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Abstract

Motivation: Rapid advances in single cell RNA sequencing (scRNA-seq) have produced higher-

resolution cellular subtypes in multiple tissues and species. Methods are increasingly needed across

datasets and species to (i) remove systematic biases, (ii) model multiple datasets with ambiguous

labels and (iii) classify cells and map cell type labels. However, most methods only address one of

these problems on broad cell types or simulated data using a single model type. It is also important

to address higher-resolution cellular subtypes, subtype labels from multiple datasets, models

trained on multiple datasets simultaneously and generalizability beyond a single model type.

Results: We developed a species- and dataset-independent transfer learning framework (LAmbDA)

to train models on multiple datasets (even from different species) and applied our framework on

simulated, pancreas and brain scRNA-seq experiments. These models mapped corresponding cell

types between datasets with inconsistent cell subtype labels while simultaneously reducing batch

effects. We achieved high accuracy in labeling cellular subtypes (weighted accuracy simulated 1

datasets: 90%; simulated 2 datasets: 94%; pancreas datasets: 88% and brain datasets: 66%) using

LAmbDA Feedforward 1 Layer Neural Network with bagging. This method achieved higher

weighted accuracy in labeling cellular subtypes than two other state-of-the-art methods, scmap

and CaSTLe in brain (66% versus 60% and 32%). Furthermore, it achieved better performance

in correctly predicting ambiguous cellular subtype labels across datasets in 88% of test cases com-

pared with CaSTLe (63%), scmap (50%) and MetaNeighbor (50%). LAmbDA is model- and dataset-

independent and generalizable to diverse data types representing an advance in biocomputing.

Availability and implementation: github.com/tsteelejohnson91/LAmbDA
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1 Introduction

Amidst trillions of cells and hundreds of distinct cell types in the

human body, understanding tissue heterogeneity and the resulting

phenotypic consequences is a mammoth task with far-reaching im-

pact. For example, the brain consists of diverse co-localized neural,

glial, immune and vascular cell types that work in concert to form

complex nervous tissues. Complex tissues and their constituent cell

types have already been studied at the tissue level of resolution

(Dorrell et al., 2008, 2011; Erlandsen et al., 1976; Gomori, 1939;

Zhang et al., 2014). Fundamentally, these tissues are composed of

intricate populations of cells; researchers are now turning to the sin-

gle cell level to discern new cellular subtypes (Baron et al., 2016;

Darmanis et al., 2015), which are often spatially indistinct in their

tissue of origin (Kumar et al., 1999). For these reasons, there is a

critical need to differentiate cells from complex tissues during

sequencing.

The rapid advance of single cell RNA sequencing (scRNA-seq)

enables researchers to study cell differentiation and tissue heterogen-

eity in various tissues, diseases and physiological states. Studies have

analyzed scRNA-seq data from tissues of different species, such as

mouse (Chen et al., 2017; Li et al., 2016; Zeisel et al., 2015) and

human (Darmanis et al., 2015; Lake et al., 2016). Comparisons be-

tween mouse and human (Baron et al., 2016) or disease and normal

(Segerstolpe et al., 2016) were carried out. Some studies directly

compared human and mouse cell types from the same brain region

(Johnson et al., 2016; La Manno et al., 2016). These studies are es-

pecially important if data from mouse tissues can be used to identify

or fill in the missing human tissues of counterpart cell types into ‘in

silico chimeric’ datasets. These integrative datasets can prove to be

especially useful when human data or samples are scarce or technic-

ally infeasible to generate. However, the increased number of

scRNA-seq experiments has also produced unforeseen challenges.

One such challenge arises in that each scRNA-seq dataset gener-

ates its own subtype labels for the cells, which are often derived

based on unsupervised approaches (e.g. clustering), and carry intrin-

sic systemic biases (i.e. batch effects). These labels are often not con-

sistent enough to be directly used across datasets/studies/species

without first identifying their correspondence to each other.

To overcome this challenge in combining scRNA-seq datasets from

different studies, batches, platforms and species, we need to consider

the following three major tasks: (i) reduce the systematic biases

across datasets, i.e. batch effect correction; (ii) combine datasets for

integrative clustering, i.e. mega-analysis and (iii) predict cell labels

in one dataset with information from another dataset, i.e. cell classi-

fication, and identification of subtype label correspondence between

datasets. It is worth noting that these three general tasks are not

independent.

Among these three tasks, batch effect correction has arguably

the longest tradition as it has been addressed using multiple methods

for microarray (Chen et al., 2011; Diboun et al., 2006), RNA-seq

(Leek, 2014; Risso et al., 2014; Ritchie et al., 2015) and now

scRNA-seq data (Butler et al., 2018; Haghverdi et al., 2018; Park

et al., 2018). It is even more challenging to merge scRNA-seq data

of different studies, batches and species than microarray or RNA-

seq due to technical and biological limitations specific to scRNA-seq

such as drop out events. The commonly used method is to remove

sources of unwanted variance using regression with linear models

such as the process adopted by Seurat-CCA (Butler et al., 2018).

Alternatively, the approach can be improved by accounting for dif-

ferences in the cell populations of each dataset where only like

clusters of cells [mutual nearest neighbors (MNN)] are used in the

linear transformation as described in mnnCorrect (Haghverdi et al.,

2018). Building on these ideas, BBKNN identifies nearest neighbor

clusters and uses a connectivity graph to reduce the distances be-

tween the datasets and account for independent cell populations

(Park et al., 2018).

Seurat-CCA also performs mega-analysis where multiple data-

sets are projected into a unified subspace. In the case of Seurat-CCA,

these results are achieved with canonical correlation analysis (Butler

et al., 2018). Another approach, ClusterMap, uses marker genes to

identify similar cell types between datasets then projects the com-

bined dataset into a low-dimensional representation (Gao et al.,

2019). Building upon mnnCorrect, Scanorama identifies MNN,

which it then uses to reduce variance between datasets resulting in a

multi-dataset projection using a much more efficient algorithm (Hie

et al., 2018). Harmony and RISC also use multi-dataset clustering

to identify cluster similarities and ultimately linear corrections that

result in combined representations for further analysis (Korsunsky

et al., 2018; Liu et al., 2018). Similarly, transfer learning has also

been attempted, using non-negative matrix factorization where

source embeddings are applied to a target dataset with scCoGAPS

(Stein et al., 2018). Transfer learning can also be applied to cell type

classification.

