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Abstract

Motivation: In order to understand how species evolutionarily responded to Plio-
Pleistocene climate oscillations (e.g. in terms of speciation, extinction, migration and
adaptation), it is first important to have a good understanding of those past climate
changes per se. This, however, is currently limited due to the lack of global-scale
climatic datasets with high temporal resolution spanning the Plio-Pleistocene. To fill
this gap, | here present Oscillayers, a global-scale and region-specific bioclim dataset,
facilitating the study of climatic oscillations during the last 5.4 million years at high
spatial (2.5 arc-minutes) and temporal (10 kyr time periods) resolution. This dataset
builds upon interpolated anomalies (A layers) between bioclim layers of the present
and the Last Glacial Maximum (LGM) that are scaled relative to the Plio-Pleistocene
global mean temperature curve, derived from benthic stable oxygen isotope ratios,
to generate bioclim variables for 539 time periods. Evaluation of the scaled, inter-
polated estimates of palaeo-climates generated for the Holocene, Last Interglacial
and Pliocene showed good agreement with independent general circulation models
(GCMs) for respective time periods in terms of pattern correlation and absolute dif-
ferences. Oscillayers thus provides a new tool for studying spatial-temporal patterns
of evolutionary and ecological processes at high temporal and spatial resolution.
Main types of variable contained: Nineteen bioclim variables for time periods
throughout the Plio-Pleistocene. Input data and R script to recreate all 19 bioclim
variables.

Spatial location and grain: Global at 2.5 arc-minutes (4.65 x 4.65 = 21.62 km? at the
equator).

Time period and grain: The last 5.4 million years. The grain is 10 kyr (= 539 time
periods).

Level of measurement: Data are for terrestrial climates (excluding Antarctica) taking
sea level changes into account.

Software format: All data are available as ASCII grid files.
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1 | INTRODUCTION

Understanding how species responded to past (e.g. Plio-
Pleistocene) climate oscillations is of great utility for understanding
the evolution of organisms and their future response to anthro-
pogenic climate change (Balint et al., 2018; Comes & Kadereit,
1998; Espindola et al., 2012; Haywood et al., 2009; Hewitt, 2000;
Lawing & Polly, 2011; Myers, Stigall, & Lieberman, 2015). Spatially
explicit palaeo-climatic data have provided important insights into
macroecology (Bélint et al., 2018; Couvreur et al., 2015; Kissling,
Blach-Overgaard, Zwaan, & Wagner, 2016; Rakotoarinivo et al.,
2013), macroevolution (Meseguer et al., 2018), palaeobiology
(Myers et al., 2015), systematics (Frajman et al., 2019; Younger et
al., 2018), biogeography (Benitez-Benitez, Escudero, Rodriguez-
Sanchez, Martin-Bravo, & Jiménez-Mejias, 2018; Espindola et al.,
2012; Silva, Antonelli, Lendel, Moraes, & Manfrin, 2018; Wang et
al., 2015), palaeophylogeography (Lawing & Polly, 2011; Lawing,
Polly, Hews, & Martins, 2016; Rédder et al., 2013) and conserva-
tion (Alsos, Alm, Normand, & Brochmann, 2009). However, such
palaeo-climatic data are currently restricted to a few time periods
(e.g. 6 kyr, 21 kyr, 120 kyr and 3 Myr) (Braconnot et al., 2007;
Haywood et al., 2011; Lawing & Polly, 2011; Lima-Ribeiro et al.,
2015; Otto-Bliesner et al., 2006; but see Espindola et al., 2012;
Fordham et al.,, 2017; Singarayer & Valdes, 2010 for < 120 kyr
time series and Brown, Hill, Dolan, Carnaval, & Haywood, 2018
for 787 kyr) not least because of their computationally expensive
generation via global circulation models (GCMs; Lawing & Polly,
2011; Lima-Ribeiro et al., 2015; Ramirez-Villegas & Jarvis, 2010)
that require further downscaling and calibration using interpo-
lated observational data of current climates (e.g. WorldClim v. 1.4;
Hijmans, Cameron, Parra, Jones, & Jarvis, 2005). Although these
deep-time climatic snapshots often serve as proxies for inferring
the climatic dynamics of entire epochs (e.g. Benitez-Benitez et al.,
2018; Couvreur et al., 2015; Silva et al., 2018; Wang et al., 2015)
they lack information on fine-scaled climatic fluctuations through
time as would be required for eco-evolutionary studies (Espindola
et al., 2012; Fordham et al., 2017). Nevertheless, climate change
between the present and the past (e.g. Last Glacial Maximum,
LGM, c. 23-18 kyr BP; Peteet, 2018) has been used to interpo-
late climate trends in North America to a few earlier time periods
(e.g. last 320 kyr, 4 kyr increments; last 23 Myr, 1 Myr increment;
Lawing & Polly, 2011; Lawing et al., 2016; Rodder et al., 2013) by
reference to the benthic stable oxygen isotope record (hereafter
isotope record) (Collevatti, Terribile, Diniz-Filho, & Lima-Ribeiro,
2015). However, there is currently neither a global palaeo-climatic
dataset spanning the entire Plio-Pleistocene at high spatial and
temporal resolution nor a written procedure (protocol) detailing
each step of the interpolation procedure.

