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Abstract

Motivation: The availability of numerous ChIP-seq datasets for transcription factors (TF) has pro-

vided an unprecedented opportunity to identify all TF binding sites in genomes. However, the pro-

gress has been hindered by the lack of a highly efficient and accurate tool to find not only the target

motifs, but also cooperative motifs in very big datasets.

Results: We herein present an ultrafast and accurate motif-finding algorithm, ProSampler, based

on a novel numeration method and Gibbs sampler. ProSampler runs orders of magnitude faster

than the fastest existing tools while often more accurately identifying motifs of both the target TFs

and cooperators. Thus, ProSampler can greatly facilitate the efforts to identify the entire cis-regula-

tory code in genomes.

Availability and implementation: Source code and binaries are freely available for download at

https://github.com/zhengchangsulab/prosampler. It was implemented in Cþþ and supported on

Linux, macOS and MS Windows platforms.

Contact: zcsu@uncc.edu

Supplementary information: Supplementary materials are available at Bioinformatics online.

1 Introduction

Gene transcriptional regulation is mainly carried out by interactions

between transcription factors (TF) and specific DNA sequences

called TF binding sites (TFBSs), with a length of 6–20 base pairs

(bp). Different TFBSs recognized by the same TF are highly similar

and are called a motif. Identifying motifs of all TFs in a genome is a

central but highly challenging task (Deplancke et al., 2016).

Fortunately, datasets produced by chromatin immunoprecipitation

(ChIP) followed by sequencing (ChIP-seq) (Park, 2009) and its deriv-

atives such as MNChIP-seq (Tsankov et al., 2015) have provided an

unprecedented opportunity to identify all TFBSs in genomes.

In a ChIP-seq experiment, one can obtain hundreds of thousands

of binding peaks of the target TF in a tissue sample, with a length

from hundreds to thousands bp (Zhang et al., 2008). Although

TFBSs of the target TF are usually enriched, identification of all the

TFBSs in such a large number of binding peaks has been a highly

challenging task. First, the sheer volume of such a dataset dwarfs

existing classic motif-finding tools that were mainly aimed at data-

sets of a small size (Prakash and Tompa, 2005). Consequently, in

many ChIP-seq studies, only a few hundred of top-scored binding

peaks were used for motif finding (Kheradpour and Kellis, 2014),

which under-exploited the valuable datasets. Although faster algo-

rithms have been developed using various algorithmic approaches

(Bailey, 2011; Ettwiller et al., 2007; Grau et al., 2013; Hartmann

et al., 2013; Heinz et al., 2010; Hu et al., 2010; Huggins et al.,

2011; Kulakovskiy et al., 2010; Ma et al., 2012; Mason et al., 2010;
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Quang and Xie, 2014; Reid and Wernisch, 2011; Thomas-Chollier

et al., 2012; Yao et al., 2014; Zhang et al., 2017), they are still too

slow for convenient application on very big ChIP-seq datasets.

Second, most of these tools are aimed to identify only the motif of

the target TF (primary motif) in shortened binding peaks (Colombo

and Vlassis, 2015). Nonetheless, since TFBSs of cooperative TFs

tend to be closely located, forming cis-regulatory modules (CRMs),

there is increasing interest in identifying motifs of cooperative TFs in

addition to the primary motif in longer binding peaks with a length

of typical enhancers (�1000 bp) (Bailey and Machanick, 2012).

Third, faster tools such as DREME (Bailey, 2011) are based on the

discriminative motif-finding schema (Sinha, 2003) by finding overre-

presented k-mers in a dataset, but they often fail to identify TFBSs

with subtle degeneracy (Bailey, 2011). Fourth, most existing motif-

finding tools return too many false positive motifs, making it diffi-

cult for the user to decide which ones are likely to be authentic,

whereas some other tools are even unable to determine the number

of motifs in a dataset, requiring the user to specify it. Finally, most

current motif finding algorithms can only identify motifs with a pre-

specified length, while those that are able to determine the length of

motifs employ an exhaustive enumeration strategy within an inter-

val of length, requiring large memory and running time (Bailey,

2011).

