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Abstract

Ribosomopathies are a diverse subset of diseases caused by reduced expression of or mutations in 

factors necessary for making ribosomes, the protein translation machinery in the cell. Despite a 

ubiquitous need for ribosomes in all cell types, ribosomopathies manifest with tissue specific 

defects and sometimes increased cancer susceptibility, with few treatments that target the 

underlying cause. Here, by highlighting new research in the field, we review current hypotheses 

for the basis of this tissue specificity. Based on new work, we broaden our understanding of the 

role of ribosome biogenesis in diverse tissue types throughout embryonic development. We also 

pose the question of whether previously described human diseases, like aging, can be at least 

partially attributed to defects in making ribosomes.
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Human diseases of making ribosomes, the ribosomopathies

Ribosomopathies are a diverse subset of largely developmental disorders that result from 

aberrant ribosome production. Ribosome synthesis is an essential and energy intensive 

cellular process that requires coordination of all three RNA polymerases, approximately 200 

accessory factors and 80 ribosomal proteins (r-proteins) to process and assemble the mature 

ribosomal RNAs (rRNAs) [1]. In humans, the bulk of ribosome biogenesis initiates in the 

nucleolus with transcription of the 47S pre-rRNA (pre-rRNA) from ribosomal DNA (rDNA) 

loci by RNA polymerase I (RNAPI). Following transcription, the pre-rRNA is processed by 

a series of endo- and exo- nucleolytic steps to yield three of the four mature rRNAs (18S, 
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5.8S, and 28S) [2]. The rRNA is also modified by box C/D and H/ACA small nucleolar 

ribonucleoproteins (snoRNPs), and assembled with r-proteins and the fourth rRNA (5S), 

transcribed by RNA polymerase III from an extranucleolar locus [2]. Together, these steps 

yield the mature small subunit (SSU; 40S) and large subunit (LSU; 60S) of the ribosome that 

come together in the cytoplasm to translate messenger RNA (mRNA) into proteins. At the 

time of the first discovery that difficulties in making ribosomes could lead to the bone 

marrow failure syndrome, Diamond Blackfan Anemia (DBA [3]), it was unclear how a 

defect in the ubiquitous process of making ribosomes could lead to a tissue-specific disorder. 

Since then, new ribosomopathies have been identified, each with tissue-specific 

manifestations.

There have been several recent comprehensive reviews on ribosomopathies [4–8], so here we 

discuss only the new and controversial aspects of their pathogenesis. First, we highlight new 

ribosomopathies based on the step in which ribosome biogenesis is impacted. Second, we 

discuss the tissue-specific manifestations of the ribosomopathies and present one hypothesis 

defining how defects in the global process of making ribosomes may only affect some 

tissues. Finally, we pose key open questions and discuss current controversies surrounding 

ribosomopathies, such as: (1) Do specialized ribosomes influence the pathogenesis of 

ribosomopathies? (2) How can defects in cell growth cause cancer? (3) Are aging and 

neurodegenerative diseases also ribosomopathies? While there is currently no single 

unifying principle that explains the pathogenesis of all of the known ribosomopathies, 

substantial progress has been made in recognizing the source of these diseases and in 

gaining mechanistic insights into their pathogenesis. The hope is that in the future we may 

see the development of novel therapeutic options.

Highlighting the molecular pathology of ribosomopathies

The diversity of clinical presentations of ribosomopathies makes them difficult to unify. 

While all ribosomopathies share defects in ribosome production, not all are caused by 

defects at the same step in the process. Here, we classify ribosomopathies by the step at 

which ribosome production is impacted. Based on our current knowledge, there are 

ribosomopathies that result from defects in (1) pre-rRNA transcription and modification, (2) 

pre-rRNA processing, and (3) ribosome assembly (Fig 1). Highlights from the last five years 

will be discussed.