CaSTLe uses mutual information to choose the best gene fea-

tures between two datasets so that boosted decision trees, an ensem-

ble algorithm, can predict labels in a target dataset from a source

dataset (Lieberman et al., 2018). There are also neural network

(NN) (Alavi et al., 2018; Huang et al., 2018; Lin et al., 2017), linear

model (Pliner et al., 2019; Zhang et al., 2019) and support vector

machine (Alquicira-Hernandez et al., 2018; Wagner and Yanai,

2018) classifiers designed for transfer-learning between pairs of

datasets. Voting algorithms such as k-nearest neighbor have been

used to classify cells (DePasquale et al., 2018; Kiselev et al., 2018;

Wagner and Yanai, 2018; Wang et al., 2018) and to map cell clus-

ters between datasets (Crow et al., 2018; Kiselev et al., 2018).

Clustering approaches, which employ Gaussian mixture models,

have been used to calculate cluster similarity between the labeled

subtypes in disparate datasets (Boufea et al., 2019; Mereu et al.,

2018). At a high level, most of these methods include a step to trans-

form the raw expression data into a generalizable representation.

Due to the NN architecture that allows for non-linear projection

into low-dimensional space and the early success of NNs in single-

cell data analysis (Lin et al., 2017), we believe transfer learning via

NNs gives us the most generalizable framework where batch effect

correction, mega-analysis and cell classification tasks can be

addressed using the same model.

In transfer learning, NNs can be trained more efficiently and

effectively on a target task when first trained on source examples

(Pratt, 1993). Training on multiple datasets drawn from different

distributions can reduce the amount of sample selection bias, a

potential cause of batch effects, in the resulting model (Huang et al.,

2006). Furthermore, unknown labels can be derived through do-

main adaptive training, resulting in a target task with labels (Ganin

et al., 2016). In computer vision, there have been multiple studies

aiming at training convolutional NNs with label ambiguity (Cour

et al., 2011; Geng, 2017; Hullermeier and Beringer, 2005; Jie and

Orabona, 2010).

Fortunately, recent developments in deep learning have allowed

NNs to accomplish classification and identification tasks in scRNA-

seq. NN models can be used for feature reduction and identifying
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tissue of origin (Lin et al., 2017). However, were not optimally

trained to be accurate across species in a single tissue type (Lin et al.,

2017) and did not carry out dataset integration with other tissues

despite the data rich environment of single cell transcriptomics

(Andrews and Hemberg, 2018). To take advantage of single-cell

data from different sources and species, effective machine learning

algorithms are needed for across species cell type mapping and gene

feature reduction.

Furthermore, the current methods used for batch effect correc-

tion, mega-analysis and cell classification in scRNA-seq would be

improved if the following goals were achieved:

1. Cells should be mapped to a comprehensive union of biological

cell types across datasets.

2. Batch effect correction, mega-analysis, and cell classification

should be replicable in a hold-out group of samples.

3. A framework should be generalizable to more than two datasets.

4. A framework should not be restricted to labels from one dataset.

5. A framework should not be restricted to a single model type.

It should be noted that in many studies, major cell type informa-

tion is generally known, which reduces the search space when map-

ping high-resolution subtypes of cells between datasets.

From these principles and goals, in this paper we present

LAmbDA (Label Ambiguous Domain Adaptation), which attempts

to train a model using all datasets as input along with a combined

subset of representative labels unspecific to a single dataset and pos-

sible label mappings discerned through the literature or preprocess-

ing. The accuracy of LAmbDA is evaluated on hold-out groups of

cells coming from multiple datasets. Furthermore, LAmbDA can

project the hold-out group (for model evaluation) or all the cells (for

mega-analysis) into a batch effect corrected low-dimensional repre-

sentation. The goal of LAmbDA is to provide a framework that is

highly generalizable to multiple applications (batch effect removal,

mega-analysis, cell classification), to scaling (dataset number, sam-

ple size), to integrative label sets (combined labels from multiple

studies) and to model (NN, random forest, ensemble, etc.).

Specifically, LAmbDA is generalizable and allows a model to be

trained simultaneously on two or more datasets using a hybrid label

set from one or more datasets. It takes a semi-supervised approach

and is designed primarily for use on high-resolution subtypes of cells

where unsupervised algorithms have reduced accuracy and capacity

for knowledge transfer between datasets. Its general framework

allows us to test multiple machine learning algorithms including lo-

gistic regression (LR), Feedforward 1 Layer NN (FF1), Feedforward

3 Layer NN (FF3), Recurrent NN (RNN1), Random Forest (RF)

and the ensemble method FF1 with bagging (FF1bag) on multiple

simulated and real datasets (e.g. human pancreas and human/mouse

brain scRNA-seq datasets) for subtype identification and matching.

Subtypes of cells shared across datasets are considered replicable

and robust (Crow et al., 2018). We refer to these robust classes of

cellular subtypes as ‘consistent’ since they are present regardless of

dataset, species, and condition. These biologically relevant consist-

ent subtypes can be discovered by LAmbDA.

To summarize, we demonstrate that LAmbDA-based models are

capable of simultaneously matching unstandardized labels with

varying degrees of overlap, combining disparate datasets from dif-

ferent species/platforms using training and testing sets, and predict-

ing consistent subtypes of cells learned during training with high

accuracy. It offers a framework to accommodate other models be-

yond these biological applications to suit a variety of data types and

analyses.

2 Materials and Methods

2.1 Datasets
Ten datasets were used to test LAmbDA. We intentionally chose a

heterogeneous mix of datasets to study the robustness of our

method. The datasets include three pancreatic scRNA-seq datasets

(aka pancreas), three brain scRNA-seq datasets (aka brain), two

simulated datasets with one cell type difference (aka simulated 1),

and two more simulated datasets with two cell type difference (aka

simulated 2).