In order to circumvent these obstacles, we have developed an

ultrafast and accurate motif-finding algorithm and tool named

ProSampler (Profile Sampler) with the ability to automatically deter-

mine the number of motifs in a dataset and the length of each motif,

using a combination of novel discriminative heuristic seeding

(Bailey, 2011), Gibbs sampling (Lawrence et al., 1993) and length

extension methods. When evaluated on both synthetic and real

MNChIP-seq datasets, ProSampler is orders of magnitude faster

than existing fastest motif-finding tools, while identifying all the

implanted motifs in the synthetic datasets with the highest specifi-

city, and more primary motifs as well as cooperative motifs in the

real datasets.

2 Materials and Methods

2.1 Datasets
2.1.1 Synthetic datasets

We downloaded the known vertebrate TF binding motifs

(pfmVertebrates.txt) and the background sequences

(upstream1000.fa) from the JASPAR database (Mathelier et al.,

2016). The pfmVertebrates.txt file contains 519 motifs with a length

ranging from 4 to 21 bp. The upsteam1000.fa file contains 43 632

upstream regions of genes with a length of 1000 bp. To generate six

synthetic datasets D1�D6, we first randomly selected NDi (500,

1000, 2000, 5000, 10 000 and 20 000) sequences from

upstream1000.fa and shuffled the sequences in each dataset. Then

for each dataset Di containing NDi
sequences, we randomly chose

10 motifs M1, M2, . . ., M10 from pfmVertebrates.txt for distinct TF

families, with a length l ranging from 6 to 15 bp, and implanted

them at a frequency a¼ 0.1, 0.2, . . ., 1.0 site/sequence, respectively,

in the NDi
sequences in the dataset. Specifically, for each selected

motif, we randomly chose aNDi
sequences with replacement from

the dataset, randomly selected a position in a sequence chosen, and

substituted the subsequence starting at this position with a DNA se-

quence generated according to the motif’s position frequency matrix

(PFM) within a Hamming Distance cut-off to the consensus string of

this PFM. We recorded the substituted positions and avoided over-

lapping implanting. Note that with replacement sampling, we allow

the ZOOPS (zero-or-one occurrence per sequence) motif distribu-

tion model. The implanted motifs and their JASPAR logos in each

dataset are listed in Supplementary Table S1.

2.1.2 ChIP-seq datasets

We downloaded a total of 204 ChIP-seq datasets from Gene

Expression Omnibus with accession number GSE61475 (Tsankov

et al., 2015), generated using a MNase-based ChIP-seq technique

from early stages of endoderm, mesoderm, ectoderm and mesendo-

derm tissues derived from human ES cells. Since motifs of some tar-

get TFs are not documented in the JASPAR database, therefore we

excluded 99 datasets for these TFs from our analysis, resulting in a

total of 105 datasets for 21 TFs with documented motifs in

JASPAR. We generated three groups of datasets G1, G2 and G3 by

extracting 200, 500 and 1000 bp, respectively, genomic sequence for

each called binding peak in each dataset, with the summit of the

binding peak being the center. We masked the repeat regions using

Repeat Masker (Bedell et al., 2000) and Tandem Repeat Finder

(Benson, 1999) with the default parameter settings.

2.2 Algorithms
The details of the ProSampler algorithm are described as follows

and its pseudocode is given in Supplementary Figure S1.

Step 1: Generating background sequences: Given a ChIP-seq

dataset, we generate a background sequence set with the same num-

ber and length of sequences using the third-order Markov chain

model based on the frequencies of nucleotides in the dataset.

