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ABSTRACT
Bisphenol A is widely used as a material for the production of epoxy resins and polycarbonate plastics. It contaminates various food 
stuffs by getting leached out from their container lining. Limited information is available on its effects on the male reproductive 
system. The aim of the present study was to evaluate the extent to which bisphenol A can affect the reproductive system by measur-
ing biochemical and histological changes in the epididymis. Inbred Swiss strain male albino mice were orally administered 80, 120 
and 240 mg/kg body weight/day of BPA for 45 days. After completion of treatment, the animals were sacrificed; cauda epididymis was 
isolated, weighed, used for biochemical and histopathological studies. The results revealed that BPA administered for 45 days caused 
significant (p<0.05) and dose-dependent reduction in epididymis weight. There was significant (p<0.05) increase in lipid peroxidation 
and the acid phosphatase activity. Dose dependent reduction in protein, sialic acid contents, as well as the activity of enzymatic 
antioxidants and mitochondrial enzymes was recorded compared to vehicle treated group. The effect was dose-dependent. 
Histopathological alteration was observed. This study concludes that BPA causes toxicity in epididymis of mice by generating free 
radicals, which may be a possible reason for reduction in sperm parameters. 
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Introduction 

The use of plastics has become one of the defining charac-
teristics of modern life. But many of the plastic products 
people use on a daily basis contain components that can 
prove harmful to human health and the environment. 
One such component is a chemical called bisphenol A 
[2,2-bis(4-hydroxyphenyl)propane], It is one of the highest 
volume chemicals produced worldwide (Vandenberg et 
al., 2010). It is a key monomer in the production of epoxy 
resins and polycarbonate plastic used in manufacture of 
many household products (Staples et al., 1998; Ranjit et 
al., 2010). As epoxy resins are used as coatings inside of 

almost all food and beverage cans, it leaches into food and 
thus food is considered the main source of its exposure 
(Vandenberg et al.,2007; Carwile et al., 2009).

Bisphenol A mimics estrogen activity that interferes 
with the hormonal system in animals and human beings 
and contributes to adverse health effects (Rochester et 
al., 2013). It induces hepatic damage and mitochondrial 
dysfunction by increasing oxidative stress in the liver and 
other vital organs (Sangai & Verma, 2012; Hassan et al., 
2012; Chen et al., 2012; Xia et al., 2014, Elswefy et al., 
2016). A study carried out by Verma and Sangai (2009) 
showed that treatment with bisphenol A causes cytotoxic-
ity in human erythrocytes, which may be due to oxidative 
stress. However, its effects on the epididymis, highly 
specialized tissue responsible for maturation and storage 
of spermatozoa, is not understood.

According to our previous study (Samova et al., 2016), 
BPA treatment for 45 days causes significant (p<0.05), 
dose-dependent decrease in sperm count (r=0.992: 
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BPA-LD 80.86%; BPA-MD 47.89%; BPA-HD 25.60%), 
sperm motility (r=0.995: BPA-LD 73.48%; BPA-MD 
51.78%; BPA-HD 24.78%) and sperm viability (r= 0.996: 
BPA-LD 76.07%; BPA MD 55.85%; BPA HD 25.05%) as 
compared to vehicle treated control.

As there was reduction in sperm functional param-
eters, our aim was to investigate what changes affect 
sperm function. We investigated the sub-chronic toxic 
effect of bisphenol A in the cauda epididymis of mice by 
analyzing the oxidative stress, enzymatic antioxidants, 
energy metabolism, and total contents. 

Materials and Methods

Chemicals
Bisphenol A was procured from Hi Media Laboratories 
Pvt. Ltd., Mumbai, India. Olive oil was obtained from 
Figaro, Madrid, Spain. All the other chemicals used in the 
present study were of analyzer grade reagent.

Experimental animals
In this study, inbred healthy adult Swiss strain male 
albino mice weighing 30–35 g were obtained from Cadila 
pharmaceutical Center, Ahmedabad, India. Animals 
were kept in the Animal House of Zoology Department 
of Gujarat University, Ahmedabad, India. They were 
housed in an air-conditioned room at a temperature of 
22±3 °C and 45–55% relative humidity with a 12 h light/
dark cycle throughout the experiment. The animals were 
fed certified pelleted rodent food supplied by Amrut 
Feeds, Pranav Agro Industries Ltd., Pune, India and 
potable water ad libitum. All the experimental proto-
cols were approved by the Committee for the Purpose 
of Control and Supervision of Experiment on Animals 
(Reg.-167/1999/CPCSEA), New Delhi, India. Animals 
were handled according to the guidelines published by 
the Indian National Science Academy, New Delhi, India 
(1991).