We generated two synthetic datasets using splatter (Zappia

et al., 2017) with four corresponding cell types. Cell type 4 was

removed from dataset B and retained in dataset A resulting in simu-

lated 1 (Dataset A: 2000 cells and 4 cell types, Dataset B: 902 cells

and 3 cell types). In simulated 2, cell type 1 was removed from data-

set A and cell type 4 was removed from dataset B (Dataset A: 1190

cells and 3 cell types, Dataset B: 902 cells and 3 cell types). The pan-

creatic datasets included (Fig. 1A) 1 human dataset with 15 cell

types (Seg, 1980 cells) (Segerstolpe et al., 2016), 1 human dataset

with 10 cell types (Mur, 2126 cells) (Muraro et al., 2016) and 1

human dataset with 14 cell types (Bar, 8569 cells) (Baron et al.,

2016). The brain datasets included (Fig. 1B) 1 human dataset with

only neurons and 16 subtype level labels (HumN, 3086 cells) (Lake

et al., 2016), 1 human dataset with neurons and glia and 6 major

cell type level labels (HumNG, 285 cells) (Darmanis et al., 2015)

and 1 mouse dataset with neurons and glia and 48 subtype level

labels (MusNG, 3005 cells) (Zeisel et al., 2015).

A B

C

E

D

Fig. 1. t-SNE plot of scRNAs-seq data after feature selection step. (A)

Simulated 1 datasets: data A (red) and data B (green). (B) Simulated 2 data-

sets: data A (red) and data B (green). (C) Pancreatic datasets: Seger (red), Mur

(green) and Bar (red). (D) Brain datasets: MusNG (red), HumN (green) and

HumNG (blue). (E) A scheme of consistent subtype identification using trans-

fer learning approach (a three-dataset example)
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2.2 General framework
2.2.1 Dataset integration

We illustrate the LAmbDA framework using an example with three

different datasets. In our notation, bold uppercase denotes matrix

(X), bold lowercase denotes vector (x), lowercase letter denotes nu-

meric value (x) and uppercase denotes a set (e.g. gene set or sample

set, X). Given three scRNA-seq expression matrices

XðiÞði ¼ 1; 2; 3Þ; each with ni cells (samples) and Ti transcripts

(feature), the number of transcripts are first reduced to the intersec-

tion of all three datasets (T) based on homology across species using

the Ensemble biomaRt package (Durinck et al., 2009) and gene

name similar to Seurat-CCA (Butler et al., 2018). The subtype labels

of each cell across all three datasets are denoted by Y ðiÞ ði ¼
1; 2; 3Þ each containing li labels, the data matrices are:

X ðiÞ 2 R
ni�tj i ¼ 1; 2; 3; Y ðiÞ 2 R

ni�tj i ¼ 1; 2; 3; where

t ¼ jTj where T ¼ T1\T2\T3:

To pool all of the datasets together for a single model, we com-

bine the expression matrix (X) and label matrix (Y) described

below:

X ¼
X1

X2

X3

2
4

3
5 2 R

n�t; Y ¼
Y1 0n1�l2 0n1�l3

0n2�l1 Y2 0n2�l3

0n3�l1 0n3�l2 Y3

2
4

3
5 2 R

n�l

n ¼
X3

i¼1

ni; l ¼
X3

i¼1

li:

The labels are one-hot encoded such that each row of Y ðiÞ con-

tains a single value of one indicating the label of the specific cell.

Each row will have a single value of one in the column correspond-

ing to that subtype label. Using this encoding, it would be straight-

forward to train a LR, random forest or NN model (f ðXÞ) on the

data using optimization algorithms to minimize the following ob-

jective function:

min mean
X

Y � f Xð Þ
� �2

� �� �
:

However, all the labels (L) in the three datasets are not identical

nor mutually exclusive resulting in a multi-label problem. For ex-

ample, in the brain study, all interneuron subtypes in Dataset 2

could potentially match any of the interneuron subtypes in Dataset 1.

This label overlap between datasets implies that a subset of the more

refined consistent subtypes (L̂) exists in L such that all subtypes in L

can be assigned to a subtype in L̂ (Fig. 1E). A new and more refined

label matrix (Ŷ ) can be generated from L̂:

L ¼ fk 2 Zj1 � k � lg

9L̂ � L; l̂ ¼ jL̂j

9Ŷ 2 Z
n�l̂ :

As a result, we propose that it is possible to train a model (f̂ ðxÞ)
on the more refined subtypes (L̂ and Ŷ ) on the following optimiza-

tion problem:

min mean
X

Ŷ � f̂ Xð Þ
� �2

� �� �
:

The above optimization problem can be solved using the follow-

ing two algorithms. Algorithm 1 corresponds to the more general

version of LAmbDA used for LR and RF. Algorithm 2 corresponds

to the NN implementation that actively remove batch effects in the

hidden layer.

2.2.2 Algorithms

To train the LAmbDA models, we used the Adam Optimizer

(Kingma and Ba, 2014) with step size of 0.01 and random mini-

batches of size pbatch that were changed every 50 iterations to

prevent overfitting of unambiguous labels. We ran each model for

2000 iterations except for the RF model, which was run for 100

iterations. The code was written for GPU-enabled TensorFlow

Python3 package. The input matrices (X, Y) were preprocessed

into €X , €Y and the possible inter-dataset label mappings were

preprocessed into an adjacency matrix (G) before running the

algorithms. For details on the preprocessing, hyper-parameter

tuning and individual equations used (see Supplementary Section

2.1). The main differences between Algorithms 1 and 2 is that

Algorithm 1 does not remove batch effects in a lower-dimensional

representation of the cells since LR and RF do not contain a hidden

layer. In contrast, Algorithm 2 is training additional loss terms

to remove these batch effects in the final hidden layer before the

classification layer.