To fill this gap, | here present Oscillayers, a ready to use global
terrestrial palaeo-climatic dataset for all 19 conventional bioclim
variables (Hijmans et al., 2005), spanning continuously from the
beginning of the Pliocene (5.4 Myr) to the LGM (c. 20 kyr BP)
in steps of 10 kyr plus input data (A layers) and an R script, to
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recreate those variables for the respective time periods (Figure 1).
All scaled and interpolated 19 palaeo-bioclim variables were also
evaluated against independent GCMs for three time periods [i.e.
Holocene Climate Optimum (HOL), c. 6 kyr BP (http://www.world
clim.org/paleo-climatel; Hijmans et al., 2005); Last Interglacial
(LIG), c. 120 kyr BP (http://www.worldclim.org/paleo-climatel;
Otto-Bliesner et al., 2006); mid-Pliocene Warm Period (PLIO),
c. 3.3 to 3.0 Myr BP (http://ecoclimate.org/; Lima-Ribeiro et al.,
2015)] in terms of pattern correlations and absolute differences.
Oscillayers thus provides a novel tool for studying climatic fluctu-
ations spanning the Plio-Pleistocene at high temporal and spatial
resolution. Potential applications for eco-evolutionary studies are

briefly discussed.

2 | METHODS

2.1 | Data generation

Nineteen bioclim variables (Biol-Bio1l9) were obtained from
WorldClim v. 1.4 (Hijmans et al., 2005) for current (c. 1960-2000)
and LGM (Community Climate System Model, CCSM4; Gent et al,,
2011) conditions at 2.5 arc-minutes resolution to generate pal-
aeo-bioclim variables for each time period (T) using the following
multistep procedure (Figure 1; see also Supporting Information
Appendix S1 for technical details). Step 1: Empirical Bayesian krig-
ing (EBK; Krivoruchko, 2012) was used to calculate geographically
interpolated surfaces of each variable for the present (interpolated
surface present; ISP) and the LGM (interpolated surface LGM; ISL).
This step provides baseline climate estimates for areas that are
now submerged but were subaerial during past glacial cycles when
sea levels were lower under the assumption of spatial correlation
between coastal and off coastal climates. Step 2: A layers, repre-
senting the climate change during the LGM [i.e. when the average
global temperature (9.46 °C) was 4.44 °C colder than today; Hansen,
Sato, Russell, and Kharecha (2013)], were then computed between
the ISP and ISL (e.g. Biol, = Biol,¢, - Biol,g ; see also Figure S1 in
Supporting Information Appendix S1). Step 3: Differences in surface
temperature (Ts) between the LGM (c. 20 kyr) and those of the last
5.4 Myr in time steps of 10 kyr (= 539 steps), as derived from the
isotope record (Hansen et al., 2013), were calculated (see Table S1in
Supporting Information Appendix S1). Step 4: The A layers were then
scaled relative to those differences (cf. Lawing & Polly, 2011; Rédder
et al., 2013) in relation to the temperature differences between the
present and the LGM [e.g. Biol,; = Biol, * (Ts; - Ts ;,,)/(Ts