Pre-rRNA transcription and modification

Multiple ribosomopathies are caused by proteins implicated in pre-rRNA transcription and 

modification, including the well-studied mandibulofacial dysostosis Treacher-Collins 

Syndrome (TCS). TCS is caused by mutations in treacle (TCOF1) and the RNAPI subunits, 

POLR1C and POLR1D [9–12]. In depletion and knock-out models of TCOF1, a nearly 50% 

reduction in transcription of the 47S transcript was observed, suggesting a subsequent 

reduction in overall ribosome numbers [13]. TCOF1 also interacts with a core component of 

the box C/D snoRNP, NOP56, and studies in animal models reveal an effect of TCOF1 on 

2’-O-methylation of the pre-18S rRNA [14].
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In addition to TCS, two newly described ribosomopathies also result from defects in RNAPI 

transcription of the rDNA. First, compound heterozygous mutations in the TAF1A RNAPI-

associated factor were reported in two sisters that presented with end-stage dilated 

cardiomyopathy. The cardiac phenotype was recapitulated in a zebrafish taf1a knockout 

model [15]. However, biochemical follow-up was not performed [15]. Second, mutations in 

the largest RNAPI subunit, POLR1A, cause acrofacial dysostosis, Cincinnati type, resulting 

in craniofacial abnormalities in both humans and zebrafish [16]. Here, levels of the pre-

rRNA were tested by qPCR, which revealed a significant reduction in the pre-rRNA in 

polr1a mutants, again suggesting an associated reduction in overall ribosome numbers and a 

role for ribosome biogenesis in the pathogenesis of this disease.

Pre-rRNA processing

Ribosomopathies can also arise from defects in processing of the 47S pre-rRNA into the 

mature rRNAs. Such disorders include North American Indian childhood cirrhosis caused by 

a mutation in the SSU processome component Cirhin (UTP4 [17, 18]) and cartilage hair 

hypoplasia (CHH) caused by mutations in RMRP, which encodes the RNA component of the 

MRP endoribonuclease complex [19]. In addition, a new disorder caused by mutations in the 

U8 snoRNA has recently been described. While typically involved in rRNA modification, a 

small number of snoRNPs are required for pre-rRNA cleavage events. Among these is the 

U8 snoRNP, required for maturation of the 5.8S and 28S LSU rRNAs, likely by guiding 

proper pre-rRNA folding and recruiting the necessary cleavage factors [20, 21]. Mutations in 

the U8 snoRNA (transcribed from the SNORD118 locus) were originally described in 40 

patients who presented with leukoencephalopathy with calcifications and cysts (LCC or 

Labrune Syndrome; [22]) in the brain. Since then, there have been several reports of 

additional patients with LCC who have mutations in the U8 snoRNA [23–26], providing 

additional support that mutations in U8 are the root cause of LCC pathogenesis. 

Biochemical experiments support an underlying defect in the function of the mutated U8 

snoRNAs [22], but these mutations have yet to be introduced into an animal model for direct 

verification of their centrality.

Ribosome assembly

Finally, there are also several ribosomopathies that result from mutations in large and small 

subunit r-proteins and assembly factors that impact the number or proportion of functional 

ribosomes. Examples of these include Diamond Blackfan anemia (DBA) and Shwachman 

Diamond syndrome (SDS). In DBA, mutations in one of 18 r-proteins that result in 

haploinsufficiency have been implicated in causing the disease. While ribosome composition 

remains unaffected, overall ribosome levels are reduced [27]. In SDS, on the other hand, 

disease is caused by mutations in SBDS in a majority of patients, which leads to a failure in 

the cytoplasmic maturation of the LSU and prevents LSU and SSU joining, reducing the 

overall number of translationally competent ribosomes [4].

Mutations in the r-protein, RPL10 (uL16), were first discovered to be associated with autism 

[28, 29]. More recently, however, mutations in RPL10 (K78E) have also been shown to 

cause X-linked microcephaly, intellectual disability, and seizures [30, 31]. When the latter 

was modeled in zebrafish, Rpl10 depletion caused a reduction in head size and increased 
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apoptosis as assayed by TUNEL staining - defects that could be rescued by expression of the 

human mRNA and autism-associated mutations, but not with mRNA that carried the K78E 

mutation, highlighting the important of studying these ortholgous mutations in animal 

models [30].

