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Abstract

Background: In single cell DNA and RNA sequencing experiments, the number of cells to sequence must be
decided before running an experiment, and afterwards, it is necessary to decide whether sufficient cells were
sampled. These questions can be addressed by calculating the probability of sampling at least a defined number of
cells from each subpopulation (cell type or cancer clone).

Results: We developed an interactive web application called SCOPIT (Single-Cell One-sided Probability Interactive
Tool), which calculates the required probabilities using a multinomial distribution (www.navinlab.com/SCOPIT). In
addition, we created an R package called pmultinom for scripting these calculations.

Conclusions: Our tool for fast multinomial calculations provide a simple and intuitive procedure for prospectively
planning single-cell experiments or retrospectively evaluating if sufficient numbers of cells have been sequenced.
The web application can be accessed at navinlab.com/SCOPIT.
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Background

Biological tissues consist of a heterogeneous mixture
of cells, including a variety of cell types in normal tis-
sue or subclones in tumor tissue. This heterogeneity
can be resolved using single-cell DNA or RNA se-
quencing methods [1, 2]. Single-cell sequencing stud-
ies require sufficiently many cells to be sampled so
that normal cell types or cancer subclones of interest
(both hereafter referred to as “subpopulations”) are
represented in the sample. In most studies, however,
the total number of cells is determined arbitrarily by
the limits of an instrumentation run, or by budget
constraints, which may result in the sampling of too
few or too many cells. Here, we have developed an
interactive web tool, called SCOPIT (Single-Cell One-
sided Probability Interactive Tool), which provides as-
sistance for planning experiments, using calculations
from a multinomial distribution.
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Implementation
The first fact used for calculating multinomial prob-
abilities is the well-known equivalence between the
probability mass function of a multinomial distribu-
tion and conditional probabilities of a Poisson distri-
bution. This equivalence was first noted, to our
knowledge, by Fisher [3].

Theorem 1 Assume that

N~Multinomial(p, n)

where N and p are length k vectors, and Zi;l p;=1.
Also assume that

X;~Poisson(};)

for i=1 to k where A;=ap; for some a. Furthermore,
assume that X,...X; are independent. Then for any event

E
k
Xl' =n
i=1

The second fact is a relationship between condi-
tional Poisson probabilities, and an expression involv-
ing the sum of truncated Poisson random variables.

P(NeE) =P (XeE
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The following is a slight variant of a theorem due to
Levin [4].

Theorem 2 Let Xgai’bi) be a truncated Poisson random
variable, with probability mass function

P(Xl(.ahbi) = x) = P(X, = x|ﬂ,‘ < X,'Sbi)

where X; is a Poisson random variable with rate A; For
vectors a and b, let X" be the vector containing all of
these truncated Poisson random variables. Let E be the
set of vectors x such that a; < x;< b;. Then,

k
(aibi) __
k P(in = ”)
P(XEE

k P
ZX,‘—VI) :Hp(ﬂi<xi3bi) =l
i=1 i=1

Proof: By Bayes’ theorem,

I e
k

X P(ZXL =n

ZX,' = n> = P(XeE) —Z

XeE)
P(XeE 4 X
P( - n)
i=1

Substituting P(Zf;l Xgai’bi) = n) for P(Zle X; = n|Xe
E) and HleP(a,' < X;<b;) for P(X€E) yields the the-
orem. O

This theorem enables a fast calculation of the
multinomial probability. The rate-limiting step is cal-
culation of the probability distribution of ZleXf”"b").
Levin [4] provided two suggestions for computing this
probability distribution: the first by convolution of the

distributions of each Xf“i'b’), and the second using an
Edgeworth expansion of the probability distribution of

Zf:l Xga"’b’). We implemented both suggestions, which
are used for different values of n. For small values of
n, convolution is performed, using The Fastest Fou-
rier Transform In The West algorithm [5]. For large
values of n, an Edgeworth expansion is used. How-
ever, whereas Levin [4] used the first four terms in
the expansion, we continue adding terms until the
last term added is sufficiently small.

SCOPIT also computes Bayesian posterior probabil-
ity distributions for the multinomial probabilities. The
multinomial probabilities described above are a func-
tion of the population frequencies. When the true
population frequencies are not known, but observed
frequencies from a previous experiment are available,
SCOPIT computes a posterior distribution for the fre-
quencies. The prior used for the frequencies is
Dirichlet(0, ..., 0), following Jaynes [6] for an experi-
ment in which the possible outcomes are not known
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in advance. The resulting posterior is Dirichlet(ny, ...,
ny), where n; is the number of cells observed from
population i. Possible frequency vectors are randomly
drawn from this posterior using the R package
rBeta2009 [7, 8]. Then, the desired multinomial prob-
ability is calculated from each sampled frequency vec-
tor, resulting in samples from the posterior
distribution of possible multinomial probabilities. A
posterior distribution over the number of cells re-
quired is calculated in the same way.