Step 2: Identifying significant k-mers: We count all possible k-

mers (k ¼ 8 by default) in both the ChIP-seq and background se-

quence sets and at the same time, record the two flanking l-mers

(l ¼ 6bp by default) of each k-mer. Let nFðkiÞ and nBðkiÞ be the

counts of the occurrences of a k-mer ki in the ChIP-seq and back-

ground sequence sets, respectively. If search on both strands is

desired, we combine the counts of each pair of reverse complemen-

tary k-mers. We evaluate each k-mer ki for its significance using the

following two-proportion z-test with the null hypothesis that its fre-

quencies in the ChIP-seq (pFðkiÞ) and background sequence ðpBðkiÞ)
sets are the same:

H0 : pF kið Þ ¼ pB kið Þ (1)

H1 : pF kið Þ > pB kið Þ (2)

zi ¼
pFðkiÞ � pBðkiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pi 1� pið Þ 1
nFðkiÞ þ

1
nBðkiÞ

� �r (3)

where

pF kið Þ ¼
nFðkiÞP

jnF kj

� � ; pB kið Þ ¼
nBðkiÞP

jnB kj

� � ;

pi ¼
nF kið Þ þ nB kið ÞP

jnF kj

� �
þ
P

jnB kj

� �
(4)

We consider that a k-mer ki is significant or subsignificant if zi is

greater than a preset value a or b a > bð Þ; respectively (by default,

a ¼ 8:0 corresponding to a P-value of 6:7� 10�16, and b ¼ 4:5; cor-

responding to a P-value of 3:4� 10�6). Let all the significant and

subsignificant k-mers be the sets K1 and K2, respectively. Note that

K1 is a subset of K2.

Step 3: Constructing preliminary motifs and their position

weight matrices (PWMs): For each significant k-mer ki 2 K1; we

ProSampler: an ultrafast and accurate motif finder in large ChIP-seq datasets 4633

Deleted Text: , 
Deleted Text:  
Deleted Text: ,
Deleted Text: , 
Deleted Text: , 
Deleted Text: , 
Deleted Text: , 
Deleted Text: ,
Deleted Text: ,
Deleted Text: ten 
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz290#supplementary-data
Deleted Text: , 
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz290#supplementary-data
Deleted Text:  in <ext-link xmlns:xlink=
Deleted Text: -
Deleted Text: -
Deleted Text: <bold>matrixes</bold> 


combine it with all other subsignificant k-mers k
0
j 2 K2 if their

Hamming Distance HDðk0j; kiÞ ¼ 1; to form a preliminary motif. We

construct its PWM mi using the counts of the combined k-mers. Let

M be the set of these PWMs. Notably, a k-mer can be included in

multiple preliminary motifs. Then we sort the preliminary motifs

according to their z-scores in the descending order.

Step 4: Constructing the motif similarity graph: We construct a

graph using the PWM set M as the nodes, and connecting two nodes

mi and mj if their Sandelin–Wasserman (SW) similarity (Sandelin

and Wasserman, 2004) is greater than a preset value c (by default,

c ¼ 1:80Þ, which is defined as

SW mi;mjð Þ ¼ 2�
Xk

c¼1

X
b¼A;C;G;T

miðb; cÞ � njðb; cÞ
� �2

=k (5)

where mi (b, c) and mj(b, c) are the frequencies of base b in column c

of motifs mi and mj, respectively.

Step 5: Gibbs sampling: Our Gibbs sampler starts by combining

the currently most highly ranked mi (ki’s z-score) with its neighbors

in the graph to form a seed motif Ci with redundant k-mers

removed. In each cycle of sampling, we randomly select a motif mk

in Ci, and then identify the motif mt from the neighbors of mk that

are not in Ci (C
0
i) with the highest SW similarity to Ci with mk

removed. We add mt to Ci, if the resulting MotifScoreðCi þmtÞ is

the better than MotifScoreðCi �mk þmtÞ (replacing mk by mt) and

MotifScoreðCiÞ (the original score); we replace mk by mt in Ci if the

resulting MotifScoreðCi �mk þmtÞ is the better than

MotifScoreðCi þmtÞ and MotifScoreðCiÞ, where

MotifScore mð Þ ¼ n� exp
X

i

X
j
qi;j � log

qi;j

pj

� �� �
=k

	 

(6)

where n is the total count of the combined k-mers in motif m, qi;b

the probability of base b appearing at position i and pb the probabil-

ity of base b in the dataset. We removed redundant k-mers in Ci

after each updating. After N cycles of iteration, we predict Ci as a

core motif with a length of k. We remove all the nodes in Ci and

inscribed edges from the graph to create a new smaller graph. We

identify the next core motifs by repeatedly applying this process to

the updated graphs until the graph becomes empty or a specified

number of motifs are found.