Additionally, two autosomal dominant ribosomopathies were recently described that are 

likely caused by r-protein haploinsufficiency. Two unrelated children presented with 

overlapping symptomatology including brachycephaly, trichomegaly, and development delay 

(BTDD). Whole exome sequencing revealed amino acid changes in RPS23 (uS12; [32]). 

Each child bears a variant of RPS23 (R67K or F120I) in one RPS23 allele. When tested for 

function in Saccharomyces cerevisiae, the orthologous R67K mutation resulted in slower 

growth, smaller colony size, and decreased translational fidelity, indicating that the mutation 

is deleterious. Studies in patient fibroblasts also revealed reduced translational fidelity. 

Likewise, mutations in RPSA (uS2) cause isolated congenital asplenia (ICA; [33, 34]). 

Knockdown of Rpsa in Xenopus tropicalis revealed impaired spleen development and pre-

rRNA processing defects, and the ICA-causing mutation was unable to rescue either defect 

[35]. Interestingly, however, the heterozygous null mouse (Rpsa +/−) did not demonstrate 

ICA [33]. The plethora of these newly identified ribosomopathies, with more likely to come, 

will continue to spark insight into the role of ribosome biogenesis in embryonic 

development and disease.

It is important to note, however, that while most of the ribosomopathies discussed here may 

be traced to a defect in a particular aspect of ribosome biogenesis, the disease process may 

also include additional defective steps in making ribosomes. Furthermore, it is possible that 

the implicated ribosome biogenesis factors may also influence extraribosomal cellular 

functions [36, 37]. The potential contributions of these alternative functions to disease 

pathogenesis remain to be elucidated. Thus, to define ribosomopathies based solely on the 

step at which ribosome biogenesis is affected, while convenient for this discussion, may not 

fully encapsulate the complexity of ribosomopathies as we currently understand them. 

Further studies, particularly in animal models, will be necessary to gain a more 

comprehensive understanding of how failure in ribosome production contributes to the 

natural history of each condition.

Hints at the basis for the tissue specificity of ribosomopathies

The ribosomopathies manifest as diverse disorders, each with a tissue-specific clinical 

presentation. Despite the requirement for ribosome function in all cell types, disruptions in 

the process of making ribosomes often affect the development of certain tissues. Here we 

attempt to synthesize the expansive list of affected tissues by dividing them into 

ribosomopathies that affect the tissues derived from the neural crest and ribosomopathies 

that affect non-neural crest derived tissues. The mechanisms dictating how a specific 

mutation in a protein required for this ubiquitous process can affect only particular tissues is 

an active area of investigation.
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Ribosomopathies derived from hindered development of neural crest cells

It has been known for some time that there is a strong link between neural crest development 

and ribosome biogenesis [38]. Neural crest cells in the developing embryo are multipotent 

migratory cells that differentiate into numerous cell and tissue types including the teeth, 

peripheral nervous system and glia, heart, pigment cells of the skin, and head skeletal 

structures. Multiple ribosomopathies present with defective tissues derived from neural crest 

cells during embryogenesis (Fig 2). For example, heart defects can be found in multiple 

ribosomopathies including DBA [39], the RPL10 ribosomopathy [31], SDS ([40]), and non-

ischemic dilated cardiomyopathy caused by TAF1A mutations [15]. Also, skin and 

pigmentation defects can be found in aplasia cutis congenita [41], dyskeratosis congenita 

[42–45], DBA (mouse model) [46], ANE syndrome [47], a ribosomopathy arising from 

mutations in DNAJC21 similar to SDS [48, 49], and the uS12 ribosomopathy [32].

The best studied neural crest-derived ribosomopathies affect development of the face. 

Craniofacial development is affected in a number of ribosomopathies, including TCS 

(reviewed in [50], DBA [51], and acrofacial dysostosis, Cincinnati type [16] (Table 1). 