Results

Estimating required sample size using the multinomial
distribution

We make the simplifying assumption that a successful
experiment requires sampling a sufficient number of
representatives from each subpopulation of interest in
the tissue. Defining ¢ as the required number of repre-
sentatives from each subpopulation, N; as the number of
cells of subpopulation i which are sampled, and k as the
number of subpopulations of interest, then the probabil-
ity of meeting this condition is

P(Ny2¢,Nj2c,...,Nr=c)

Assuming that a fixed number of cells are chosen at
random from the population, the distribution of Nj, ...,
N is multinomial. To calculate this probability, we cre-
ated an R implementation of a previously described algo-
rithm [4], described further in the Implementation
section. Our implementation is available for R scripting
in the package “pmultinom”, available from CRAN
(Table 1).

Our web tool, SCOPIT, provides an interactive inter-
face for multinomial calculations. SCOPIT provides both
prospective and retrospective calculations, described
below.

Table 1 Package functions for pmultinom. This table lists the R
functions for the package “pmultinom” for calculating
multinomial probabilities

Function Arguments Description

pmultinom lower, upper, size,

probs, method

Probability that a multinomial
random vector is elementwise
greater than “lower” and
elementwise less than or equal
to “upper”. “size” and “probs”
specify the parameters of the
multinomial distribution. Either
“lower” or “upper” may be left
unspecified.

invert.pmultinom lower, upper, probs,
target.prob, method

Returns the “size” parameter
required for pmultinom to
reach the target probability
“target.prob”.
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Prospective calculations
SCOPIT’s prospective mode is intended to estimate the
number of cells that must be sampled in a single-cell se-
quencing experiment. Ideally, the number of cells can be
decided by finding a number of cells, n", such that the
above multinomial probability is above a specified success
probability, p". Such a calculation would require specifying
the frequency of each subpopulation of cells in the tissue,
but the precise subpopulation frequencies are usually un-
known before performing the experiment.

The strategy implemented in the prospective mode is
to specify the frequency of the rarest subpopulations that
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the researcher intends to find, as well as k, the number
of populations with approximately this frequency. Both
numbers are relevant, since it is harder to find, for ex-
ample, 10 subpopulations with frequency 1%, than it is
to find only one.

The required number of cells is defined as follows:

n' = min{n|P(N12¢,Ny=>c,....Ny2c)zp*}
SCOPIT reports n” along with a plot of the prob-

ability as a function of the number of cells sequenced
(Fig. 1a).
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Fig. 1 SCOPIT interface. a. Interface for prospective calculations. Orange lines identify the number of cells required and the target probability of
detecting a specified number of each subpopulation. b. Interface for retrospective calculations. The number of cells which were sequenced is
entered, and is marked on the plot with a dotted green line. In this example, the orange line is far to the left of the dotted green line, suggesting
that more cells were sequenced than required to detect these three subpopulations. To quantify confidence in the results, a dotted black line is
plotted that shows the lower end of a 95% credible interval for the probability. The plot title states the upper end of a 95% credible interval for
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This mode requires only one subpopulation fre-
quency to be specified: the minimum frequency
among all subpopulations of interest. The SCOPIT
interface does enable the user to add additional sub-
populations with higher frequencies, but the user will
find that these additional subpopulations have
negligible effects on #", unless they are very close in
frequency to the rarest subpopulations. This
phenomenon justifies specifying only the lowest
frequency.

Retrospective calculations

After an experiment has been performed, estimates of
the subpopulation frequencies are available as input
parameters. It is then possible to use SCOPIT in
retrospective mode to estimate how many cells would
be required, in a hypothetical replicate experiment, to
detect all k observed subpopulations, with ¢ represen-
tatives from each. In retrospective mode, the informa-
tion required from the user consists of the total
number of cells sequenced in a previous experiment,
and the number of cells observed from each subpopu-
lation. With this information, SCOPIT will calculate,
for each number of cells n, the probability P(N; >,
N> >¢, ..., Ny = ¢), assuming the true subpopulation fre-
quencies are equal to the empirically observed ones.
For example, in Fig. 1b, we use single cell DNA data
from a triple-negative breast tumor [9] in which the
authors sequenced N =84 single cells and detected
two major clonal subpopulations. Using SCOPIT we
estimated that only 19 cells were required to detect
the two subpopulations with a 0.95 probability, sug-
gesting that this study sequenced about 4 times the
number of cells that were necessary.

Because the retrospective analysis involves uncer-
tainty about the true frequencies of each population,
SCOPIT provides measures of uncertainty using
Bayesian credible intervals at a 95% confidence level
For the number of cells required, SCOPIT reports the
upper end of a one-sided credible interval, which is
interpretable as the highest number of cells consistent
with the data. For the probability of obtaining a suffi-
cient number of cells from each population, SCOPIT
plots the lower end of a one-sided credible interval,
interpretable as the lowest probability consistent with
the data. In the example described above, the credible
interval boundaries were close to the estimated
values, indicating that the estimated values were
strongly supported by the data provided.