Experimental design

Dose selection
Different doses of BPA were selected on the basis of LD50 
value (Kimura et al., 2007). Animals of BPA-treated 
groups received three different doses of bisphenol A, i.e. 
1/10th, 1/20th and 1/30th of LD50 (240,120 and 80 mg/kg 
bw/day respectively) for 45 days. 

Experimental protocol
The experimental protocol is shown in Table 1.The 50 mice 
were randomly divided into five groups each containing 
10 animals. Animals of Group I (untreated control) were 
kept without any treatment and given free access to food 
and water. Group II (vehicle control) animals were treated 
with olive oil (0.2 ml/animal/day), as olive oil was used 
to dissolve bisphenol A. Animals of group III, IV and V 
received three respectively different doses of BPA (80, 120 
and 240 mg/kg bw/day) for 45 days. 

All treatments were given orally using a feeding tube 
attached to a hypodermic syringe.

Necropsy
After treatment, the animals were sacrificed using anes-
thetic ether. The epididymis was dissected out quickly, 
blotted free from blood and used for the histopatho-
logical study and biochemical parameters such as lipid 
peroxidation, protein and sialic acid contents, as well as 
the activities of enzymatic antioxidants, acid phosphatase 
and mitochondrial enzymes (ATPase and succinate 
dehydrogenase).

Biochemical parameters 

Lipid Peroxidation
The levels of lipid peroxidation were measured as 
malondialdehyde (MDA) using a colorimetric method, 
as previously described by Ohkawa et al. (1979) with 
modifications. The results were expressed as nano moles 
of MDA per gram of protein.

Enzymatic antioxidants 
Catalase (E.C.1.11.1.6) activity was analyzed using the 
method described by Luck (1963), utilizing hydrogen 
peroxide as substrate. Decrease in absorption was noted 
at 240 nm. The enzyme activity was expressed as μmoles 
H2O2 consumed/mg protein/min. Superoxide dismutase 
(E.C.1.15.1.1) activity (SOD) was measured by the method 
of Kakkar et al. (1984). The enzyme activity was expressed 
as units/mg protein. One unit of SOD is defined as the 
amount of enzyme needed to exhibit 50% dismutation 
of O2

•. The glutathione peroxidase (E.C.1.11.1.9) activ-
ity (GSH-Px) in the testis was assayed by the modified 
method of Paglia and Valentine (1967). The decrease in 
absorbance was recorded for 3 min at 340 nm. The enzyme 
activity was expressed as units/mg protein/min, where 1 
unit of GSH-Px equals to nmoles of NADPH consumed/
mg protein/min.

Energy metabolism and phosphatase activity
The adenosine triphosphatase (ATPase) activity in the 
cauda epididymis was assayed by the method of Quinn 
and White (1968). The enzyme activity was expressed as 
μmoles inorganic phosphate released/mg protein/30 min. 
Succinic dehydrogenase (SDH) activity was assayed by 
the method of Beatty et al. (1966). The enzyme activity 
was expressed as μg formazon formed/mg protein/15 min. 
The acid phosphatase (ACP) activity was assayed by the 
method as described in Sigma Technical Bulletin (Sigma 
Technical Bulletin, MO, USA. 2001). The enzyme activ-
ity was expressed as μmoles p-nitrophenol released/mg 
protein/30 min.

Total content estimation
Protein content in the cauda epididymis was estimated by 
the method of Lowry et al. (1951). The protein content was 
expressed as mg/100 mg tissue weight. The concentration 
of sialic acid was assessed by the method of Jourdian et 
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al. (1971). The sialic acid content was expressed as μg/mg 
tissue weight. 

Statistical analysis
Statistical analysis was performed by analysis of variance 
(ANOVA) followed by Tukey’s test using Graph Pad Instant 
software version 5.03. Data are expressed as the means ± 
S.E.M. The level of significance was accepted at p<0.05. 
Pearson’s correlation analysis was used to determine the 
correlation between controls and treated animals.