Further linking development of the face and ribosomopathies, several ribosome biogenesis 

factors that have not been associated with human disease cause craniofacial defects in model 

organisms (Table 1). Additionally, ear development is influenced by neural crest cells [52], 

and multiple ribosomopathies manifest in hearing loss. Hearing loss is usually seen in 

ribosomopathies that affect development of the face and head as a whole, such as TCS [53], 

the RPS23 ribosomopathy [32], the RPS10 ribosomopathy [30], DBA [54], a ribosomopathy 

resulting from mutations in DNAJC21 similar to SDS [48], and acrofacial dysostosis, 

Cincinnati type [16]. Therefore, aberrant ribosome biogenesis often results in defects 

manifested through neural crest-derived tissues.

P53-mediated nucleolar stress response

Some, but not all, of the disease manifestations of ribosomopathies have been attributed to 

the increased sensitivity of the affected neural crest progenitor cells to the stabilization of the 

pro-apoptotic factor p53. This occurs in response to dysfunctional ribosome biogenesis 

during a window of development [7]. Supporting this idea, the clinical manifestations of 

several ribosomopathies can be rescued by co-depletion of p53 [55–59]. However, not all 

phenotypes can be rescued this way, suggesting that not all of the signs and symptoms 

associated with ribosomopathies are mediated by p53 [4, 56, 60–64]. Additionally, the 

examination of other stress response pathways in various affected and unaffected tissues 

have yet to be fully explored [65]. In the future, it would be pertinent to examine the 

sensitivity of various cell types to p53 throughout development in order to untangle some of 

the questions surrounding the cell type specificity of ribosomopathies.

Ribosomopathies derived from hindered development of non-neural crest cells

Some ribosomopathies affect tissues that are not derived from the neural crest (Fig 2). For 

example, bone marrow failure and anemia are present in SDS (also characterized by 

neutropenia [66]), DBA [51], 5q- syndrome [67], dyskeratosis congenita [68, 69], and a 

newly described ribosomopathy arising from mutations in DNAJC21 [49]. Additionally, hair 

development is affected in ANE syndrome [47], CHH [19], the RPS23 ribosomopathy [32], 
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and a hair loss disorder (hereditary hypotrichosis simplex) caused by mutations in RPL21 
(eL21) [70]. As both the bone marrow and hair develop from continuously dividing cells, it 

is possible that these tissues would have an increased reliance on making ribosomes for their 

growth. However, neither North American Indian childhood cirrhosis, which affects liver 

function [71], nor ICA, which affects spleen development [33], fit this model. Also, 

ribosomopathies often present with neurodevelopmental defects like microcephaly and 

intellectual disability [22, 25, 30–32, 47, 72]. Rescue experiments via co-knockout of p53 in 

animal models have succeeded for some phenotypes in a subset of these disorders, 

suggesting that some non-neural crest derived cell types also have an increased susceptibility 

to p53 [61–64]. Additional studies of animal models of these developmental disorders will 

therefore be needed to parse out the mechanisms of these tissue-specific clinical 

manifestations.

Do specialized ribosomes influence the pathogenesis of ribosomopathies?

One explanation for how ribosomopathies can manifest in tissue-specific defects is that 

different tissues are comprised of ribosomes with varied compositions that endow them with 

“specialized” functions in translating certain mRNAs. The specialized ribosome hypothesis 

is as old as the discovery of ribosomes themselves; Francis Crick postulated that each 

individual gene had a single ribosome responsible for its translation (often referred to as the 

one gene - one ribosome – one protein hypothesis) [73]. Ribosome heterogeneity would be 

predicted to occur through a multitude of mechanisms including through changes in rRNA 

sequence, core r-protein composition, rRNA or protein modifications, or binding of 

accessory proteins (Fig 3; reviewed in [74]). These subtle changes could thus lead to the 

altered translation of mRNAs required for the proper development of some cell types but not 

others.

Despite enthusiasm for finding specialized ribosomes, their existence remains controversial. 

This is because a high standard must be applied to demonstrate not only that there is 

variation in ribosome composition but also that such variation results in functional 

differences in protein synthesis. Evidence supporting the specialized ribosome hypothesis 

has been thoroughly reviewed elsewhere [74–76], so here we highlight a few of the most 

controversial and recent developments in the field.

