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Abstract

The intrinsically limited spatial resolution of PET confounds image quantitation. This paper 

presents an image deblurring and super-resolution framework for PET using anatomical guidance 

provided by high-resolution MR images. The framework relies on image-domain post-processing 

of already-reconstructed PET images by means of spatially-variant deconvolution stabilized by an 

MR-based joint entropy penalty function. The method is validated through simulation studies 

based on the BrainWeb digital phantom, experimental studies based on the Hoffman phantom, and 

clinical neuroimaging studies pertaining to aging and Alzheimer’s disease. The developed 

technique was compared with direct deconvolution and deconvolution stabilized by a quadratic 

difference penalty, a total variation penalty, and a Bowsher penalty. The BrainWeb simulation 

study showed improved image quality and quantitative accuracy measured by contrast-to-noise 

ratio, structural similarity index, root-mean-square error, and peak signal-to-noise ratio generated 
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by this technique. The Hoffman phantom study indicated noticeable improvement in the structural 

similarity index (relative to the MR image) and gray-to-white contrast-to-noise ratio. Finally, 

clinical amyloid and tau imaging studies for Alzheimer’s disease showed lowering of the 

coefficient of variation in several key brain regions associated with two target pathologies.
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I. Introduction

POSITRON emission tomography (PET) is an in vivo medical imaging technique that 

enables visualization of the distribution of radiotracers that bind to specific molecular targets 

with functional or physiological significance [1]–[3]. The spatial resolution of PET is 

intrinsically very limited, thereby hindering its potential as a quantitative imaging tool, 

particularly for applications involving localized or constricted imaging targets. PET imaging 

systems capture coincidences of emitted pairs of photons traveling approximately collinearly 

in opposite directions following positron-electron annihilation events. A number of physical 

factors, some related to the imaging system hardware, limit PET resolution. These include 

the non-collinearity of the emitted photon pairs, intercrystal scatter, crystal penetration, and 

non-zero positron range of PET radionuclides [4]–[6]. Furthermore, it is fairly commonplace 

to use smoothing penalties during image reconstruction or to apply smoothing filters post-

reconstruction for lowering the noise levels in the final images. This image-domain 

smoothing further compounds the resolution challenge [7]. Attempts to alleviate this 

challenge have led to the development of sophisticated edge-preserving penalties [8]–[10] or 

the incorporation of image-domain or sinogram-domain point spread functions (PSFs) in the 

PET image reconstruction framework [11]–[13]. Some techniques incorporate anatomical 

information from a segmented magnetic resonance (MR) image to guide the reconstruction 

process [14]–[19]. In contrast to these reconstruction methods, this paper aims to improve 

PET quantitation by means of a post-reconstruction processing technique that is applicable 

to existing images. Post-processing approaches have wider adoptability because they obviate 

the need for raw data. Furthermore, their relative simplicity resulting from the decoupling of 

the deblurring and reconstruction problems makes their adoption in a clinical setting easier 

than that for reconstruction-based tools.

In neurological contexts, quantitation based on PET usually entails the computation of a 

mean activity measure, such as standardized uptake value ratio (SUVR) or binding potential, 

over different regions-of-interest (ROIs). The combined effect of image blurring and spatial 

sampling for image digitization (the latter referred to as tissue fractioning) leads to the 

socalled partial volume effect, which manifests in PET images as spillover of estimated 

activity across different ROIs [20]. PET resolution recovery is key to the development of 

accurate image-based biomarkers based on ROI measures for Alzheimer’s disease and other 

neurological disorders [21]–[23]. From an image processing perspective, the combination of 

deblurring and upsampling to improve resolution and reduce tissue fractioning respectively 

is a super-resolution imaging problem [24]. In this paper, we present a super-resolution 
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imaging framework for PET that incorporates anatomical information to assist and stabilize 

the deconvolution procedure required for deblurring.

While a range of iterative deconvolution techniques exist in literature, including those with 

additive or multiplicative updates like the Richardson-Lucy [25], [26] and Van Cittert [27] 

algorithms, standalone deconvolution is an ill-posed problem characterized by poor 

convergence and noise amplification. A variety of strategies have been employed to control 

noise, including early termination, edge-preserving penalty functions such as total variation 

[28], [29], and topology based regularization [30]. In [31], an MR-guided filtering strategy 

was demonstrated to be effective both as an edge-preserving post-filtering tool and as a 

deblurring tool. In [29], the PET image was modeled as a Markov random field with Gibbs 

interactions terms weighted by MR-derived edge information. Some correction techniques 

use wavelet or other transform domains for extracting anatomical information [32]. 