Histopathological studies
Histopathological studies were carried out using the 
standard technique of hematoxylin and eosin staining. 
The cauda epididymis of all control and treated groups 
of animals were dissected out, blotted free of blood and 
fixed in Bouin’s solution immediately after autopsy. The 
preserved tissues were dehydrated by passing through 
ascending grades of alcohol, cleared in xylene and 
embedded in paraffin wax (58 to 60 ̊ C). Sections of 5 μm 
were cut on a rotary microtome and stained with H & E, 
dehydrated in alcohol, cleared in xylene, mounted in DPX 
and examined under a light microscope. 

Results

Absolute and relative weights
Table 2 shows results of BPA treatment on absolute and 
relative weights of cauda epididymis. No significant 
changes were observed in absolute and relative weights of 
cauda epididymis between different control groups of ani-
mals (Groups I–II). The treatment of BPA (Groups III–V) 
for 45 days caused significant (p<0.05) reduction in abso-
lute and relative weights of cauda epididymis as compared 
to vehicle control group of animals (Group II). These 
effects were dose-dependent (r=0.940, 0.891 respectively). 
The maximum reductions in absolute and relative weights 
were up to 33.84% and 30.16% respectively.

Lipid peroxidation and activity of enzymatic antioxidants
The effect of BPA treatment on lipid peroxidation as well 
as enzymatic antioxidants in cauda epididymis is shown 
in Table 3. No significant difference was noted in LPO and 
enzymatic antioxidants between different control groups 

of animals (Groups I–II). Oral administration of BPA 
(Groups III–V) for 45 days caused significant (p<0.05), 
dose-dependent (r=0.876) increase in LPO (LD: 42.34%, 
MD: 68.43% and HD: 102.14%) as compared to vehicle 
control (Group II). The activities of enzymatic antioxi-
dants such as CAT, SOD and GSH-Px were significantly 
lowered in BPA-treated mice as compared to vehicle 
control. These effects were in dose-dependent manner 
(r=0.870, 0.864, 0.770, respectively). The maximum 
reduction was observed with BPA-HD (Figure 1).

Mitochondrial enzymes and phosphatase activities
BPA-induced changes in biochemical parameters in cauda 
epididymis are shown in Table 4. No significant difference 
was noted in activities of ACP, ATPase and SDH between 
different control groups of animals (Groups I–II). 
Similarly, as compared to vehicle control, BPA treatment 
caused significant (p<0.05), dose-dependent (r=0.929) 
increase in ACP activity (LD: 58.98%, MD: 151.862% and 
LD: 201.71%), as compared to vehicle control (Figure 2). 

BPA treatment also caused significantly (p<0.05) 
decreased activities of ATPase and SDH. The effect was 
dose-dependent (r=0.944, 0.919, respectively).

Total protein and ascorbic acid
Reduction in total content is shown in Table 5. Oral 
administration of BPA (Groups III–V) caused significant 
(p<0.05) decrease in protein (BPA-LD: 31.84%, BPA-MD: 
50.14%, BPA-HD: 64.91%,) and sialic acid (BPA-LD: 
20.79%, BPA-MD: 31.33%, BPA-HD: 44.43%) contents as 
compared to vehicle treated control group (Group  II). 
These effects were dose-dependent (r=0.942, 0.948) 
(Figure 3).

Histopathological analysis 
The cauda epididymis of all control groups (Groups I–II) 
of animals showed normal tubules with pseudostratified 
epithelium lined by stereocilia and containing dense 
sperm bundles in the lumen of the tubules (Figure 4) 
However, BPA treatment (Groups III–V) for 45 days 
resulted in alterations in the cauda epididymis. Bisphenol 
A treatment caused degeneration in epithelium, decrease 
in stereo cilia, and reduction in sperm density and wider 
space between tubules (Figure 5). The effect was more 
pronounced in BPA-HD-treated group (Group V). 

Table 1. Experimental protocol.

Sr. No. Experimental Groups Number of animals Duration of treatment (Days) Day of necropsy

Control groups

I Untreated control 10 45 46th

II Vehicle control (0.2 ml olive oil/animal/day) 10 45 46th

BPA-treated groups

III BPA-Low dose (80 mg/kg body weight/day) 10 45 46th

IV BPA-Medium dose (120 mg/kg body weight/day) 10 45 46th

V BPA-High dose (240 mg/kg body weight/day) 10 45 46th
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Discussion

The epididymis is an important organ in the male 
reproductive system in which the testicular spermatozoa 
undergo maturation (Cornwall 2009). Sperm maturation 
depends on the secretary product of the epididymis. The 
epididymis provides a luminal microenvironment for 
sperm maturation and storage under androgen control 
(Robaire et al., 1988; Serre & Robaire 1998). Previous 

studies showed BPA to cause generation of free radicals 
(Chitra et al., 2003; Kabuto et al., 2003). 