Ribosomal proteins as the basis for ribosome heterogeneity

Since the ribosome is made of rRNAs and r-proteins, one place to search for specialization is 

in the r-protein composition of the ribosomes themselves. A seminal work in support of the 

specialized ribosome hypothesis comes from investigating the role of RPL38 (eL38) in 

murine development [77, 78]. It has previously been shown that the skeletal patterning 

defects observed in tail-short (Ts) mice are due to mutations in RPL38 that affect its role in 

the translation of certain Hox mRNAs [77, 78]. However, ribosomes lacking RPL38 in 

different tissues were not directly measured [77, 78]. Another recent example in support of 

specialized ribosomes examined the role of RPL10A (uL1) in binding various mRNAs [79]. 

While the authors did find that ribosomes containing RPL10A bound a different set of 

mRNAs that those without [79], these studies utilized tagged r-proteins, which can affect 
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their function (reviewed in [74]). Especially notable for these experiments is that control 

experiments employ a different tag altogether (HA-RPL22/eL22) than the experimental 

group (FLAG-RPL10A) [79]. Finally, recent work in yeast has shown that differential 

mRNA translation occurs in ribosomes with and without Rps26 (eS26), an essential r-protein 

mutated in DBA [80]. Because Rps26 is essential, it is puzzling that ribosomes could be 

made at all when Rps26 was depleted. Perhaps its essential role is not in ribosome assembly 

but only in ribosome function. Clearly, ribosomes appear to be more heterogeneous than was 

previously thought.

That there are specialized ribosomes is both an old and new concept brought recently to 

attention by new technological developments. While we embrace these studies that have 

been on the vanguard of discovery, we caution that finding specialized ribosomes requires 

additional supporting evidence with special care taken to have stringent controls. One 

problem with examining a heterogenous ribosome population is that it may represent failed 

synthesis intermediates or defective ribosomes on their way to being degraded. Current 

methods aggregate results because they rely on pools of cells (e.g. sucrose gradient 

sedimentation) and therefore have limited resolution. Additional orthogonal approaches such 

as single-cell mass spectrometry and cryo-electron microscopy may help to validate recent 

discoveries. Nevertheless, to answer the question of whether there are specialized ribosomes, 

it is sure to be a multi-pronged approach that combines these new techniques with the old.

Alternative view: the ribosome concentration hypothesis

A second hypothesis put forth to explain the tissue-specificity of ribosomopathies is the 

ribosome concentration hypothesis (Fig 3). Like the specialized ribosome hypothesis, it was 

originally proposed several years ago by Lodish [81] but was recently re-popularized by 

Mills and Green [6]. The ribosome concentration hypothesis postulates that the number of 

available cytoplasmic ribosomes per volume results in mRNAs that are translated differently 

based on structural features such as 5’ untranslated region (UTR) length or structural 

elements, open reading frame (ORF) length, and Kozak context. Linking back to the 

problem of tissue specificity of ribosomopathies, the expression of specific proteins may be 

sensitive to decreased ribosome concentration in that particular cell type.

While the ribosome concentration hypothesis might at first glance seem more 

straightforward than the specialized ribosome hypothesis, experimental evidence supporting 

this theory has also been hard to generate. It has been difficult to directly measure ribosome 

concentration on a per cell basis, with most studies only inferring reduced ribosome number.

The most well-studied examples in support of the ribosome concentration hypothesis have 

focused on the protein GATA1, a lineage-determining hematopoietic transcription factor that 

is implicated in the pathogenesis of DBA. Two recent papers with overlapping groups of 

authors argue that decreased ribosome concentration leads to reductions in GATA1 protein 

levels, resulting in the erythropoiesis-specific defects observed in patients with DBA [27, 

82]. However, the mechanistic explanation for how reductions in GATA1 protein levels 

occur is inconsistent between the two studies, making it difficult to reconcile the underlying 

mechanism. In the first, it is because GATA1 has a highly structured, long 5’ UTR; while in 

the second, it is because GATA1 has a short, unstructured 5’ UTR [27, 82]. This discrepancy 
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may partially arise from methodological differences: older studies utilized the technique 

rapid amplification of 5’ cDNA ends (5’ RACE) [82] while more recent studies utilize cape 

analysis gene expression (CAGE) [27] to define the GATA1 5’ UTR. The GATA1 NCBI 

reference sequence, NM_002049.3, reveals a 5’ UTR of 91 nt, which supports a shorter 5’ 