Additionally, a broad array of methods exist that attempt to correct for partial volume effects 

using a geometric transfer matrix (GTM) derived from anatomical parcellations [20], [33]–

[37]. These methods assume (i) an approximate PSF that is stationary across the scanner 

bore and (ii) accurate segmentation of an anatomical image, which is often challenging. 

Here, we present an anatomically-guided PET image deblurring framework inspired by the 

success of information-theoretic priors in reconstruction [38], [39]. Unlike GTM-based 

methods, this technique does not require prior segmentation of the anatomical image. We 

offered a proof of concept for this idea in our earlier paper on this topic [40]. In this paper, 

we validate the idea using realistic simulation and phantom datasets and apply it to tau and 

amyloid imaging datasets from neuroimaging studies on Alzheimer’s disease. The details of 

estimation and optimization are presented in section II. Section III provides details on the 

simulation setup, experimental data acquisition, and validation. Section IV outlines the 

results obtained using this approach in comparison with other techniques. A discussion and a 

summary of this method are presented in sections V and VI respectively.

II. Theory

A. Blurring and Downsampling Model

PET images exhibit spatially-variant resolution depending on the radial and axial 

coordinates inside the cylindrical scanner bore. The PSF for PET can be modeled in either 

the sinogram (detector) domain or the image (voxel) domain. While modeling the PSF 

within the reconstruction framework, the choice between these two alternatives is guided by 

whether the primary contributor to blurring is the detector hardware (a sinogram-domain 

effect) or the positron range of the radioisotope (an image-domain effect). Post-

reconstruction deblurring techniques, however, must exclusively rely on image-domain blur 

modeling. Here we model the blur using a series of image-based PSFs measured at multiple 

radial and axial locations in the scanner bore [12], [41], [42]. At all in-between locations, the 

blur model is determined as a linear combination of the PSF models at the nearest points of 

measurement, assuming radial and axial symmetry. As will be described in section III, to 

avoid an inverse crime, the simulation dataset for validation in this paper is generated using 

a sinogram-domain PSF while the correction is performed using an image-domain PSF 

model. Because the PSF depends on a number of factors, including the radioisotope choice 
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and the scanner properties, we focused both simulation and experimental studies in this 

paper on a single radioisotope and scanner combination. The Siemens ECAT EXACT HR+ 

scanner was chosen due to its widespread use, and the 18F radioisotope was chosen as it is 

one of the preferred radionuclides for PET imaging studies.

Our framework utilizes a low-resolution 3D PET image which is scanner-generated and has 

n voxels and a high-resolution MR image with N voxels (N > n) to generate a super-

resolution PET image with N voxels (same as the number of voxels in the scanner-generated 

high-resolution MR image). The PET image blurring and downsampling operation can be 

modeled using a system matrix A ∈ ℝn × N, such that [43]:

A = ∑
k = 1

K
DkHkS . (1)

Here Hk ∈ ℝn × n is a block Toeplitz matrix representing the kth PSF, S ∈ ℝn × N is a 

downsampling matrix, and K is the total number of PSFs. Linear combinations of the 

individual blur models are created using a series of diagonal matrices Dk ∈ ℝn × n containing 

interpolation weights, such that:

∑
k = 1

K
Dk = I, (2)

where I ∈ ℝn × n is the identity matrix. For an unknown high-resolution PET image 

vectorized as x ∈ ℝN and a scanner-reconstructed low-resolution PET image b ∈ ℝn, the 

least squares cost function for data fidelity is:

ΦPSF(x ∣ b) = 1
2(Ax − b)T(Ax − b) . (3)

Multiplication by the forward model matrix (Ax) and its transpose (AT b) can be efficiently 

computed as linear combinations of 3D fast Fourier transform (FFT) outputs.

B. Joint Entropy Penalty

Most clinical and preclinical PET scanners come equipped with anatomical imaging 

capabilities, in the form of computed tomography (CT) or MR imaging, to complement the 

functional information in PET with structural information. We denote the unknown PET 

image as a vector x ∈ ℝN, where N is the number of voxels in the image. Dividing the 

intensity range of the image into M equal-sized intensity bins, we create an intensity 

histogram vector u ∈ ℝM from x, where ui is the number of voxels in the ith intensity bin. 