2.3 LAmbDA model performance
We applied the LAmbDA framework with five different machine

learning algorithms (LR, FF1, FF3, RNN1, RF) and one ensemble

method (FF1bag) to determine the performance of the LAmbDA-

based methods in cell type classification. We evaluated the perform-

ance using the following metrics: (i) test accuracy of unambiguity;

(ii) cluster-wise distance ratios and (iii) Wilcoxon rank sum P-values

Algorithm 1. Label Ambiguous Domain Adaptation

(LAmbDA) for LR and RF

Input: preprocessed expression matrix €X , preprocessed labels
€Y , and label mask G, Supplementary Equations (S1)–(S3)

Output: a trained classifier f̂ xð Þ with mapped ambiguous

labels and batch effects removed

Random initialization

1. Train on unambiguous labels

Using the subset of samples that have only one possible label

For the first half of total iterations:

i. Forward propagate predicted labels

ii. Back propagate gradient from label error (i.e. update

model)

2. Train on ambiguous labels

Using all samples regardless of number of possible labels

For the second half of total iterations:

i. Forward propagate predicted labels [i.e. calculate f̂ €Xð Þ,
Supplementary Equations (S13)–(S17)]

ii. Assign labels to ambiguously labeled cells [i.e. calculate

Ŷ , Supplementary Equation (S8)]

iii. Calculate label error using Ŷ and f̂ €Xð Þ
iv. Back propagate gradient from label error [i.e. update

model, Supplementary Equations (S18) and (S19)]

3. Assigning labels to test set

Using test set

i. Assign cells to consistent subtypes

ii. Identify ambiguous label mappings using cell

assignments
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for comparisons between labels where label ambiguity was added

(in the case of pancreas and simulated data) and where the true map-

ping can be inferred in the original publications (in the case of brain

data). For the datasets, we compare the cell classification perform-

ance with three state-of-the-art methods: MetaNeighbor (Crow

et al., 2018), CaSTLe packages (Lieberman et al., 2018) and scmap

packages (Kiselev et al., 2018). For dimensionality reduction, we

compared with Seurat-CCA (Butler et al., 2018) and mnnCorrect

(Haghverdi et al., 2018).

2.2.3 Unambiguous label accuracy

The test set accuracy of unambiguous labels was calculated from the

difference between the unambiguous labels and the one-hot pre-

dicted labels averaged across each round of cross validation. The

weighted accuracy (W-Acc) was generated from the mean of each of

the individual label accuracies so that each output label was equally

weighted regardless of the number of cells in each label. We also cal-

culated the area under the receiver-operating curve (AUC) for unam-

biguous labels. The AUCs (for each output label) were averaged to

give the final AUC reported in the figures and tables.

2.2.4 Distance ratios to measure batch effects

Three cluster-wise median distance ratios were calculated based on

relevant combinations of labels (subtypes) and datasets. The data in

these combinations consisted of the Euclidean distances between

subtypes of cells in the last hidden layer of the NN implementations

of LAmbDA. These combinations were: same dataset-same subtype

(DatþSubþÞ, which was not used because this is a trivial case that

had Euclidean distance ¼0.0; same dataset-different subtype

(DatþSub�); different dataset-same subtype (Dat�Subþ) and differ-

ent dataset-different subtype (Dat�Sub�). For each of the combina-

tions, the median Euclidean distance was calculated from the

distances in that group. These median distance values were used to

generate three ratios for comparison, (i) Dat�Subþ=DatþSub� (the-

oretically<1); (ii) Dat�Subþ=Dat�Sub� (theoretically<1) and (iii)

DatþSub�=Dat�Sub� (theoretically¼1, i.e. control). These ratios

measured the reduction of dataset batch effects [(i) and (ii)] as well

as the level of noise introduction by LAmbDA (iii).

2.2.5 Assignment of ambiguous labels

The label mask [G, Supplementary Equation (S1)] used in the pan-

creas datasets had ambiguity added to the label mapping to determine

if LAmbDA-FF1 can assign correct labels to the cell types.

Specifically, incorrect label mappings were added to the training mask

[G; Supplementary Equation (S1)]. In simulated 1 all three labels

from dataset B could be assigned to any of the four output labels. For

simulated 2 two of the input labels, one from dataset A and one from

dataset B, could be assigned to any of the four consistent labels. In

pancreas, five endocrine labels could be assigned to any of the five

consistent endocrine labels, acinar and ductal cells could be assigned

to either acinar or ductal consistent labels, and three endothelial and

immune cells could be assigned to any of the three endothelial and im-

mune consistent labels. In brain, five cortex pyramidal input labels

could be assigned to eight consistent pyramidal labels. Since we could

infer the likely mapping between the MusNG and HumN cortical pyr-

amidal cells from past research, we knew the most likely mapping be-

tween them (Lake et al., 2016). These inferred high likelihood

mappings were used as further validation. Wilcoxon rank-sum tests

were used to measure if LAmbDA-FF1 correctly assigned ambiguous

labels to the correct labels in simulated 1, simulated 2, pancreas and

brain test cases. Specifically, the number of cells in correct mappings

was compared with the number of cells in incorrect mappings using

the Wilcoxon rank-sum test. We highlighted the ambiguous label

mappings as numbered boxes in the resulting confusion matrices pro-

duced by these analyses.

2.2.6 Comparison with the related methods

We compared LAmbDA with scmap, CaSTLe and MetaNeighbor for

cell classification and label mapping [Task (iii)]. Each method

approached cell classification differently, so our comparisons were con-

ducted accordingly. CaSTLe and scmap perform pairwise comparisons;

therefore, we used the largest pancreas dataset Bar (8569 cells, 14

labels) to predict the smallest but most diverse dataset Seg (1980 cells,

15 labels). In brain, MusNG (3005 cells, 48 labels) were used to predict

HumN (2086 cells, 16 labels). MetaNeighbor predicts the cell label

using all of the labels from all datasets. In pancreas this meant 12 675

cells across 38 labels, and in brain 6376 cells across 70 labels. Since

simulated 1 and 2 each only contained two datasets, no special consid-

eration is needed to perform comparisons. The unambiguous accuracy

was defined as the accuracy during cross validation on the source data-

set. The Wilcoxon rank-sum tests were calculated for the same cross

Algorithm 2. Label Ambiguous Domain Adaptation

(LAmbDA) for Neural Network

Input: preprocessed expression matrix €X , preprocessed labels
€Y , and label mask G, Supplementary Equations (S1)–(S3)

Output: a trained classifier f̂ xð Þ with mapped ambiguous

labels and batch effects removed

Random initialization

1. Train on unambiguous labels

Using the subset of samples that have only one possible label

For the first half of total iterations:

i. Forward propagate predicted labels

ii. Back propagate gradient from label error (i.e. update

network)