UTR for GATA1 than the average length of 210.2 nt for human 5’ UTRs [83]. Additional 

new ribosome profiling results in yeast support the idea that more efficiently translated 

mRNAs are more affected by reduced ribosome concentration [84]. In contrast, the original 

mathematical modeling by Lodish [81] and echoed by more recent reviews [6, 74] 

postulated that poorly translated mRNAs (like GATA1 if it had a highly structured, long 5’ 

UTR) would be dependent on the cell having a high available ribosome concentration while 

well-translated mRNAs would not have such dependency. These apparently contradictory 

results emphasize the degree of our current lack of understanding of how the structural 

elements of mRNAs impact their translation. In addition, examination of the molecular basis 

of ribosomopathies should continue to probe the effects of compensatory processes such as 

ribosome recycling [6].

It is important to note that these two hypotheses - specialized ribosome and ribosome 

concentration - are not mutually exclusive and that both may contribute to the clinical 

manifestations observed in patients with ribosomopathies. In addition, the role of p53 

stabilization in tissue specificity cannot be overlooked. It is possible that either or both of the 

proposed mechanisms could result in reduced translation of a protein that leads to p53 

stabilization and apoptosis, ultimately causing the tissue-specific defects. In the end, it is 

likely that no single mechanism will be able to fully explain all of the signs and symptoms 

of these disorders, which are complicated not only by their tissue specificity, but also by 

their developmental timing.

How can defects in cell growth cause cancer?

Several ribosomopathies, disorders of hypoproliferation, often coincide with a predisposition 

to cancer, a disease of hyperproliferation. This juxtaposition is referred to as Dameshek’s 

riddle [85]. Although cancer predisposition has not been studied for every ribosomopathy, 

this paradox has been studied in the context of SDS, caused by mutations in SBDS [86, 87]. 

The neutropenia and bone marrow abnormalities characteristic of SDS often progress to 

myelodysplastic syndromes (MDS) and acute myelogenous leukemia (AML) [88, 89]. 

Reinforcing this link to cancer, SBDS physically interacts with the r-protein uL16, mutated 

in pediatric T-cell leukemia (T-ALL, [90, 91]). Perhaps the hyperproliferation results as a 

consequence of cellular compensation for the dysfunctional ribosome biogenesis. 

Supporting this, some cells compensate for SBDS mutations by deleting the EIF6 gene 

(del(20)q) to upregulate protein synthesis [92, 93]. This has been associated with a lower 

risk of developing MDS and AML, although more longitudinal studies with larger patient 

cohorts are needed to confirm this [94–96]. In contrast, SDS patients often also acquire p53 

mutations [97]. It is possible that cells sense disruptions in making ribosomes by 

upregulating p53 levels, with cancer resulting when the cells acquire additional mutations to 

bypass this effect. Further insight into Dameshek’s riddle may be found in studies showing 

that niche-derived inflammatory signaling may facilitate or even drive malignant progression 

in MDS in an effort to compensate for perturbations in hematopoietic stem cells [5, 98, 99]. 
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In the future, we hope to be able to evaluate the natural progression of all of the 

compensatory mutations in patients with diverse ribosomopathies.

Are aging and neurodegenerative diseases also ribosomopathies?

Recent studies on premature aging diseases, models of longevity, and neurodegeneration 

continue to support a connection between aging and nucleolar morphology and activity. This 

connection is consistent with the longstanding proposal that rDNA instability underlies 

aging phenotypes [100–104]. Hutchinson-Gilford progeria syndrome (HGPS), caused by 

mutated lamin A/C, results in increased nucleolar function through increased rDNA 

transcription and translation [105]. In contrast, both Werner syndrome (WS) and Cockayne 

syndrome (CS), canonical disorders of DNA repair [106, 107], result in decreased nucleolar 

activity through reduced rDNA transcription [108]. Furthermore, WS has been shown to 

disrupt nuclear pores and lamin B1 [109], and lamin B2 has been shown to regulate 

nucleolar morphology and function [110], suggesting a broader link among the nuclear 

membrane, the nucleolus, and aging.