Ts gu)]- These scaled and interpolated A layers thus represent the

present -

climate change between the LGM and the preceding time periods
(e.g. T3=30yrs, T4 = 40 kyr, ...). Step 5: In a further step, the interpo-
lated A layers were applied to the LGM layers to generate calibrated
palaeo-bioclim layers of each time period (e.g. Biol ¢, + Biol,; =
Biol;) as inspired by the Delta method (Ramirez-Villegas & Jarvis,
2010; see also http://www.worldclim.org/downscaling). This implies
that the underlying spatial pattern of each modelled time period is
driven by the scaled differences between the LGM and the present.


http://www.worldclim.org/paleo-climate1
http://www.worldclim.org/paleo-climate1
http://www.worldclim.org/paleo-climate1
http://ecoclimate.org/
http://www.worldclim.org/downscaling
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FIGURE 1 Flowchart for generating interpolated palaeo-bioclim layers (Oscillayers). Step 1: Empirical Bayesian kriging interpolation

of each variable for the present and the Last Glacial Maximum (LGM). Step 2: Computation of the A layers. Step 3: Calculation of surface
temperature (Ts) differences between the LGM and proceeding time periods as derived from the isotope record for each time step (T).

Step 4: Scaling the A layers relative to those differences of Step 3. Step 5: Application of the scaled A layers to the LGM variables for
calibration. Step 6: Clipping each layer with the corresponding palaeo-coastlines, as derived from reclassified digital elevation models (DEMs),
to obtain the calibrated palaeo-bioclim layers of each time period (Oscillayers) [Colour figure can be viewed at wileyonlinelibrary.com]

Step 6: Finally, to obtain terrestrial layers with palaeo-coastlines
for each time period, each layer was clipped using land masks de-
rived from the resampled ETOPO1 Global Relief Model (Amante &
Eakins, 2009; https://doi.org/10.7289/V5C8276M) after applying
corresponding changes in eustatic sea level (Hansen et al., 2013; see
Table S1 in Supporting Information Appendix S1) via reclassification
(Willmes, Becker, Brocks, Hiitt, & Bareth, 2017). All steps were done
using ArcGIS v.10.4 (ESRI, Redland, CA) and the R package “raster” v.
2.6-7 (Hijmans & van Etten, 2017).

2.2 | Data validation

The ability of Oscillayers to reproduce independent data (skill and va-
lidity; see Fordham et al., 2017 and references therein) was evaluated
by testing whether it can reproduce modelled past climates (HOL, LIG
and PLIO) in more or less the same way as two highly correlated and
commonly employed GCMs (i.e. CCSM4: Gent et al., 2011; Model for

Interdisciplinary Research on Climate - Earth System Model, MIROC-
ESM: Watanabe et al., 2011) of the recent past (see Lawing & Polly,
2011; Rédder et al., 2013; Varela, Lima-Ribeiro, & Terribile, 2015)
(see Figure S2 in Supporting Information Appendix S1 for the valida-
tion procedure). Although inter-model comparisons are not possible
for time periods (e.g. LIG, PLIO) that are represented by only a single
GCM (Lima-Ribeiro et al., 2015; Otto-Bliesner et al., 2006), interpola-
tion performances can nonetheless still be compared with more re-
cent time periods in such cases (see Lawing & Polly, 2011).