2. Train on ambiguous labels

Using all samples regardless of number of possible labels

For the second half of total iterations:

i. Forward propagate predicted labels [i.e. calculate f̂ €Xð Þ,
Supplementary Equations (S14)–(S16)]

ii. Assign labels to ambiguously labeled cells [i.e. calculate

Ŷ , Supplementary Equation (S8)]

iii. Calculate Euclidean distances between subtypes [i.e.

calculate E, Supplementary Equations (S9) and

(S10)]

iv. Calculate label error using Ŷ and f̂ €Xð Þ
v. Calculate batch effects error using M1, M2 and E

[Supplementary Equations (S10)–(S12)]

vi. Back propagate gradient from error terms [i.e. update

network, Supplementary Equation (S20)]

3. Assigning labels to test set

Using test set

i. Assign cells to consistent subtypes

ii. Identify ambiguous label mappings using cell

assignments
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dataset comparisons as LAmbDA using cell label counts (used to gener-

ate weighted accuracy W-Acc) and AUC (Bradley, 1997).

Furthermore, we compare LAmbDA to Seurat-CCA and

mnnCorrect in the batch effect correction [Task (i)] and mega-

analysis [Task (ii)]. For simplicity, we treat these tasks similarly and

calculate the same distance ratios used to compare LAmbDA model

types on the aligned canonical correlation vectors from Seurat-CCA

and the corrected full gene set from mnnCorrect. Since the distance

ratios are not affected by the dimensionality of the data, the compar-

isons are fair between the hidden layer of LAmbDA, Seurat-CCA

projection and the correct gene expression values from mnnCorrect.

Since Seurat-CCA and mnnCorrect do not produce a model that can

be applied to a hold-out group of cells, we compare LAmbDA

against 20% of the cells 10 times from each dataset for Seurat-CCA

and mnnCorrect despite that these cells also being used to create the

Seurat-CCA and mnnCorrect correction.

3 Results

We generated simulated 1 and 2 datasets to compare the algorithm

on known distributions of data as a basic ground truth. Similarly,

the pancreas datasets were used to test the feasibility and performan-

ces of our methods in biological data after introducing ambiguity

into the cell type labels, since the pancreas datasets were mostly un-

ambiguous—the labels contained all major cell types with high over-

laps among all three datasets. Furthermore, since all cells were from

the same species, they form a good testing bed for the label mapping

without the added complexity across species. The brain datasets

were chosen to test the LAmbDA method capability to deal with

issues such as the cross-species complexity, sample imbalance, reso-

lution of labels and diversity of major cell types. The major cell type

classes (e.g. neuron, glial) were labeled in brain too. Therefore we

knew the possible subtype mappings in the brain, which served as

the ground truth when the performance was evaluated. To evaluate

the performance, the batch effects on the unprocessed data had to be

analyzed as a baseline. All datasets showed high batch effects, which

can be observed from the t-SNE diagram (Fig. 1A–D). In this study,

LAmbDA aimed at removing the batch effects and revealing consist-

ent subtypes (Fig. 1E) while still maintaining high accuracy in pre-

dicting labels of unambiguous cells.

3.1 LAmbDA improves cell classification
Tables 1 and 2 and Supplementary Table S1 describe the performan-

ces of LAmbDA, CaSTLe, scmap and MetaNeighbor to predict un-

ambiguous and ambiguous cell types. When the ambiguous labels

were tested across datasets, LAmbDA-FF1bag and LAmbDA-FF1

had the most significant cross dataset significance tests (7/8).

LAmbDA-RF achieved the highest weighted accuracies in pancreas

(94%), brain (72%) and had similar accuracy to scmap in simulated

2. CaSTLe achieved the highest AUC in simulated 1 (99%) and pan-

creas (99%). However, CaSTLe, scmap and MetaNeighbor W-Acc

and AUC were calculated from the source dataset and could have

been caused by over-fitting considering the inter-dataset results (5/8

significant tests for CaSTLe and 2/4 significant tests for scmap).

Furthermore, the test statistics based on AUC values for both CaSTLe

and MetaNeighbor were much closer than the test statistics based on

cell labels to LAmbDA-FF1 and LAmbDA-FF1bag in all tests. This

suggests that CaSTLe and MetaNeighbor are useful in mapping labels

between datasets but should not be used over LAmbDA in classifying

individual cells between datasets. This is an important distinction.

High AUC is not sufficient to show a model performs well at the

multi-class classification problem but rather that the labels are cor-

rectly mapping between datasets at a cell population level.

3.2 Multiple LAmbDA models achieve high

classification accuracy
We compared each of the six LAmbDA-based methods on the simu-

lated 1, simulated 2, pancreas, and brain datasets separately. The

LAmbDA framework is shown in Figure 2. All LAmbDA models per-

formed more accurately than random chance (Supplementary Figs

S3–S6; Table 3). The lowest unambiguous accuracy was from

LAmbDA-LR in all datasets and LAmbDA-RF produced the highest

weighted accuracies. For mapping ambiguous labels, the ensemble

method LAmbDA-FF1bag produced the most desirable results

(Fig. 3A, C, E and G). LAmbDA-FF1bag also maintained high unam-

biguous accuracy in pancreas data (weighted accuracy: 88%) and in

brain data (weighted accuracy: 66%; Supplementary Figs S5 and S6;

Table 3). The constituent model of LAmbDA-FF1bag, LAmbDA-

FF1, had similar weighted accuracy to that of the more complex

LAmbDA-FF3 model in the biological data (61 versus 67% for pan-

creas, and 48 versus 49% for brain data). However, when this

Table 1. Cross dataset mapping

Cross-dataset mapping

Wilcoxon ranksum P-value

Simulated 1 (7–4) Simulated 2 (6–4) Pancreas (39–17) Brain (70–43)