We denote the MR image as a vector y ∈ ℝN and the corresponding intensity histogram 

based on M equal-sized intensity bins as v ∈ ℝM. The joint entropy (JE) penalty function can 
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be computed from the joint probability density function (pdf) in the intensity spaces of the 

two images as follows:

ΦJE(x ∣ y) = − ∑
i = 1

M
∑
j = 1

M
δu δv p(ui, v j) log p(ui, v j) . (4)

Here δu and δv are the widths of the discrete intensity bins and p(ui, Vj) is the ijth element 

of the joint pdf computed on the regularly spaced intensity grid. We approximately calculate 

the joint pdf using a Parzen window technique:

p(ui, v j) = 1
N ∑

k = 1

N
G(ui; xk, σu)G(v j; yk, σv), (5)

where G(u; μ, σ) = 1 ∕ ( 2πσ) exp [ − (u − μ)2 ∕ (2σ2)] is a 1D Gaussian kernel. Assuming σu >> 

δu and σv >> δv, the pdf can be obtained through a 2D convolution operation, which can be 

efficiently computed using the FFT:

p(ui, v j) ≈ ℱ ∗ 𝒢(ui, v j),

𝒢(ui, v j) ≜ G(ui; 0, σu)G(v j; 0, σv),

ℱ(ui, v j) ≜ 1
N ∑

k = 1

N
∧ (ui − xk; δu) ∧ (v j − yk; δv) .

(6)

Here 𝒢(ui, v j) represents the 2D convolution kernel, and ℱ(ui, v j) is computed through 

bilinear interpolation of the joint histogram using the triangle function:

∧ (u; δu) =
1 − ∣ u ∣

δu if ∣ u ∣
δu < 1,

0 otherwise.
(7)

C. Iterative Optimization

The target image is the solution to the following constrained optimization problem:

x = arg min
x > 0

ΦPSF(x) + βΦJE(x) . (8)

To determine the optimal image, we adopt a gradient-based optimization strategy based on 

an iterative update:

xk + 1 = xk + αkdk, k = 0, 1, 2, …, (9)
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where dk is the search direction at the kth iteration and αk is a scalar step size, which is 

typically computed using a backtracking line search. A number of gradient-based 

approaches can be employed to determine the descent direction dk. In Newton’s method, for 

example, the inverse of the Hessian is used as a preconditioner which modifies the negative 

gradient to compute the descent direction:

dk = − [H(xk)]−1gk . (10)

Here H(xk) is the Hessian matrix (comprised of second derivative terms) and gk is the 

gradient computed at the kth iteration. The quasi-Newton family of methods avoids the 

expensive computation of the Hessian matrix and its inverse using first-order 

approximations. The descent direction is based on a preconditioned negative gradient 

derived from an inverse Hessian approximation (denoted Lk):

dk = − Lkgk . (11)

To efficiently solve the constrained optimization problem in (8), we use a quasi-Newton type 

preconditioner based on the Limited-Memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) 

method. A variant of this approach known as L-BFGS-B that combines L-BFGS updates 

with a gradient-projection strategy to impose box or bound constraints was utilized to ensure 

that the solution is restricted to the non-negative orthant. In the L-BFGS-B implementation, 

Lk is computed from first order-derivatives alone and is iteratively updated as follows:

Lk + 1 = I − stT

sTt
Lk I − tsT

sTt
+ ssT

sTt
, (12)

where I ∈ ℝN × N, s = xk+1 − xk, and t = gk+1 − gk.

D. Gradient Computation

The gradient at the kth iteration is computed as a weighted sum of the cost and penalty 

gradients:

gk = ∇ΦPSF + β∇ΦJE . (13)

1) Data-Fidelity Cost: The gradient for the data-fidelity cost function is given by:

∇ΦPSF = AT(Ax − b) . (14)

2) JE Penalty: The gradient for the JE penalty can be computed from partial derivatives 

of the joint probability density function as follows:
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dΦJE
dxk

= − ∑
i = 1

M
∑
j = 1

M
δu δv (1 + log p(ui, v j))

dp(ui, v j)
dxk

, (15)

where dp(ui, vj)/dxk can be approximately but efficiently computed by 2D FFT-based 

convolution:

dp(ui, v j)
dxk

= 1
N G(ui; xk, σu)

ui − xk

σu
2 G(v j; yk, σv)

≈ ℱk ∗ 𝒢′(ui, v j),

𝒢′(ui, v j) ≜ G(ui; 0, σu)
ui

σu
2 G(v j; 0, σv),

ℱk(ui, v j) ≜ 1
N ∧ (ui − xk; δu) ∧ (v j − yk; δv) .

(16)

III. Methods

A. Overview

In the following, we describe a simulation study using the BrainWeb digital phantom and the 
18F-fluorodeoxyglucose (18F-FDG) radiotracer, an experimental phantom study using the 

Hoffman phantom and the 18F-FDG radiotracer, and two clinical neuroimaging studies for 

Alzheimer’s disease, one based on 18F-florbetapir (also known as 18F-AV-45), which targets 

amyloid plaques, and another based on 18F-flortaucipir (also known as 18F-AV-1451), which 

targets tau tangles. Amyloid plaques and tau tangles are two types of misfolded proteins that 

are pathological hallmarks of Alzheimer’s disease. All studies were based on the Siemens 

ECAT EXACT HR+ scanner. All low-resolution PET images have 2.54 mm × 2.54 mm × 

2.43 mm voxels with a 128×128×63 grid size consistent with the HR+ output. All super-

resolved PET images have 1 mm × 1 mm × 1 mm voxels with a 256×256×256 grid size 

consistent with the anatomical MR images used in this work. All PET images were 

reconstructed using the ordered subsets expectation maximization (OSEM) algorithm (6 

iterations, 16 subsets) followed by 3D Gaussian filtering with 6 mm full width at half 

maximum (FWHM).