In the present study, BPA was administered in order 
to evaluate its effect through a complete spermato-
genic cycle, which takes approximately 45 days in mice 
(Clermont, 1972; Hess et al., 2009) and the length of 
spermatogenic cycle is considered as biological constant 

Table 2. Bisphenol A induced changes in absolute and relative weight of cauda epididymis of mice. 

Sr. No. Experimental groups Absolute weight Relative weight

Control groups

I Untreated control 24.12 0.26 61.53±0.39

II Vehicle control (0.2 ml olive oil/animal/day) 24.08±0.16 61.48±0.71

BPA-treated groups 

III BPA-Low dose (80 mg/kg bodyweight/day) 21.32±0.34* (11.44) 54.99±0.87* (10.54)

IV BPA-Medium dose (120 mg/kg bodyweight/day) 18.54±0.27* (22.98) 49.54±1.06* (19.56)

V BPA-High dose(240 mg/kg bodyweight/day) 15.98±0.28* (33.84) 42.94±1.00* (30.16)

Values are mean±S.E.M., n=10. Values shown in parenthesis indicate: Brackets – Percent change in BPA-treated from vehicle treated control group. Significance 
at the level of *p<0.05, as compared with vehicle control group. No significant difference was noted between untreated and vehicle control group. Units: Abso-
lute weight – mg; Relative weight – mg/100 gm body weight.

Table 3. Bisphenol A-induced changes on lipid peroxidation and enzymatic antioxidants in cauda epididymis of mice

Sr. No. Experimental group LPO
Enzymatic Antioxidants

Catalase SOD GSH-Px

Control groups

I Untreated control 1.462±0.11 2.066±0.05 6.725±0.31 0.407±0.03

II Vehicle control (0.2 ml olive oil /animal/day) 1.470±0.09 2.022±0.05 6.707±0.28 0.402±0.02

BPA-treated groups

III BPA-Low dose (80mg/kg bodyweight/day) 2.092±0.12* (42.33) 1.643±0.07* (18.75) 5.648±0.18* (15.79) 0.310±0.02* (22.90)

IV BPA-Medium dose (120 mg/kg bodyweight/day) 2.476±0.10* (68.43) 1.309±0.05* (35.24) 4.911±0.12* (26.78) 0.259±0.01* (35.53)

V BPA-High dose (240 mg/kg bodyweight/day) 2.971±0.06* (102.14) 1.111±0.12* (45.04) 4.021±0.11* (40.05) 0.209±0.02* (47.99)

Values are mean±S.E.M., n=10, Values shown in parenthesis indicate: Brackets – Percent change in BPA-treated from vehicle control. Level of significance; ap 
<0.05 as compared to vehicle control, bp<0.05 as compared to BPA-HD -treated. No significant difference was noted between different control groups (Groups 
I-III). Units: LPO – nmoles MDA formed/mg protein/60 min; Catalase – μmoles H2O2 consumed/mg protein/min; SOD – units/mg protein; GSH-Px- nmoles of 
NADPH consumed/mg protein/min.

Table 4. Bisphenol A induced changes in phosphatase activity and energy metabolism in cauda epididymis of mice.

Sr. No.  Experimental groups Phosphatase activity
(ACP)

Energy Metabolism
ATPase SDH

Control groups

I Untreated control 0.46±0.06 1.62±0.02 19.21±0.26

II Vehicle control (0.2 ml olive oil/animal/day) 0.45±0.01 1.61±0.01 19.17±0.36

BPA-treated groups

III BPA-Low dose (80 mg/kg bodyweight/day) 0.61±0.01* (58.98) 1.40±0.02* (13.16) 15.33±0.26* (19.96)

IV BPA-Medium dose (120 mg/kg bodyweight/day) 1.00±0.02* (151.862) 1.22±0.02* (24.31) 13.34±0.48* (30.38)

V BPA-High dose (240 mg/kg bodyweight/day) 1.16±0.05* (201.71) 1.07±0.02* (33.80) 1073±0.43* (43.99)