Cell label

P-value

AUC

P-value

Cell label

P-value

AUC

P-value

Cell label

P-value

AUC

P-value

Cell label

P-value

AUC

P-value

LAmbDA-FF1bag 0.0006 0.0351 0.0005 0.0937 0.0181 0.0002 0.0175 0.0018

LAmbDA-FF1 <0.0001 0.0351 0.0002 0.0937 0.0478 0.0001 0.0130 0.0014

LAmbDA-RF 0.7611 0.0001 0.7128 0.0937 0.5150 0.0015 0.2386 0.4983

Scmap 0.0160 0.1333 <0.0001 0.3671

CaSTLe 0.0091 0.0091 0.1333 0.1333 0.0008 <0.0001 0.4688 0.0049

MetaNeighbor 0.0091 0.2727 0.0005 0.4813

Note: This table contains the significance tests used to determine the accuracies of labels assigned across datasets. Cell label indicates the cell counts in a confu-

sion matrix across the two datasets used in the experiment. AUC indicates the AUC that was calculated for the same confusion matrix based on the label probabil-

ity output. Note that AUC is based on binary labels so AUC does not give information about the algorithms ability to correctly select a single label from multiple

labels. The numbers in parentheses (S to C) after each dataset show how many starting labels (S) are used as input and how many consistent labels are used as out-

put (C) by the LAmbDA algorithm. Alternatively, the cell label column measures the ability to select the correct label and no other labels. The significance tests

(Wilcoxon rank-sum) were used to test whether cell counts/AUCs were higher in the confusion matrix for correct mappings (i.e. dataset A cell type 1 and dataset

B cell type 1) opposed to the incorrect mapping (i.e. dataset A cell type 1 and dataset B cell type 2). Italicized values indicate significant test statistics. Bold values

indicate the best metric in that particular test across all of the methods. Gray boxes indicate areas that are not available from an algorithm.
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complexity was increased using ensemble methods, i.e. LAmbDA-

FF1bag, we saw a much greater improvement in performance com-

pared with LAmbDA-FF3 (88 versus 67% in pancreas and 66 versus

49% in brain). With high unambiguous accuracy, these models were

evaluated for their ability to remove batch effects in the data.

3.3 LAmbDA NNs reduce batch effects between

datasets
The NN-based LAmbDA-FF1, -FF1bag, -FF3 and -RNN1 each

performed additional feature reduction (Table 3). During training,

the hidden layer improved cellular resolution and reduced dataset

batch effects as measured by cluster distance ratios (Table 3).

LAmbDA-FF1 generated the best reduction of dataset batch effects

compared with the other LAmbDA models (Table 3 and Fig. 4;

Supplementary Figs S7–S11). In the pancreas dataset, LAmbDA-

FF1, -FF1bag, -FF3 and -RNN1 were able to achieve better distance

ratios than the full gene set features (Table 3; Supplementary Fig.

S9) and were distinctly separated into consistent subtype clusters

via Gaussian mixture models (Supplementary Fig. S10). The brain

datasets contained greater batch effects and seemed dependent on

the subtype signal. Despite this, LAmbDA-FF1 and LAmbDA-

FF1bag still outperformed the full feature set across the distance

metrics (Table 3 and Fig. 4). The datasets themselves showed

differing levels of success in batch effect removal. Specifically, in the

simulated data, LAmbDA-FF1 and LAmbDA-FF1bag showed

considerable improvement over the full feature set (Fig. 4A–F). We

also compared against current batch effect reduction techniques

Seurat-CCA and mnnCorrect.

Overall we found that LAmbDA-FF1 outperformed Seurat-CCA

in the simulated 1, pancreas, and brain test cases (Table 3;

Supplementary Tables S7–S11). LAmbDA-FF1 performed compar-

ably to mnnCorrect in both of the biological test cases pancreas and

brain. Overall, LAmbDA models reduce the batch effects in the data

(Fig. 4) and perform well compared with the current state-of-the-art

batch effect correction methods.

3.4 High-resolution cortical neural subtypes are

consistent across species
We show that the mouse cortical pyramidal subtypes map to human

cortical pyramidal subtypes by their associated cortical layer (e.g.

A

B

Fig. 2. LAmbDA framework: (A) the LAmbDA framework including the simplified label mapping [Ŷ; Supplementary Equation (S8)] and batch effect removal

(E8M1, E8M2; Supplementary Equations (S10)–(S12)] where Hadamard product (8Þ denotes element-wise multiplication. (B) The distance ratios used to evaluate

batch effect reduction where letter indicates dataset and number indicates subtype. The cells are in a reduced feature space in the NN last hidden layer where the

distance between subtypes of cells can be measured. The first and second ratio should be <1 and the third ratio should be 1

Table 2. Unambiguous label accuracy

Unambiguous label accuracy

Weighted accuracy and AUC

Simulated 1 (7–4) Simulated 2 (6–4) Pancreas (39–17) Brain (70–43)

W-Acc (%) AUC (%) W-Acc (%) AUC (%) W-Acc (%) AUC (%) W-Acc (%) AUC (%)

LAmbDA-FF1bag 90 91 94 94 88 95 66 97

LAmbDA-FF1 49 73 67 86 61 94 48 93

LAmbDA-RF 93 91 99 100 94 98 72 98

Scmap 96 99 87 58

CaSTLe 85 99 96 100 75 99 32 94

MetaNeighbor 72 69 86 75

Note: This table contains the weighted accuracy (W-Acc) and area under the receiver-operating curve (AUC) for the labels in the source dataset, i.e. the dataset

from which the labels were derived, using cross validation. The numbers in parentheses (S to C) after each dataset show how many starting labels (S) are used as input

and how many consistent labels are used as output (C) by the LAmbDA algorithm. Note that for scmap, CaSTLe and MetaNeighbor the weighted accuracy and AUC

is calculated within a single dataset. For LAmbDA, weighted accuracy and AUC were calculated for all unambiguous labels, which may come from one or more data-

sets. Bold values indicate the best metric in that particular test across all of the methods. Gray boxes indicate areas that are not available from an algorithm.
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L2 cortex pyramidal cells in mouse are associated with L2 cortex

pyramidal cells in human, Fig. 3G and H, Box 2). This indicates that

high-resolution subtypes are consistent across species (in this case,

mouse and human) and the conservation aligns with cortical layer.