B. Simulation Setup

1) PSF Generation: For 18F radiotracers, the positron range is negligible, and therefore 

the sinogram blurring model is reasonably accurate. A 1D radially-varying blur kernel has 

been demonstrated to be realistic via Monte Carlo simulations [12], [13]. All simulation data 

in the projection (sinogram) space were therefore subjected to a 1D radial blur. Axial 

variation in the blur kernel was not modeled in the simulation but has been incorporated into 

the PSF model for the phantom and clinical data subsequently described. Eight image-

domain 3D PSFs corresponding to different radial locations were computed by 

reconstructing unit point sources at each location. These eight sampled PSFs, all fitted to 
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Gaussian kernels, were used in the forward model in (1) for spatially-variant deblurring. The 

fitted PSFs at different radial locations (forming Hk) and the corresponding distribution of 

interpolation weights (forming Dk) in the transverse image plane are visualized in Fig. 1(a) 

and (b) respectively.

2) Data Generation: To validate the deblurring framework, we performed realistic 

simulations using the 3D BrainWeb digital phantom (http://brainweb.bic.mni.mcgill.ca/

brainweb/). A T1-weighted MR image with 1 mm3 isotropic resolution was used from the 

BrainWeb database, and its corresponding segmented label volume with gray matter, white 

matter, blood pool, and cerebrospinal fluid ROIs was used to simulate a PET “ground truth” 

image. Dynamic PET time activity curves were simulated with ROI kinetic parameters as 

listed in Table I for gray matter (GM) and white matter (WM) tissue types. The dynamic 

frames were summed to generate a “ground-truth” static PET image arising from a 1 hour 

long 18F-FDG scan with a mean gray-to-white intensity ratio of 1.43. The geometric model 

of the HR+ scanner with sinogram-domain blurring was used to generate sinogram data. 

Noisy data were generated using Poisson noise realizations of the projected sinograms, a 

noise model widely accepted in the PET imaging community [44], The Poisson deviates 

were generated with a mean of 108 counts for the full scan duration of 3640 s.

C. Experimental Setup

1) PSF Measurement: To estimate the true PSF, we placed 0.5 mm diameter point 

sources filled with 18F-FDG at different radial and axial positions inside the scanner bore, 

56.2 cm in diameter and 15.5 cm in length. PSFs were sampled at eight radial locations and 

two axial locations (total 16 PSFs). The reconstructed PSF images were fitted with Gaussian 

kernels. The FWHM of the fitted PSFs had ranges of 6.03-7.21 mm and 6.63-7.89 mm in the 

radial and axial directions respectively. Interpolation weights for the experimental datasets 

were determined by means of bilinear interpolation over an irregular grid consisting of the 

quadrilaterals formed by the nearest radial and axial PSF sampling locations from a given 

point.

2) Phantom Scan: The Hoffman brain phantom filled with 18F-FDG was scanned on the 

HR+ scanner for 15 min when the phantom activity was 27 MBq. A T2-weighted MR image 

of the phantom was separately acquired and rigidly coregistered with the PET image using 

FSL (https://fsl.fmrib.ox.ac.uk/) [45], [46].

3) Amyloid Scan: The amyloid imaging data used in this paper were derived from the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) http://adni.loni.usc.edu, a public 

repository containing images and clinical data from 2000+ human datasets. An 81 year old 

male subject underwent a 10 mCi bolus injection of 18F-florbetapir followed by a 50 min 

scan on the HR+ in accordance with the ADNI-GO protocol. T1-weighted magnetization-

prepared rapid gradientecho (MPRAGE) MR images were obtained and co-registered with 

the PET images using the FreeSurfer neuroimaging data processing suite (https://

surfer.nmr.mgh.harvard.edu) [47], FreeSurfer was also used to parcellate the MR volume for 

ROI analysis.
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4) Tau Scan: The tau imaging data used in this paper were acquired at Massachusetts 

General Hospital (MGH). All procedures were performed after written informed consent and 

with approval from the MGH Institutional Review Board obtained satisfying appropriate 

protocol requirements. PET data were acquired for 90 min after a 10 mCi bolus injection of 
18F-flortaucipir. MR image acquisition was performed on a 3T Tim Trio (Siemens). As with 

the amyloid study, the MR image was co-registered with the PET image using FreeSurfer. 