Intriguingly, neurodegenerative diseases share similar nucleolar phenotypes to WS and CS. 

While this has been reviewed in greater detail previously [111–116], in brief, observations in 

Alzheimer’s disease (AD) support reduced nucleolar size, activity and translation [117, 118]. 

Likewise, in Parkinson’s disease (PD) nucleolar disruption has been observed [114], and 

when the RNAPI transcription factor RRN3 (TIF-1A) is depleted specifically in adult mouse 

dopaminergic neurons, p53-dependent apoptosis and PD-like symptoms are observed, 

supporting a link between nucleolar stress and neurodegeneration [119]. However, recent 

work studying children heterozygous for a gain-of-function mutation in the RNAPI 

transcription factor UBTF (E210K) also have neurodegeneration suggesting that our 

understanding of the association between nucleolar function and neurodegeneration is still 

incomplete [120].

Finally, recently it has been discerned that small nucleolar size predicts a longer lifespan not 

only in C. elegans, but also in fly, mouse, and humans [121]. Despite contrasting with the 

above observations on neurodegeneration, reduced nucleolar size and activity as a hallmark 

of longevity is consistent with the longstanding research on mTOR (mechanistic/mammalian 

target of rapamycin) and the use of inhibitors to treat age-related diseases [122]. Further 

confounding is a new study that identified increased CpG methylation in the rDNA of aged 

mice (a pattern conserved to canids and human models) [123]. This would suggest decreased 

rDNA transcription and greater genome stability in aged individuals, which is contrary to 

much of the existing literature. Perhaps increased methylation is a compensatory mechanism 

to counteract cellular processes that are no longer maintaining genome stability. 

Furthermore, defects in ribosome recycling have also recently been implicated in aging and 

neurodegeneration [124, 125]. Thus, additional studies are required to gain a more 

comprehensive understanding of the role of ribosome biogenesis in aging and 

neurodegenerative disease.
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Concluding remarks and future perspectives

Can we classify old diseases as new ribosomopathies (see outstanding questions)? As we 

continue to understand more about embryonic development and its relationship to making 

ribosomes, we will be compelled to re-examine old disorders for new links to ribosome 

biogenesis. Along these lines, recent research indicates that the microcephaly, small 

forehead, elongated face, clinodactyly of the fifth fingers, and intellectual disability seen in 

the cohesinopathy Warsaw Breakage syndrome (WABS) may be due in part to a newfound 

role for the protein DDX11 in RNAPI transcription [126]. Two proteins in another bone 

marrow failure syndrome, Fanconi Anemia (FA), have recently been found to have a role 

outside of DNA repair in RNAPI transcription, suggesting that there may be a dual 

pathogenesis for FA [127, 128]. In addition, recent results have shown differential 

expression of r-proteins in response to ethanol exposure, highlighting a potential link 

between the craniofacial defects observed in fetal alcohol syndrome and making ribosomes 

[129]. Discovery-based approaches for factors that influence human ribosome biogenesis 

[130–134] may be critical in identifying these new links. Moving forward, by defining the 

mechanisms underlying the pathogenesis of ribosomopathies, we hope to eventually be able 

to alleviate the human suffering that they cause.
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Figure 1. 
How ribosomopathies impact ribosome production. Ribosomopathies can affect: (top left) 

pre-ribosomal RNA (pre-rRNA) transcription and modification including pseudouridylations 

(ψ) and 2’-O-methylations (CH3), (top right) pre-rRNA processing, and (bottom) ribosome 

assembly. Proteins named in each section are highlighted in this review, including RNAPI 

subunits (grey), RNAPI-associated factors (green), small subunit (SSU) components and 

factors (purple), and large subunit (LSU) components and factors (red).
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Figure 2. 
The clinical manifestations of ribosomopathies. The diverse pathologies associated with 

ribosomopathies are depicted. These pathologies arise from neural crest cell (red) and non-

neural crest cell lineages (green).