Step 6: Extending core motifs: To identify a motif longer than k,

for each k-mer in each core motif, we pad its two flanking l-mers in

the genome to the corresponding ends, extending the alignment with

a length of 2 � l þ k. We compare the frequencies of each nucleotide

in each flanking columns starting from the closest ones to the core

motif, with that in the dataset using the two-proportion z-test.

We pad a flanking column to the core motifs if at least one of the

column’s nucleotides has a significantly different frequency from

that in the dataset (by default, z > 1:96, corresponding to P-value

< 0:05). We stop the extension in a direction once an insignificant

column is encountered. We rank and output the motifs according

to the order they are found, i.e. the rank of the z-value of the

initial significant k-mer, which largely reflects their statistically

significance.

2.3 Evaluation of the programs
For each of predicted motifs, we compared it with motifs in JASPAR

(Mathelier et al., 2016) using TOMTOM with Euclidean distance

being the metric (Gupta et al., 2007), and considered the best hit as

a match if the q-value � 0:05. If one of motifs returned by a pro-

gram matches the known motif of the target TF in the JARPAR

database, we consider that the primary motif is found by the

program. To quantify the performance of the programs for identify-

ing motif lengths, we computed three metrics: performance coeffi-

cient (PC), positive predictive value (PPV) and sensitivity (SN)

(Ikebata and Yoshida, 2015), based on the overlap between the pre-

dicted motif and the hit, defined as follows,

PC¼ 1

N

X
i

length of overlap between predicted motif oi and its matched motif hi

length of oiþ length of hilength of overlap between oi and hi

� �

(7)

PPV¼ 1

N

X
i

length of overlap between predicted motif and its matched motif hi

length of oi

� �

(8)

SN¼ 1

N

X
i

length of overlap between predicted motif oi and its matched motif hi

length of hi

� �

(9)

where N is the number of predicted motifs with a hit in JASPAR.

We present the results as mean 6 standard error when appropri-

ate, and compared the result of ProSampler with those of other pro-

grams evaluated using Wilcoxon rank sum test or two-tailed t-test

as indicated in the text.

3 Results

3.1 Comparison of the programs on synthetic datasets
We first compared ProSampler with five state-of-the-art motif-find-

ing tools, i.e. BioProspector (Liu et al., 2001), Homer (Heinz et al.,

2010), DREME (Bailey, 2011), XXmotif (Hartmann et al., 2013)

and motifRG (Yao et al., 2014) for their speed and ability to find at

least a subset of the binding sites of 10 implanted JASPAR motifs

(Supplementary Table S1) with different lengths (8–15 bp) in six

synthesized datasets, i.e. D1�D6, containing various number of

sequences (D1: 500, D2: 1000, D3: 2000, D4: 5000, D5: 10 000 or

D6: 20 000) with a length of 1000 bp (Supplementary Material).

Dimont (Grau et al., 2013) was not included in this evaluation as it

requires a ChIP-seq quality score of the binding peaks. The 10

motifs were implanted in each dataset at different occurrence fre-

quencies ranging from 0.1 to 1.0 site/sequence to mimic a broad

spectrum of cooperation between the ChIP-ed TF and its coopera-

tors. As BioProspector needs the user to specify the number of motifs

to be found in a dataset, we let it output 150 motifs in each dataset.