Values are mean±S.E.M., n=10. Values shown in parentheses indicate: Brackets – Percent change in BPA treated from vehicle treated control group. Signifi-
cance at the level of *p<0.05, as compared with vehicle control,No significant difference was noted between untreated and vehicle control groups. Units: 
ACP – μmoles p-nitrophenol released/mg protein/30 min; ATPase – μmoles inorganic phosphate released/mg protein/30 min; SDH – μg formazon formed/mg 
protein/15 min
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controlled by germ cell, thus we exposed mice to BPA for 
45 days. Gravimetric analysis revealed that BPA treatment 
for 45 days caused dose-dependent significant decrease 
in absolute and relative weights of cauda epididymis 
(Chitra et al., 2003). Vom Saal et al. (1998) and Delclos 
et al. (2014) also reported that decreases in epididymis 
weights were associated with degenerative changes 
with hypospermia. Histopathology showed reduction in 
sperm bundles (Chitra et al., 2003; 2001). Reduction in 
weights of cauda epididymis could be due to degenerative 
changes in epithelium and lower sperm concentration 
in lumen. Moreover, it may be due to the inhibition of 
spermatogenesis, decreased elongated spermatids and 
steroidogenic enzyme activity (Takahashi & Oishi, 2001; 
Lanning et al., 2002).

Overproduction of reactive oxygen species (ROS) 
and free radicals constitutes oxidative stress that can 
be detrimental to sperm as associated with male fertil-
ity (Agarwal et al., 2014). If spermatozoa are exposed 
to excessive levels of ROS, their fertilizing capacity and 
genetic integrity could be compromised (Aitken et al., 
2014; 2016). Oral administration of BPA generates oxida-
tive stress (ROS) which damages the lipid membrane and 
moreover reduces the activities of enzymatic antioxidants 
in cauda epididymis of mice. BPA exerts some of its effects 
by binding to the nuclear steroid receptors for estrogen 
to subsequently impact expression of estrogen-responsive 
gene products (Wetherill et al., 2007). Moreover, the 
study by Qiu et al. indicates that a low BPA concentration 
can induce spermatogenesis disorders mainly through 
decreasing androgen receptor expression (Qiu et al., 
2013). Unfavorable condition for sperm leads to deteriora-
tion of the fertility rate (Gabrielsen et al.,2016). El-Missiry 
et al. (2014) explained that bisphenol A elicits depletion of 
antioxidant defense system and induces oxidative stress. 
Another study done by Hassan et al. (2012) reported that 
bisphenol A induces hepatotoxicity through oxidative 
stress and ultimately decreases the antioxidant enzymes. 
Catalase and glutathione peroxidase are important 
enzymes of antioxidant defense systems, which protect 
tissue against oxidative stress induced by reactive oxygen 
species (Lei et al., 2016). Both these enzymes catalyze the 

Table 5. Bisphenol A induced changes in total contents in cauda epididymis of mice.

Sr. No. Experimental groups Protein Sialic acid

Control groups

I Untreated control 12.28±0.58 10.03±0.16

II Vehicle control (0.2 ml olive oil/animal/day) 12.17±0.39 10.04±0.13

BPA-treated groups

III BPA-Low dose (80 mg/kg bodyweight/day) 8.295±0.16* (31.84) 7.95±0.15* (20.79)

IV BPA-Medium dose (120 mg/kg bodyweight/day) 6.07±0.81* (50.14) 6.89±0.16* (31.33)

V BPA-High dose (240 mg/kg bodyweight/day) 4.27±0.17* (64.91) 5.58±0.14* (44.43)

Values are mean±S.E.M., n=10. Values shown in parentheses indicate:Bracket – Percent change in BPA-treated from vehicle treated control group. Significance 
at the level of *p<0.05, as compared with vehicle control, No significant difference was noted between untreated and vehicle control groups. Units: Protein – 
mg/100 mg tissue weight; Sialic acid – μg/mg tissue weight.
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Figure 1. Percentages of lipid peroxidation and acid phosphatase 
activity in experimental groups.

Figure 2. Percentages of enzymatic activities in experimental 
groups.

Figure 3. Percentages of total contents in experimental groups.
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hydrolysis of H2O2 into water and oxygen molecules to 
prevent tissue injury (Prescott et al., 2016).