Bioclim variables of three time periods used for validation (i.e.
HOLcgm» LIG, PLIO ¢\ and of two time periods used for evalua-
tion (HOLccgp HOLyrocr LGM o LGMy1roc) Were obtained from
WorldClim (HOL, LGM, LIG) and ecoClimate (PLIO; Lima-Ribeiro
et al., 2015). PLIO s\ bioclim variables were downscaled from 30
arc-minutes resolution to 2.5 arc-minutes resolution via the Delta
method using the modern (1950-1999) CCSM model as baseline. The
bioclim variables of three time periods (CCSM,,,, LIG, CCSM,, o)


https://doi.org/10.7289/V5C8276M
www.wileyonlinelibrary.com
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were compared with the Oscillayers generated for respective periods
in terms of pattern correlation and absolute difference (see below).
Results were then compared (in similar terms) with inter-model com-
parisons between the GCMs for HOL and LGM, that is CCSM and
MIROC, respectively (see also Lawing & Polly, 2011; Rodder et al.,
2013). Pairwise correlations were calculated in SDMTooLsox v. 2.2b
(Brown, Bennett, & French, 2017), using Pearson's correlation coeffi-
cient (r), a commonly used metric for evaluating the skill of modelled
climatic variables (Fordham et al., 2017). This coefficient can range
between +1 and -1, indicating a positive or negative relationship, re-
spectively, while a coefficient of O indicates that two layers are inde-
pendent from each other (Brown et al., 2017).

3 | RESULTS

3.1 | Data validation

For the 19 bioclim variables, results showed generally good agree-
ment between the interpolated palaeo-bioclim layers (Oscillayers)
of the three validation time periods (HOL, LIG, PLIO) and the cor-
responding independent GCMs (see Figure 2; see also Figure S3 in
Supporting Information Appendix S1). Especially for Biol and Bio12
the interpolated variables were highly correlated with independent
GCMs of the respective periods (HOL: ry;, = .999, rgi, = -993;
LIG: rgioq = 970, rgigp = -962; PLIO: rgi 1 = .957, rgio4, = .935; see
also Table 1). The same was true for the remaining 17 bioclim vari-
ables (mean ruoL = -278, range: .906-1.0; r\ = .877, .597-.975;
reuo = -204, .684-.963). The inter-model pattern correlations be-
tween CCSM and MIROC for the HOL and LGM, respectively, were
generally smaller than those of Oscillayers-HOL.¢,, but tenden-
tially higher than Oscillayers-LIG and Oscillayers-PLIO (Table 1).
Absolute differences in the 19 bioclim variables between the
Oscillayers and the independent GCMs (for HOL, LIG and PLIO) com-
pared favourably with those derived between the CCSM and MIROC
variables for the HOL and LGM when judged by the 2.5-97.5% quan-
tiles. In detail, Oscillayers-HOL,, absolute differences were smaller
compared to those of HOL ¢\,~HOL,;roc @and LGM¢y"LGM o
for nine and 19 variables, respectively (Table 1). Similarly, Oscillayers-
LIG and Oscillayers-PLIO differences were smaller compared to those
of LGM(cgm"LGMyroc for 11 and 14 variables, respectively (Table 1).
Overall, the generated palaeo-bioclim layers showed good agreement
with independent GCMs (HOL, LIG and PLIO), with differences being
mostly smaller than those between the commonly used CCSM and
MIROC models for the HOL and LGM, respectively. Hence, the cur-
rent approach provides a sufficiently robust approximation of palaeo-

climate conditions throughout the Plio-Pleistocene.

4 | DISCUSSION

4.1 | Applications

Oscillayers provides climatic data for 19 bioclim variables (see
Supporting Information Appendices S2 and S3 for representative

WILEY- 5%

animations through time for Biol and Bio12), plus input data (see
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Table S2 in Supporting Information Appendix S1) and an R script, to
recreate those variables for time periods spanning the early Pliocene
(5.4 Myr) to the LGM (c. 20 kyr) in steps of 10 kyr.