For the five other programs that are able to automatically determine

the number of motifs to be output in a dataset, we let them output

all the motifs they found. As expected, the running time of

ProSampler scaled linearly to the size of the datasets, and it was

orders of magnitude faster than the second fastest program Homer

(Fig. 1A). Remarkably, ProSampler identified all the 10 implanted

motifs in datasets D1�D5 by its top 10 motifs (Table 1 and Fig. 1B)

while returning the smallest number (65) of predicted motifs, achiev-

ing the lowest false discovery rate (FDR) of 0.08 among all the pro-

grams (Table 1). Moreover, the 60 motifs predicted by ProSampler

match more significantly [P<0.01, Wilcoxon rank sum test for -log

(q-value)] the implanted ones by TOMTOM than those predicted by

all the other five programs (Fig. 1D, see Supplementary Table S1 for

the motif logos).

We also compared ProSampler with three other programs

DREME, motifRG and XXmotif for their ability to identify the

length of implanted motifs in the synthetic datasets. BioProspector

and Homer were not included in this comparison as both are unable

to automatically determine the lengths of motifs. As shown in

4634 Y.Li et al.
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Figure 1E, ProSampler achieved the highest PC (0.94) and SN

(0.96), both are significantly (P<0.05 or P<0.01, t-test) higher

than those obtained by the other three programs except XXmotif

for SN, for which the difference is not significant. ProSampler had

comparable PPV (0.97) to the best PPV performer DREME (1.0), al-

though ProSampler predicted the more implanted motifs.

We have so far compared the accuracy of the tools at the motif

level by comparing the returned motifs to the implanted ones. T
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Fig. 1. Comparison of the performance of the programs on the six synthetic

datasets D1�D6 with various sizes. (A) Running time of the six programs as a

function of the number of sequences in the datasets. The inset is a blow-up

view with the running time below 2000 s. (B) Number of recovered implanted

motifs as a function of the number of top-ranked motifs predicted by the pro-

grams in the six datasets. (C) Number of recovered implanted motifs as a

function of the occurrence frequency of the implanted binding sites in the six

datasets. (D) Box-plot of the q-values of predicted motifs of the programs,

matching the implanted motifs in the datasets. (E) Performance of the

programs for predicting the lengths of implanted motifs in the datasets. (F)

Average sensitivity of the programs for predicting the binding sites of

implanted motifs as a function of the number of top-ranked motifs predicted

by the programs in the six datasets. (G) Average ROC curves of the programs

for predicting the binding sites of implanted motifs in the six datasets. (H)

Average sensitivity of the programs for predicting the implanted binding sites

as a function of their occurrence frequency in the six datasets. The dotted line

is the proportion of sequences found by ProSampler to contain the implanted

binding sites. Labels *P<0.05 and **P< 0.01 are significant levels between

the result of the labeled program and that of ProSampler
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However, an ideal motif finder should be able to identify all the

binding sites of all motifs in a dataset, not just submotifs containing

a subset of the binding sites of the motifs. To compare ProSampler

with the programs for such capability, we computed the sensitivity

of each program for recovering the binding sites of the implanted

motifs by its top-ranked motifs in the six datasets. Homer was not

included in this evaluation as it only returns the PWMs rather than

the binding sites of predicted motifs. Though DREME also only out-

puts PWMs, we obtained the binding sites by scanning the sequences

using the ‘fasta-grep’ program in the MEME suite (http://meme-

suite.org/doc/fasta-grep.html). As shown in Figure 1F, ProSampler

substantially outperformed the four other programs by identifying

an average of 76.0% of the binding sites of the 60 implanted motifs

by its 65 predicted motifs in the six datasets. Receiver operator char-

acteristic (ROC) curve analyses indicate that ProSampler achieved

this sensitivity (76.0%) at the lowest false positive rate of 0.005,

substantially outperforming the four-other programs (Fig. 1G). We

also evaluated the impacts of the occurrence frequency of implanted

binding sites in a dataset on the ability of the programs to identify

them. As shown in Figure 1H, ProSampler found an average of

63.6%, 66.2%, 77.6%, 76.2%, 77.7%, 80.6%, 82.1%, 67.6%,

83.3% and 85.2% of the binding sites of motifs implanted with an

occurrence frequency of 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and

1.0 site/sequence, respectively, significantly (P<0.05 or P<0.01, t-

test) outperforming the four other programs at all the occurrence

frequencies except 0.3 and 0.6 site/sequence, at which Prosampler,

Bioprospector and motifRG had similar performance (P>0.05).