The retrospective tool is useful for planning a second
experiment, assuming that all the subpopulations of
interest were observed in the first experiment, and that
the underlying subpopulation frequencies are consistent
in both experiments. Although the exact subpopulation
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frequencies are not known, overconfident conclusions
on the basis of limited information can be avoided using
the credible intervals provided by the retrospective tool.

Comparison with independence approximation

Another previous software tool for estimating single cell
sample sizes is an unpublished web application (https://
satijalab.org/howmanycells). The previous tool is based
upon two simplifying assumptions: that the subpopula-
tions have equal frequencies, and that the observed fre-
quencies of each subpopulation are statistically
independent. Under these assumptions:

P(N12¢,Ny=c,...,Ny=c) = P(N=c)F

where N represents the number of cells sampled from an
arbitrary subpopulation. To compare the independence
approximation method to SCOPIT, the required number
of cells was calculated with and without the independence
assumption (Table 2). The calculations performed under
the independence assumption underestimated the re-
quired number of cells by at most 1 cell and were highly
similar. These data suggests that using independence ap-
proximation is an alternative approach that can also be
used for estimating single cell sample sizes.

Discussion

SCOPIT’s function is to calculate the number of cells
that must be sampled in a single-cell sequencing experi-
ment, on the basis of input subpopulation frequencies,
and under the assumption of random sampling. To
achieve this goal, we implemented a fast multinomial
probability calculation approach that is provided as open

Table 2 Comparison of Independent Approximation and Exact

Calculations.

Subpopulation  # of subpopulations  Cells required  Cells required
frequency (exact) (approx.)
0.1 6 186 186

0.2 3 85 85

0.3 2 53 53

0.1 8 191 191

0.2 4 87 87

04 2 39 39

0.1 9 193 193

03 3 55 55

0.1 10 195 194

0.2 5 89 89

0.5 2 30 30

The number of cells required to achieve a 95% certainty of sampling
sufficiently many cells from each subpopulation. The number of cells was
calculated in two ways: by an exact calculation, and by an approximate
calculation in which the counts of different subpopulations were assumed to
be independent
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access software through the R package ‘pmultinom’. This
method enables calculations at speeds sufficient for
interactive plotting. The retrospective sample size calcu-
lation performed by SCOPIT is distinct from estimation
of the number of undiscovered subpopulations [10] or
the number likely to be discovered in further sampling
[11], and can instead be interpreted as the required sam-
ple size of a replicate experiment which would detect
the same subpopulations as the original experiment.

To determine the number of cells required, SCOPIT
calculates the probability of sampling sufficiently many
representatives of each subpopulation. The probability
calculated by SCOPIT is relevant to a wide variety of
analyses and technologies, but specific technologies
introduce additional experimental design considerations.
For example, in single-cell differential expression ana-
lysis, it is important not only to sample sufficiently
many cells, but also to sample sufficiently many tran-
scripts from each cell. Other tools have been devel-
oped to calculate the probability of detecting a
specific transcript [12], to calculate the power to de-
tect differential expression [13], and to determine the
number of cells and reads required to find accurate
low-dimensional representations of single-cell RNA
sequencing data [14]. Accommodating the unique as-
pects of other technologies and analyses is an import-
ant topic for future research in the design of single-
cell sequencing experiments.

A previous tool is available for calculating the number
of cells to sequence (https://satijalab.org/howmanycells)
and a direct comparison to SCOPIT shows that it gener-
ates results that are highly similar to SCOPIT, despite
using independent approximations instead of exact
probabilities. However SCOPIT offers several additional
features, including the ability to enter multiple cell type
frequencies, and interfaces to perform both prospective
estimates of the sample sizes for planning experiments
and retrospective calculations which include measures of
confidence in the result.

While SCOPIT can be used to decide how many cells
to sample from a tissue, another important question is
how many spatial regions to sample to capture the diver-
sity of the population. In the case of sampling from
tumor tissue, the question of how widely to sample can
be addressed by simulating the generation of intratumor
heterogeneity [15], followed by simulating sampling.
However, simpler statistical calculations which avoid de-
tailed simulations are currently not available and repre-
sent an important future direction.

Conclusions

This study reports a useful tool for estimating sample
size calculations for planning single cell sequencing ex-
periments prospectively and retrospectively. We expect
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that SCOPIT will have applications in many diverse
areas of biology, and for planning experiments on a var-
iety of single cell technologies (scDNA, scRNA and
scATAC-seq).

Availability and requirements
Project name: SCOPIT
Project homepage: https://github.com/navinlabcode/
scopit
Web interface: http://www.navinlab.com/SCOPIT
Operating system: Platform independent
Programming language: R
License: AGPL v3

Abbreviations
SCOPIT: Single-cell one-sided probability interactive tool
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