Because we were able to recreate known or inferred mappings, we

applied the mapping from LAmbDA-FF1bag interneurons to infer

consistent subtypes. These insights allowed us to hypothesize the

label mapping of interneurons between human and mouse (Fig. 3G,

Box 1). We observed specific subsets of mouse subtypes mapped to

the human subtypes. With the biomarkers described in each of the

primary sources of the data (Darmanis et al., 2015; Lake et al.,

2016; Zeisel et al., 2015), we showed relevant biomarkers for the

consistent interneuron subtypes (Supplementary Table S2) by inter-

secting the biomarker lists from the two species.

3.5 Major cell types consistent across species and

dataset
Aside from the mapping of ambiguous labels across datasets, we

found consistent mapping patterns between subtypes within the same

major cell type. These mappings further validate our method. For ex-

ample, the MusNG oligodendrocyte subtypes showed high consist-

ency with other oligodendrocyte subtypes compared with other

subtypes (Wilcoxon P-value <0.0001; Fig. 3G, Box 4). The HumNG

oligodendrocytes mapped to multiple MusNG oligodendrocytes

compared with other subtypes (Wilcoxon P-value <0.0001), and the

HumNG astrocytes mapped to multiple MusNG astrocyte subtypes

compared with other subtypes (Wilcoxon P-value <0.0001).

Cortical interneuron subtypes were highly consistent with other

cortical interneuron subtypes in HumN compared with other subtypes

(Wilcoxon P-value <0.0001, Fig. 3G, Box 5), and cortical pyramidal

subtypes were highly consistent with other cortical pyramidal sub-

types in HumN compared with other subtypes (Wilcoxon P-value

<0.0001, Fig. 3G, Box 6). Such relationships were observed in the

pancreas data, where immune cells clustered with one another (Fig.

4H and I; Supplementary Fig. S10). Furthermore, we found that mod-

els trained with MusNG and tested on HumN and vice versa showed

the same major cell type patterns (Supplementary Fig. S2).

4 Discussion

All LAmbDA-based methods were able to predict cellular subtypes

across datasets with varying degrees of success. Each LAmbDA

model caters to different specific demands, with LAmbDA-FF1bag

having the best overall performance. For instance, LAmbDA-FF1

performs best at correctly removing batch effects. LAmbDA-RF is

most accurate at predicting unambiguous labels (e.g. within a data-

set). LAmbDA-RNN1 shows desirable characteristics in integrating

the datasets, but the expression input format needs to be further

Table 3. The batch effect reduction measures for each of the LAmbDA models, Seurat-CCA, and mnnCorrect

Simulated 1 Simulated 2

Distance ratios Accuracy Distance ratios Accuracy

i ii iii W-Acc (%) AUC (%) i ii iii W-Acc (%) AUC (%)

LAmbDA-FF1bag 0.58 0.58 0.98 90 91 0.37 0.38 0.98 94 94

LAmbDA-FF1 0.30 0.30 0.99 49 73 0.26 0.27 1.01 67 86

LAmbDA-FF3 0.84 0.90 1.01 35 62 0.86 0.85 0.99 36 66

LAmbDA-RNN1 0.86 0.84 0.97 28 52 0.88 0.77 0.84 27 53

LAmbDA-LR 27 51 26 50

LAmbDA-RF 93 91 99 100

Seurat-CCA 0.36 0.37 1.02 0.22 0.21 0.96

mnnCorrect 0.16 0.16 0.99 0.16 0.16 1.00

Full gene set 0.79 0.64 0.82 0.78 0.65 0.83

Pancreas Brain

Distance ratios Accuracy Distance ratios Accuracy

i ii iii W-Acc (%) AUC (%) i ii iii W-Acc (%) AUC (%)

LAmbDA-FF1bag 1.10 1.02 0.92 88 95 0.74 0.65 0.91 66 97

LAmbDA-FF1 0.69 0.60 0.92 61 94 0.63 0.56 0.86 48 93

LAmbDA-FF3 0.98 0.95 1.04 67 92 1.00 0.83 0.83 49 93

LAmbDA-RNN1 0.84 0.96 1.02 40 84 1.21 0.80 0.64 9 67

LAmbDA-LR 17 54 17 56

LAmbDA-RF 94 98 72 98

Seurat-CCA 0.74 0.75 1.01 0.95 1.03 1.09

mnnCorrect 0.64 0.64 0.98 0.74 0.75 1.01

Full gene set 1.30 1.02 0.78 1.16 0.84 0.72

Note: The LAmbDA models also include weighted accuracy (W-Acc) and area under the receiver-operating curve (AUC) so that bath effect reduction and ac-

curacy can be compared. Seurat-CCA and mnnCoreect do not perform the additional prediction so they were not included. The LAmbDA results were calculated

on a holdout group of cells that were not used during training. The Seurat-CCA results and mnnCorrect results are produced from the training set of cells since

there is no way to conduct the analyses on a holdout group of cells. In this way, the LAmbDA to Seurat-CCA and mnnCorrect comparison is like comparing

LAmbDA test accuracy to Seruat-CCA and mnnCorrect training accuracy. mnnCorrect also does not return the low-dimensional representation (it would be

straight-forward using PCA or tSNE) so the corrected full gene set was used. Distance ratio i should ideally be <1.0 approaching 0.0. Distance ratio ii should

ideally be <1.0 approaching 0.0. Distance ratio iii should ideally be 1.0. Italicized distance ratios correspond to improvement over the uncorrected gene set and

bold represents best or tied for best performance.
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refined to take advantage of the recurrent architecture. These differ-

ences also display a unique pattern that correcting for batch effects

translates well to generalizability but may decrease the accuracy of

an algorithm on known labels. This suggests that batch effects and

subtype differences are not independent of one another. This makes

the problem even more difficult to separate the two types of vari-

ance, bias and cellular signal, in the data. We suggest different

LAmbDA models should be considered to suit different dataset am-

biguity levels and are especially important when studying the correct

assignment of ambiguous labels.

These general patterns are also mirrored in the algorithms that

LAmbDA was compared against. CaSTLe performed very well in mul-

tiple datasets with high accuracy, which is not surprising because

CaSTLe is a form of ensemble random forest model. Two of the best

models in specific cases were LAmbDA-RF (random forest) and

LAmbDA-FF1bag (ensemble). scmap performed well in a number of

datasets showing the utility in k-Nearest Neighbor (kNN)-based meth-

ods. This is especially convincing given the improved performance in

batch effect correction once MNN was introduced by mnnCorrect.