However, the Bioprospector (56) and motifRG (52) predicted fewer

motifs than did ProSampler (60). As expected, the performance of

ProSampler generally increased with the increase in the occurrence

frequency of implanted motifs (Fig. 1H), but this was not the case

for the other programs as their performance tended to decrease at

higher frequencies (>0.3 site/sequence) with large oscillations

(Fig. 1H). This is rather counter-intuitive, but the causes remain to

be elucidated. Taken together, all these results indicate that

ProSampler is not only substantially faster, but also generally more

accurate and robust for finding binding sites of multiple imple-

mented motifs in the synthetic datasets.

3.2 Comparison of the programs for speed on real

ChIP-seq datasets
We next compared ProSampler with six programs (BioProspector,

DREME, XXmotif, Homer, motifRG and Dimont) on 105 real

ChIP-seq datasets for 21 TFs, collected from embryonic stem (ES)

cell-derived early human embryonic tissues using a micrococcal

nuclease-based ChIP-seq (MNChIP-seq) technique (Tsankov et al.,

2015) (Supplementary Material). Each of these datasets contains

599�100 778 binding peaks (Supplementary Fig. S2) with an aver-

age length of 92�1151 bp (Supplementary Fig. S3). To evaluate the

effect of sequence lengths on the performance of the programs, we

re-extracted binding peaks for each dataset with a length of 200,

500, and 100 bp centering on the summit of the originally called

binding peaks, forming three groups of 105 datasets: G1 (200 bp),

G2 (500 bp) and G3 (1000 bp). We let BioProspector output 150

motifs in each dataset, and the six other programs output all the

motifs they found, but only considered up to the top 150 motifs in

subsequent analyses. As shown in Figure 2A–C, ProSampler was

again orders of magnitude faster (85�) than the second fastest pro-

gram Homer in the three groups of datasets (motifRG even crashed

on some larger datasets in G1�G3, thus its running times on these

datasets were not included). Notably, with the increase in the size of

datasets, the running time of ProSampler increased largely linearly

with little oscillations (Fig. 2A–C). In contrast, those of the six other

programs increased with large oscillations (Fig. 2A–C) that were not

seen on the synthetic datasets (Fig. 1A). These results suggest that

the real datasets might be structurally more heterogeneous than the

synthetic ones, and the running times of the six other programs

could be largely affected by the structures of the datasets, which had

little effect on ProSampler’s running time. Therefore, ProSampler is

not only orders of magnitude faster, but also more robust to the

structures of real ChIP-seq datasets than the fastest existing tools.

3.3 Comparison of the programs for identifying primary

motifs in real ChIP-seq datasets
To compare ProSampler with the other programs for identifying the

primary motifs of the ChIP-ed TFs, we counted the number of pri-

mary motifs recovered by each program in its top-ranked motifs in

the 105 datasets in G1�G3. As shown in Figure 2D and E,

Fig. 2. Performance comparison of the six programs for speed and identifying

the primary motifs in real ChIP-seq datasets. (A, B and C). Running time of the

programs as a function of the size of the datasets in G1, G2 and G3, respective-

ly. The inset in (C) is a blow-up view with the running time below 60 min. (D,

E and F) Cumulative number of primary motifs recovered by top-ranked

motifs in the datasets in G1, G2 and G3, respectively. (G, H and I) Box plot of

the q-values of predicted motifs of the programs, matching the primary

motifs in the datasets in G1, G2 and G3, respectively. (J, K and L) Performance

of the programs for predicting the lengths of primary motifs in the datasets in

G1, G2 and G3, respectively. (M, N and O) Proportion of sequences found by

the programs to contain the binding sites of primary motifs in the datasets in

G1, G2 and G3, respectively. Labels * and ** have the same meanings as in

Figure 1
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ProSampler was the runner-up slightly outperformed by DREME