FreeSurfer was also used to parcellate the MR volume for ROI analysis.

D. Reference Approaches and Evaluation Metrics

We compare the results of deconvolution using a spatially-variant PSF with no penalty/prior 

(SVPSF), a quadratic penalty (QP) based on nearest neighbor differences, an anisotropic 

total variation (TV) penalty, and a Bowsher penalty (BP). These penalty functions are 

defined as follows:

ΦQP(x) = 1
2(‖Δ1x‖2

2 + ‖Δ2x‖2
2 + ‖Δ3x‖2

2), (17)

ΦTV(x) = (‖Δ1x‖1 + ‖Δ2x‖1 + ‖Δ3x‖1), (18)

ΦBP(x) = 1
2(‖w1 ∘ Δ1x‖2

2 + ‖w2 ∘ Δ2x‖2
2 + ‖w3 ∘ Δ3x‖2

2), (19)

where Δk, (k = 1, 2, or 3) are finite difference operators along the three Cartesian coordinate 

directions, ‘o’ denotes the Hadamard product, and the weights, wk, for the BP term are 

computed from the anatomical image y using a tuning parameter σb as follows [48]–[50]:

wk = exp[ − (Δk y ∘ Δk y) ∕ σb], k ∈ {1, 2, 3} . (20)

The evaluation metrics used here are defined below. We use the notation μx and σx for the 

mean and standard deviation respectively of an image x and μx
ℛ and σx

ℛ for the same 

statistics computed over an ROI ℛ. The true and estimated images are denoted x and x
respectively.

1) Contrast-to-Noise Ratio (CNR): The CNR for a given ROI ℛ and a reference ROI 

ℛref is defined as:

CNR =
∣ μx

ℛ − μx
ℛref ∣

(σx
ℛ)2 + (σx

ℛref)2
. (21)

2) Structural Similarity Index (SSIM): The SSIM is a well-accepted measure of 

perceived image quality and is defined as:
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SSIM(x, x) =
(2μxμx + c1)(2σxσx + c2)

(μx
2 + μx

2 + c1)(σx
2 + σx

2 + c2)
. (22)

Here c1 and c2 are parameters stabilizing the division.

3) Root-Mean-Square Error (RMSE): The RMSE is computed as:

RMSE(x, x) = 1
N ∑

k
(xk − xk)2 . (23)

4) Peak Signal-to-Noise Ratio (PSNR): The PSNR is the ratio of the maximum signal 

power to noise power and is defined as:

PSNR(x, x) = 20 log10
max (x)

RMSE(x, x) . (24)

5) Coefficient of Variation (CV): The CV for a given ROI ℛ is defined as:

CV =
σx

ℛ

μx
ℛ . (25)

For the simulation study, where the ground truth is known, we compute all the 

aforementioned metrics. For the phantom experiment where the ground truth is unknown, 

we only compute the CNR and MR-based SSIM. For the clinical datasets, we compute 

means of specific ROIs relevant to each pathology. The ROI mean SUVRs are useful as 

image-based biomarkers in diagnostics and therapeutics, including clinical trials for drug 

discovery. For localized ROIs, the CV measures of biomarkers are critical, especially while 

using image processing pipelines that tend to amplify noise. Accordingly, CV values for 

important ROIs are used to compare different methods for the clinical data.

IV. Results

A. Simulation Study

1) Parameter Selection and Initialization: To select regularization parameters 

(weights of the penalty functions in the combined cost) for the BrainWeb digital phantom 

study, the QP, TV, BP, and JE regularization parameters were swept over a range of values. 

As a rule of thumb, a typical test value of the regularization parameter was set based on the 

ratio of the norms of the data-fitting and penalty gradients to: 

βreg
0 = ‖∇ΦPSF(b )‖ ∕ (2‖∇Φreg(b )‖), where b  is an upsampled version of the blurry image b 

generated via trilinear interpolation, p is swept over a range of values {…, 4, 2, 1, 1/2, 1/4, 

… } with βreg = pβreg
0 . Fig. 2 shows plots of gray-to-white CNR, SSIM, RMSE, and PSNR 
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for the QP, TV, BP, and JE cases for different regularization parameters. The regularization 

parameters were selected to ensure the highest CNR as indicated by the inverted red 

triangles in Fig. 2. We observed that JE typically exhibits a peak in CNR and a 

corresponding dip in RMSE when the regularization parameter is in the optimal range. Very 

large values of the regularization parameter can substantially increase the RMSE and lower 

the CNR.