Oscillayers can be used for testing a variety of eco-evolutionary
hypotheses over this time period, for example, about climate-induced
range changes of taxa or climate-related patterns of diversification
(speciation, extinction) and adaptation. This can be facilitated by
projecting ecological niche models (ENMs) of ecosystems or species
(extant or extinct) onto these palaeo-climatic layers (e.g. Espindola
et al., 2012; Roberts & Hamann, 2012), or by reconstructing ances-
tral climatic envelopes along molecular phylogenies (Lawing & Polly,
2011; Lawing et al., 2016; Meseguer et al., 2018; Rodder et al., 2013;
Yesson & Culham, 2006). Such spatially explicit models through time,
either derived from ENMs (assuming niche conservatism) or ances-
tral climatic envelope reconstructions (taking niche divergence into
account) might also be used for phylogeographic inferences “as is”, or
for modelling and testing population demographic hypotheses within
a coalescent framework (Collevatti et al., 2015, 2013). Other poten-
tial applications include, for example, the generation of PalacoENMs
via georeferenced fossils (Myers et al., 2015); the testing of biodiver-
sity-related hypotheses about palaeo-climatic stability in the tropics
(e.g. Couvreur et al., 2015; Kissling et al., 2016; Rakotoarinivo et al.,
2013); the testing of predictions of the glacial-sensitive model of is-
land biogeography (Fernandez-Palacios et al., 2016; Norder et al.,
2019) or the facilitation of landscape connectivity (dispersal corri-
dor) analyses over time in a conservation context (Eberle, Rédder,
Beckett, & Ahrens, 2017; Yu et al., 2015).

4.2 | Limitations and caveats

The Oscillayers framework presented herein assumes that past cli-
mates can be described by relative differences between modern
and Quaternary climates as guided by the isotope record (Collevatti
et al., 2015; Lawing & Polly, 2011; Rédder et al., 2013). As a corol-
lary, uncertainty of the interpolations may increase with time when
this assumption becomes less likely to hold. Also, as the Oscillayers
framework broadly assumes a modern continental configuration it
cannot explicitly account for spatial effects of large-scale geologi-
cal events (e.g. the Messinian Salinity Crisis, c. 5.96 to 5.33 Myr).
The current approach is therefore unlikely to be easily extended into
pre-Pliocene time periods. Also, the underlying GCMs used for the
generation, validation and evaluation of Oscillayers are fraught with
uncertainty, too (e.g. downscaling artefacts, parameters and func-
tions used; Hargreaves, 2010; Lima-Ribeiro et al., 2015; Varela et
al., 2015; Wiens, Stralberg, Jongsomjit, Howell, & Snyder, 2009).
Hence, the palaeo-climates derived should be cross-validated using
fossil and/or molecular evidence (Alsos et al., 2009; Collevatti et al.,
2013; Espindola et al., 2012; Roberts & Hamann, 2012). Finally, a
non-trivial task is the generation of highly resolved palaeo-coast-
lines through time (e.g. Norder et al., 2018, and references therein).
Here, this was accomplished by using simple land masks for the pal-
aeo-coastlines of each of the 539 time periods based on reclassified
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FIGURE 2 Oscillayers show good agreement with independent global circulation models (GCMs). Comparison of GCM-derived and
interpolated layers (Oscillayers) for annual mean temperature (Biol) and annual precipitation (Bio12) at global and regional (Madagascar; see
also Figure S3 in Supporting Information Appendix S1) scales for the Holocene (HOL: a, b), Last Interglacial (LIG: ¢, d) and Pliocene (PLIO: e, f)
[Colour figure can be viewed at wileyonlinelibrary.com]
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current bathymetry and topography (cf. Willmes et al., 2017), albeit
without taking regional topographic peculiarities on a global scale
for each time period into account. Consequently, for technical rea-
sons, land masks treat landlocked areas below sea level (e.g. the
Qattara Depression) as missing data. Nevertheless, users are free to
refine or regenerate the present land masks for their study region of

interest (see also the Data Accessibility section).
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