MetaNeighbor, a more straight-forward kNN approach than scmap

also performed relatively well. Considering the performance of various

LAmbDA models, CaSTLe, scmap and MetaNeighbor, it seems that

the kNN algorithms provide good out-of-the-box across dataset accu-

racies, random forests provide high accuracy within datasets, NNs pro-

vide the added benefit of a low-dimensional representation (i.e.

interpretability), and ensemble techniques greatly improve the classifi-

cation accuracies both within and across datasets.

One focus of future improvement lies in ensemble methods

(strong learners) that deliver higher performance by harnessing the

unique strengths of individual models (weak learners). For instance,

kNNs and MNN algorithms in general are able to correctly identify

the closest matches across datasets but are not interpretable without

post processing and do not achieve the highest accuracies. These

label mappings can potentially be utilized as hypotheses for other

machine learning models that are less robust to label ambiguity but

achieve a higher accuracy on low ambiguity labels. This general idea

is reflected in the brain dataset where there was less ambiguity

across a large label set allowing LAmbDA-FF1bag to learn the high-

resolution subtypes. In contrast, on simulated 1 and pancreas data, a

more complex model like LAmbDA may not be needed to learn

more broad cell types with higher levels of label ambiguity when

compared against CaSTLe, scmap and MetaNeighbor. The level of

resolution is an important factor in algorithm design, which is dir-

ectly affected by the partial dependency between different types of

variance (dataset, species, cell type, anatomic location).

The starkest reflection of this can be seen in the way that batch

effects are addressed. Some methods attempt to identify similar clus-

ters and decrease variance between these similar clusters that have

been identified (mnnCorrect, LAmbDA). Others are focused primar-

ily on the ‘mixing’ of individual cells between datasets so that the

variances within disparate datasets mirror each other after being

projected into a lower-dimensional space (Seurat-CCA). Again, we

see that there is a trade-off between completely de novo correction

like Seurat-CCA, which may lose some data structure, and in

directed correction like mnnCorrect or LAmbDA, which are biased

by the hypothesized cross-dataset mapping. Perhaps the best solu-

tions lie again in various forms of ensemble methods that algorith-

mically weigh the advantages and disadvantages of each strategy to

select the best representation of the data. These technical considera-

tions will only increase the biological signals gleaned from the data

even across datasets and species.

Not surprisingly, similar subtypes within a species tend to cluster

together. For instance, in the brain, the oligodendrocyte cell types in

MusNG formed a consistent group. This implies that subtypes of

cells are difficult to further stratify and may consist of a joint distri-

bution of major cell types, anatomic location, and other factors.

More interestingly, mouse and human interneuron subtypes from

the LAmbDA-FF1 model were mapped to each other. These match-

ing subtypes can be considered consistent, which are identifiable

across dataset and species. We used the intersection of biomarkers

from the previous publications to identify these consistent subtypes.

An interesting cell mapping pattern was the HumNG subtypes

tended to map to the MusNG subtypes more often than HumN,

especially before batch effect removal in the full feature set. One

possible reason is that HumN was single nuclei sequencing as

opposed to whole cell sequencing in HumNG and MusNG, so the

gene expression profiling could be quite different. This suggests

that sequencing method may introduce larger batch effects than

species differences, and cross-species training of models may be

more feasible than once thought. Due to these considerations we

believe that the general LAmbDA framework has a great deal

of potential.

A B

C D

E F

G H

Fig. 3. Confusion matrices with their associated label masks used during

LAmbDA–FF1bag training. Each numbered white box is used to highlight pat-

terns in the data or where labels were ambiguous. (A, C, E, F) Confusion ma-

trix across datasets where rows are original cell types and the columns are

the consistent cell types (i.e. LAmbDA output labels) for simulated 1 (A),

simulated 2 (C), pancreas (E) and brain (G). (B, D, F, H) The label mask used

during LAmbDA training. Yellow indicate the true labels, which were either

known or inferred from the literature green indicated added ambiguity such

that green and yellow constitute the label mask
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These direct biological applications of LAmbDA-based models on

the brain and pancreas data and proof of concept in simulated data

make compelling cases for the LAmbDA method. We postulate that

our method can also adopt other learning algorithms such as deep

learning, other distance metrics for the hidden layer to improve its

dataset/species integration, and more preprocessing methods to iden-

tify the ideal label set and label mappings. We also believe that the

LAmbDA framework is model-independent because of the high ac-

curacy and batch effect removal correction by multiple tested models,

thus making it ideal for incorporation with other machine learning

models. Furthermore, even though scRNA-seq data were used in our

study, the LAmbDA framework is not fundamentally limited to any

data type, organism or disease. For instance, disparate tumor datasets

could be combined to find consistent cell populations between

patients, datasets and similar cancer types (e.g. grades of glioma).

The scalability of LAmbDA is immense. Since LAmbDA does

not compute any pairwise correlations between samples, it could be

easily scaled up to incorporate the increasing number of large Drop-

seq datasets for single-cell studies. It is also worth mentioning that

the core of the LAmbDA framework is a set of cost functions in

Python (TensorFlow), making it ideal for others to integrate into

their own workflows.

5 Conclusion

We developed a novel dataset integration and ambiguous subtype

labeling framework, LAmbDA, to predict high-resolution cellular

subtypes. LAmbDA also provides a framework to train NNs on

multiple datasets simultaneously using labels from one or more

datasets. Our algorithm addresses both label mapping and dataset

batch effect issues simultaneously. We are able to perform these

analyses without exact label correspondence. Our method is ideal to

scale to even larger datasets. LAmbDA proves to be accurate for

subtype prediction across species and datasets even at high subtype

resolutions. It is model independent and capable of revealing hidden

biological relationships between subtypes in disparate datasets. This

can be especially useful in identifying consistent cell populations

across tumors or stages. Furthermore, in theory, this method could

be applied to any scalar data, which contain multiple datasets and

ambiguous label mappings. LAmbDA can be integrated into exist-

ing machine learning pipelines to identify consistent labels and im-

prove the robustness of the model to data systematic biases.
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