SVPSF (no penalty) suffers from the well-known instabilities of the standalone 

deconvolution problem. Continued iteration leads to noise amplification. The iteration 

number was set to a value of 20 in way of ensuring early termination. All methods were 

initialized by setting x0 to b . QP, TV, BP, and JE were iterated till convergence. For the JE 

penalty, the Parzen window widths were set to σu = max(b)/q and σv = max(y)/q with q = 50, 

and M was set to 385.

2) Simulation Results: Fig. 3 shows a comparison of images obtained from the 

different methods. For SVPSF, the displayed image is the output of the 20th iteration. For 

QP, TV, BP, and JE, the displayed images correspond to the parameter values in Fig. 2 that 

led to maximum gray-to-white CNR for each case. Qualitatively, the JE penalty generated 

well-defined tissue boundaries well-conforming with the MR image. As expected, SVPSF 

led to noise amplification. With QP, the data-fitting cost function and smoothing penalty 

function are somewhat conflicted in terms of their ultimate goals but together lead to a stable 

solution unlike SVPSF. In comparison, TV and BP led to sharper images with better-defined 

edges. Table II shows the evaluation metrics for all displayed images. Among the methods 

compared here, JE produced the best values for all the metrics.

3) Impact of the PSF Model: To determine the impact of the spatially-variant blurring 

model, we performed a comparison of this model with a spatially uniform PSF (SUPSF) 

model. Fig. 4 shows the evaluation metrics CNR, SSIM, RMSE, and PSNR for JE+SUPSF 

and JE+SVPSF. For this study, the PSF corresponding to the center of the scanner was used 

to create the SUPSF model. Compared to JE+SUPSF, JE+SVPSF showed a modest 

improvement in the best value obtained for each metric. More importantly, however, these 

plots show that the variation of the metrics with the regularization parameter is noticeably 

less drastic for SVPSF than SUPSF, indicating improved robustness of this model.

B. Experimental Studies

1) Phantom Results: The SVPSF, QP, TV, BP, and JE deblurring techniques were 

applied to the Hoffman phantom dataset. Initialization of each method and JE Parzen 

window width selection were performed as described for the simulation study. Fig. 5 shows 

a comparison of images obtained from the different methods. For SVPSF, the displayed 

image is the output of the 20th iteration. For QP, TV, BP, and JE, the regularization 

parameter was set with p = 1/2, 2, 1 and 1 respectively to maximize the gray-to-white CNR 

for each case. JE led to well-defined boundaries matching the MR for the Hoffman phantom. 

TV produced a sharp image with a piecewise-constant appearance, while BP successfully 

incorporated some boundary information from the MR. SSIM (using the MR as a reference) 
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and CNR are reported in Table III. JE led to higher values for both metrics relative to all 

other reference approaches.

2) Clinical Results: The SVPSF, QP, TV, BP, and JE deblurring techniques were applied 

to the amyloid and tau imaging datasets. Initialization of each method and JE Parzen 

window width selection were performed as described for the simulation study. Figs. 6 and 7 

show comparisons of images obtained from the different methods for the amyloid and tau 

PET scans respectively. For SVPSF, the displayed image is the output of the 20th iteration. 

The regularization parameter was set heuristically so as to yield the lowest CVs in several 

key ROIs. Qualitatively, TV, BP, and JE produced sharper images than SVPSF and QP. As 

with the previous studies, JE led to well-defined boundaries matching the MRs for the 

clinical datasets.

For the amyloid study, CV values were computed for several clinically relevant ROIs for 

image-derived amyloid measures. Of these, the frontal-lateral-retrosplenial (FLR) area is 

generally used for image-based amyloid measures [51], [52], Several major sub-ROIs within 

the FLR were also examined, including frontal, temporal, and parietal cortices. Lastly, the 

striatal region was also evaluated separately as recent studies have highlighted distinct roles 

for cortical (FLR) amyloid and striatal amyloid measures [53], [54], The CVs for these 

regions are reported in Table IV. JE led to consistently lower CV values in all the ROIs 

relative to SVPSF, QP, TV, and BP.

For the tau study, CV values were computed for a different set of clinically relevant ROIs 

considered critical for image-based tau measures. These include the inferior temporal cortex 

(ITC), middle temporal cortex (MTC), superior temporal cortex (STC), fusiform gyrus (FG), 

parahippocampal gyrus (PHG), and hippocampus (HC) [55], [56]. The CVs for these regions 

are reported in Table V. JE led to consistently lower CV values in all but one of the ROIs 

relative to SVPSF, QP, TV, and BP. The only exception was the hippocampus where QP had 

the best performance.

V. Discussion

Overall, our simulation results indicate that JE leads to noticeable improvements in CNR, 

SSIM, RMSE, and PSNR compared to SVPSF (no penalty), QP, TV, and BP techniques. 