Farley-Barnes et al. Page 18

Trends Genet. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Two hypotheses for the tissue-specific effects of ribosomopathies. (Left) The specialized 

ribosome hypothesis states that modification or changes in rRNA sequence, core r-protein 

composition, or accessory proteins in either the large subunit (LSU) or small subunit (SSU) 

of the ribosome can result in heterogeneous ribosomes with differential translation abilities 

in diverse tissues. (Right) The ribosome concentration hypothesis states that decreased 

ribosome concentration results in decreased protein levels for specific mRNAs. At low 

ribosome concentrations, the original Lodish model [81] proposed that mRNAs with long, 

highly structured 5’ UTRs would be most affected by changes in ribosome concentration 

(above), whereas new data by Khajuria et al. [27] and Cheng et al. [84] propose the opposite 

(below).
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Table 1.

Genes with roles in both ribosome biogenesis and craniofacial development.

Gene Name Function in ribosome 
biogenesis

Defects in craniofacial development Name of human 
disease

Reference

DDX11 rDNA transcription Long faces, narrow eyes, low mouths Warsaw Breakage 
syndrome (WABS)

[126, 135, 136]

DDX21 rDNA binding, 
transcription of r-
proteins

Hypoplasia of mandible/zygomatic 
complex

n/a but may be linked 
to Treacher Collins 
syndrome

[57]

ESF1 Pre-rRNA processing Jaw malformations, microcephaly n/a [137]

NOL11 rDNA transcription and 
pre-rRNA processing

Microcephaly, reduced size of 
pharyngeal cartilages

n/a [58]

PAK1IP1 Pre-rRNA processing Midline facial cleft n/a [138, 139]

POLR1A rDNA transcription Range of mandibulofacial dystoses 
including downslanting palpebral 
fissures, eyelid clefts, and 
micrognathia

acrofacial dystosis, 
Cincinnati type

[16]

RPL38/eL38 Large subunit ribosomal 
protein

midline facial cleft, cleft palate n/a [78]

RPS19/eS19, RPL5/
uL18, RPL11/uL5, 
RPL35a/eL33, RPS26/
eS26, RPS24/eS24, 
RPS17/eS17, RPS7/eS7, 
RPS10/eS10, RPL19/
eL19, RPL26/uL24, 
RPS29/uS14, RPL31/
eL31, RPS28/eS28, 
RPS20/uS10, RPL15/
eL15, RPL17/uL22, 
GATA1, TSR2

Mainly ribosomal 
proteins

Cleft lip, cleft palate, flat nasal bridge, 
hypertelorism

Diamond-Blackfan 
anemia

[51]

TCOF1, POLR1C, 
POLR1D

rDNA transcription Hypoplasia of mandible/zygomatic 
complex, some dental anomalies, cleft 
palate

Treacher Collins 
syndrome

[13, 140, 141]

WDR43 rDNA transcription Reduced size of pharyngeal cartilages, 
hydrocephaly

Linked to 3-M 
syndrome

[59]

Trends Genet. Author manuscript; available in PMC 2020 October 01.


	Abstract
	Human diseases of making ribosomes, the ribosomopathies
	Highlighting the molecular pathology of ribosomopathies
	Pre-rRNA transcription and modification
	Pre-rRNA processing
	Ribosome assembly

	Hints at the basis for the tissue specificity of ribosomopathies
	Ribosomopathies derived from hindered development of neural crest cells
	P53-mediated nucleolar stress response
	Ribosomopathies derived from hindered development of non-neural crest cells

	Do specialized ribosomes influence the pathogenesis of ribosomopathies?
	Ribosomal proteins as the basis for ribosome heterogeneity
	Alternative view: the ribosome concentration hypothesis

	How can defects in cell growth cause cancer?
	Are aging and neurodegenerative diseases also ribosomopathies?
	Concluding remarks and future perspectives
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Table 1.