The cell has numerous defense mechanisms to fight 
against oxidative stress. Our result shows the decrease 
in activity of CAT. This indicates that H2O2 was most 
probably present in high levels, moreover CAT is involved 
predominantly in the detoxification of high H2O2 levels. 
Reduction in the activity of catalase may reflect incapa-
bility of mitochondria and eliminate hydrogen peroxide 
produced after exposure to BPA (Bindhumol et al., 2003).

The present study shows that exposure to BPA 
causes significant, dose-dependent decrease in energy 
metabolism. ATPase is required for enzymatic hydrolysis 
of ATP, which is important for intracellular transfer of 
energy (Zeisel, 2012). Activity of SDH, also significantly 
decreased in cauda epididymis by BPA administration. 
SDH is a key enzyme of mitochondrial Krebs cycle and it 
is mainly concerned with aerobic oxidation of acetylCoA 
and generation of ATP (Iacobazzi et al., 2014). Of the 
Krebs cycle dehydrogenases, SDH is more active than any 
other enzyme (Putilina et al., 1969). Thus reduction in 

ATPase and SDH activity could be due to alteration in 
mitochondria and this could lead to reduction in sperm 
viability and motility (Ramalho-Santos et al., 2009; 
Piomboni et al., 2012). Oral administration of bisphenol A 
for 45 days caused significant dose dependent reduction in 
activities of SDH and ATPase in epididymis of mice. The 
effect was comparatively more pronounced in high-dose 
bisphenol A-treated group than with a low dose. These 
results indicate that the onset of cytotoxicity caused by 

Figure 4. T.S. of cauda epididymis of untreated control mice 
(group I-II) showing normal tubules with pseudostratified epithe-
lium lined by stereocilia and containing dense sperm bundles in 
the lumen of the tubules (H & E staining, 400×).

Figure 5. T.S. of cauda epididymis of BPA-HD-treated mice (group 
III-V) showing degenerated epithelium with decrease in stereo-
cilia, reduction in sperm density and wider space between tubules 
as per increases the exposure of BPA (H & E staining, 400×).
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BPA may depend on the intracellular energy status and 
that mitochondria are important targets of the compound 
(Amaral et al., 2016). The toxicity caused by inhibition 
of ATP synthesis may be related to the concentration of 
unmetabolized free BPA remaining in the cell suspen-
sions. Oral administration of BPA for 45 days caused 
dose-dependent significant increase in ACP activity in 
cauda epididymis of mice (Graph.1). Acid phosphatase is a 
marker enzyme for the lysosomal integrity and important 
for tissue reorganization and tissue repair (Collins and 
Lewis et al., 1971, Gómez-Sintes et al., 2016). Increased 
levels of ACP show the tissue damage or nercosis, which 
is seen in histopathology (Fridovich, 1978).

Bisphenol A treatment caused significant decrease in 
protein content in cauda epididymis of mice (Figure 3). 
Proteins are major targets of free radicals (Barnes et al., 
2008). Oxidative modifications such as breakdown of pep-
tide bonds can alter protein structures which are related 
to reduction of protein by elevated oxidative free radicals 
(Stadman, 2001). Oral exposure of BPA for 45 days caused 
significant, dose-dependent decrease in sialic acid content 
in the cauda epididymis of mice. The altered sialic acid 
content might affect structural integrity of the acrosomal 
membrane of sperm (Agarwal et al., 2016). This could 
also affect sperm morphology. It is also concerned with 
changing the membrane surface of maturing spermatozoa 
including stabilization of the acrosome and its membrane 
during sperm maturation and the coating of spermatozoa 
with certain antigens, which play an important role in 
the development of fertilizing capacity of spermatozoa 
(Levinsky et al., 1983; La Spina et al., 2017). According 
to Samova et al. (2016), BPA exposure causes the mor-
phological abnormality in mice spermatozoa. El-Missiry 
reported that ascorbic acid had a protective effect against 
oxidative damage by free radicals. Reduction in the 
content of ascorbic acid should relate to the reduction in 
fertility (Wright et al., 2014). Histopathological altera-
tion was seen in different doses of BPA administration. 
Similar degenerative changes in histopathology were also 
observed by Chitra et al. (2003). 

Conclusion

The present investigation revealed that oral administra-
tion of BPA is toxic in a way that induces oxidative stress 
by generating free radicals as well as reducing the activi-
ties of enzymatic antioxidants. Moreover, reduction in 
metabolism and the contents like protein and sialic acid 
are also seen. This can be a possible reason for reduction 
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