JE’s performance, however, may be quite sensitive to the choice of the regularization 

parameter. Very large values of the regularization parameter can substantially increase the 

RMSE and lower the CNR and sometimes introduce visual artifacts. One concern while 

incorporating cross-modality information with JE is the potential for crosstalk introduced by 

structural discrepancies between the PET and its anatomical counterpart. For example, MR 

features could sometimes be incorrectly introduced into PET images, or PET features could 

incorrectly be suppressed due to not being represented in the MR images. A related concern 

about JE is the potential imperfect mapping of edges in certain scenarios. For example, 

edges in the MR image may be over- or underrepresented in the JE-based PET image. The 

JE penalty, as defined here, is based on the similarity of image intensity distributions and 

does not contain spatial neighborhood information for the PET and MR image voxels. 

Crosstalk and imperfect edge mapping are known issues with information theoretic penalty 
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functions and have been addressed in existing literature by embedding multiscale spatial 

features to make the penalty more robust [39], [57]. Our future work will focus on further 

investigations to address/alleviate this concern.

It should be noted that any anatomically-guided correction requires accurate multimodality 

co-registration. For intrasubject cases, standard rigid registration tools with 6 degrees-of-

freedom have been demonstrated to work well. All studies in this paper, therefore, used 

well-characterized rigid registration tools that are part of routine neuroimaging data 

processing pipelines [45]–[47]. It should also be noted that PET image resolution is not only 

spatially-variant but also object-dependent. The latter cannot be fully accounted for via an 

image-domain correction. However, to reduce overall variability, we used the same image 

reconstruction protocol for the simulation, phantom, and clinical studies. Finally, we would 

like to emphasize that the deblurring framework does not model the PET noise covariances 

in the data-fidelity term, because the computation of the (iteration-dependent) covariance 

matrices of OSEM-reconstructed PET images is a challenging task [5]. The performance of 

the method for low-count images may need to be separately evaluated. For dynamic PET 

datasets (which typically have low-count earlier image frames), a more attractive strategy 

than postreconstruction deblurring may be to implement a JE prior for direct reconstruction 

of kinetic parameters.

For deblurring of post-filtered images, the Gaussian filtering step is typically the leading 

contributor to the blur. In cases where the raw (unfiltered) OSEM-reconstructed image is 

available, an MR-guided edge-preserving filter is an attractive option over deblurring after 

Gaussian filtering. However, in such cases, parameter tuning for the filter will be critical 

because different protocols use different OSEM iteration numbers, leading to different final 

noise levels. It should be added that, compared to post-reconstruction processing, 

reconstruction-based priors tend to be more effective from a quantitative perspective. 

However, this requires access to raw data, correction factors, and specialized reconstruction 

tools and models. A key advantage of the post-processing method presented here is its direct 

applicability to existing datasets for which the raw data (sinograms) and unfiltered images 

are either unavailable or not readily available.

For the clinical amyloid and tau imaging studies, CV measures were computed for several 

clinically meaningful ROIs. Our results show consistent lowering of CV in all amyloid 

ROIs. For tau, the CV was lower in all ROIs except the hippocampus. However, despite the 

significant role of the hippocampus in memory consolidation, it should be noted that 18F-

flortaucipir suffers from well-known off-target effects in the vicinity of this ROI making it a 

poor candidate for ROI-based tau quantitation with this tracer [58].

VI. Conclusion

Despite the versatility of quantitative PET imaging arising from the availability of a wide 

gamut of radiotracers targeting different physiologically meaningful biomolecules, its 

quantitative accuracy is often limited by its poor spatial resolution. We have designed and 

implemented an anatomically guided framework that recovers PET resolution by means of 

deconvolution based on spatially-variant blur kernels measured in the image domain. The ill-
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posed deconvolution problem is stabilized using a JE prior based on the high-resolution MR 

counterpart of the PET. We tested the performance of this method using a BrainWeb 

phantom simulation, a Hoffman phantom experiment, and clinical amyloid and tau imaging 

scans. The method was compared with standalone deconvolution and penalized 

deconvolution using QP, TV, and BP regularization and demonstrated to be promising in 

terms of a number of evaluation metrics, including CNR, SSIM, RMSE, PSNR, and CV. As 

future work, we plan to develop a modified JE penalty that incorporates multiscale spatial 

information and is more robust against parameter variations and potential crosstalk 

introduced by structural discrepancies between the two modalities. ROI-based tau 

quantitation is promising for new biomarker development for Alzheimer’s disease, which, in 

turn, is vital for enabling drug development efforts. We will, therefore, apply this technique 

to specific neuroimaging scenarios pertaining to Alzheimer’s disease and validate the 

method by deriving CV measures for a much larger cohort.
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Fig. 1. 
(a) Gaussian PSFs measured and fitted in the image domain from a simulated radially-

varying sinogram-domain blur. The PSFs were sampled at eight radial locations starting at 

the center of the scanner bore and going outward. A dotted line has been included for 

reference. (b) Transverse slices showing the radially-varying linear interpolation weights 

