cases, its predictive power is

lower than that of the sequence and structure-based descriptors.

Nevertheless, it brings complementary information, which helps to

improve the accuracy of the predictions and, in some cases, it even

unveils binding sites that could not be detected otherwise.

We have highlighted several cases where almost the entire protein

surface is involved in functional interactions. This finding challenges

the role of specificity in the evaluation of protein interface prediction

methods and rather put the emphasis on precision. We have demon-

strated the usefulness of the prediction patches' three-layer structure

by showing that the patches' seeds enabled precisely locating and dis-

criminating IRs at the protein surface. We have further shown that

the seeds could help determine whether a protein has a few or many

partners. Future work will aim at getting a more accurate estimation

of the number of partners. Moreover, with the help of future PPI data,

it seems achievable to associate functions to the partners binding on

different surface areas, described by different seeds on a region.

Although dynJET2 predictions match reasonably well experimen-

tally identified interacting regions, the match is not perfect. Given the

degree of complexity we have highlighted in the usage of a protein

surface, it seems legitimate to ask whether perfect match with experi-

mental interfaces is an attainable goal for protein interface predictions

algorithms that, like dynJET2, do not use any knowledge about the

query protein's partners. An accurate estimation of the maximum level

of agreement one could expect would be most valuable. Besides, even

without perfect match, dynJET2 predictions can be fully exploited to

guide experiments. For example, the above-mentioned ability of pat-

ches' seeds to precisely locate IRs has implications for the control and

modulation of existing protein-protein interactions. Mutating seed

residues should impact the binding of the associated partners.

Another way to go would be to design interactors that bind to the

predicted patches. Indeed, dynJET2 algorithm provides a mean to

delineate regions at the protein surface with sizes similar to those of

experimental interacting sites or regions and complying with a few

properties known to be relevant to protein-protein association. Thus,

in addition to detecting regions being actually used to interact, it also

reveals the potentiality of other regions to interact.
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