(corresponding to the eight labeled PSFs). The weights at a given location are non-zero only 

for the two nearest PSFs.
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Fig. 2. 
Regularization parameter selection. Plots of CNR, SSIM, RMSE, and PSNR for the QP, TV, 

BP, and JE techniques for different values of the regularization parameters. The 

regularization parameters that led to the highest CNR for each case are indicated by the 

inverted red triangles.
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Fig. 3. 
Simulation results. Transverse slices from the T1-MR image, true PET image, Gaussian-

filtered OSEM image (GF), and deblurred images with the spatially-variant PSF but no 

penalty (SVPSF), quadratic penalty (QP), anisotropic total variation penalty (TV), Bowsher 

penalty (BP), and MR-based joint entropy penalty (JE).
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Fig. 4. 
Comparison of SUPSF and SVPSF. The plots show the evaluation metrics CNR, SSIM, 

RMSE, and PSNR for JE+SUPSF and JE+SVPSF. SVPSF shows improvement in each 

metric relative to SUPSF. Also, compared to SUPSF, SVPSF demonstrated slower variation 

of the metrics with varying regularization parameter indicating improved robustness.
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Fig. 5. 
Phantom experiment results. Transverse slices from the T2-MR image, Gaussian-filtered 

OSEM image (GF), and deblurred images with the spatially-variant PSF but no penalty 

(SVPSF), quadratic penalty (QP), anisotropic total variation penalty (TV), Bowsher penalty 

(BP), and MR-based joint entropy penalty (JE).
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Fig. 6. 
Clinical results. Amyloid imaging study: Transverse slices from the T1-MR image, 

Gaussian-filtered OSEM image (GF), and deblurred images with the spatially-variant PSF 

but no penalty (SVPSF), quadratic penalty (QP), anisotropic total variation penalty (TV), 

Bowsher penalty (BP), and MR-based joint entropy penalty (JE).
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Fig. 7. 
Clinical results. Tau imaging study: Transverse slices from the T1-MR image, Gaussian-

filtered OSEM image (GF), and deblurred images with the spatially-variant PSF but no 

penalty (SVPSF), quadratic penalty (QP), anisotropic total variation penalty (TV), Bowsher 

penalty (BP), and MR-based joint entropy penalty (JE).
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TABLE I

Simulated kinetic parameters for different ROIs in the brain

ROI Blood
fraction

K1

(ml min−1 g−1)
k2

(min−1)
k3

(min−1)
k4

(min−1)

GM 0.0446 0.1104 0.1910 0.1024 0.0094

WM 0.0270 0.0622 0.1248 0.0700 0.0097
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TABLE II

BrainWeb simulation study: Performance comparison

Metric SVPSF QP TV BP JE

CNR 0.17 0.31 0.30 0.40 0.63

SSIM 0.90 0.91 0.91 0.92 0.94

RMSE 0.51 0.35 0.34 0.30 0.29

PSNR 17.22 18.92 18.99 20.23 20.59
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TABLE III

Hoffman phantom study: Performance comparison

Metric SVPSF QP TV BP JE

CNR 1.2814 1.1904 1.2245 1.3452 1.7968

SSIM (MR) 0.85 0.83 0.82 0.85 0.89
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TABLE IV

Amyloid imaging study: Performance comparison

Metric SVPSF QP TV BP JE

CV: FLR 0.4259 0.3103 0.2783 0.3270 0.2506

CV: Frontal 0.4876 0.3517 0.3247 0.3772 0.2704

CV: Temporal 0.4275 0.3217 0.2889 0.3348 0.2565

CV: Parietal 0.4035 0.2960 0.2859 0.3032 0.1975

CV: Striatal 0.3962 0.3069 0.2549 0.3217 0.2286
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TABLE V

Tau imaging study: Performance comparison

Metric SVPSF QP TV BP JE

CV: ITC 0.1549 0.1404 0.1353 0.1377 0.1251

CV: MTC 0.1734 0.1484 0.1423 0.1459 0.1227

CV: STC 0.1787 0.1460 0.1421 0.1440 0.1299

CV: FG 0.1324 0.1042 0.0982 0.1018 0.0915

CV: PHG 0.1758 0.1458 0.1382 0.1426 0.1315

CV: HC 0.3311 0.1919 0.2048 0.1937 0.2548
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