for ranking the returned motifs matching primary motifs in both G1

and G2, but ProSampler outperformed all the other programs by

identifying the highest number 90 (85.7%) and 93 (88.6%) of pri-

mary motifs in the 105 datasets (Table 2). Therefore, increase in the

binding peak length from 200 bp (G1) to 500 bp (G2) increased the

performance of most programs including ProSampler (90 versus 93)

for finding the primary motifs, presumably because the longer

(500 bp) peaks include more binding sites of the target TFs than do

the shorter (200 bp) peaks (see below), although most of the datasets

have an average called binding peak length shorter than 500 bp

(Supplementary Fig. S2). In G3, ProSampler held the fourth place for

ranking the returned motifs matching the primary motifs (Fig. 2F),

presumably because it identified a far larger number of putative co-

operative motifs (see below). Nonetheless, ProSampler was the

runner-up by identifying 88 (83.8%) primary motifs in the 105 data-

sets, which is one fewer than the number 89 (84.8%) found by

Homer (Fig. 2F and Table 2). Therefore, further increase in the peak

length from 500 bp (G2) to 1000 bp (G3) reduced the performance

of ProSampler (93 versus 88) and most of the other programs.

Increase in the peak length to 1500 bp reduced the performance of

all the programs (data not shown), presumably because too long

binding peaks might include more noise that interferes with motif

finding.

The motifs returned by ProSampler in all the three groups of

datasets G1�G3 are significantly (P<0.05 or P<0.01) more similar

to the known primary motifs than those found by the other pro-

grams, or have the same level of similarity to those found by the

other programs (P>0.05) (Fig. 2G–I), although ProSampler gener-

ally identified more primary motifs (Fig. 2F and Table 2). The pri-

mary motifs identified by ProSampler in the G1, G2 and G3 datasets

and their matched motifs in JASPAR are shown in Supplementary

Tables S2–S4, respectively. We also compared ProSampler with

XXmotif, DREME, motifRG and Dimont for identifying the lengths

of primary motifs in the three groups of datasets. As shown in

Figure 2J–L, ProSampler had significantly (P<0.05 or P<0.01)

better performance than, or comparable performance to the other

four programs for PC, PPV and SN.

Similar to the cases in the synthetic datasets, motifs predicted by

different programs in the same ChIP-seq dataset may match the tar-

get motifs significantly, but they may contain varying numbers of

target binding sites located in varying numbers of peaks. A ChIP

dataset is generally assumed to be enriched for binding peaks con-

taining at least one binding site of the primary motif, thus a better

motif finder can find binding sites of the primary motif in more

binding peaks than can a worse one. As shown in Figure 2M–O,

ProSampler significantly (P<0.05 or P<0.01, t-test) outperformed

the other programs by finding binding sites of primary motifs in the

highest average proportions of binding peaks in the three groups of

datasets (Fig. 2D–F). However, the proportion of binding peaks

found even by ProSampler to contain binding sites of primary motifs

is surprisingly low with a median of 28%, 36% and 42% in G1, G2

and G3, respectively, and varies widely from as low as 0% to as high

as 95% (Fig. 2M–O). In most datasets, this ratio was lower than the

proportion of sequences found by ProSampler (48.3%) to contain

the implanted binding sites in the synthetic datasets with a concen-

tration of 0.6 site/sequence (the dotted line in Fig. 1H). These results

suggest that on average more than 40% of ‘binding peaks’ returned

by a peak-calling algorithm might actually not contain the binding

sites of the target TF, due probably to the low quality of the original

data for various technical artifacts such as low specificity of the TF

antibody used. Alternatively, the target TF might bind the sequencesT
a
b

le
2
.
C

o
m

p
a

ri
so

n
o

f
p

e
rf

o
rm

a
n

ce
o

f
se

v
e

n
p

ro
g

ra
m

s
o

n
a

ll
1

0
5

M
N

C
h

IP
-s

e
q

d
a

ta
se

ts
w

it
h

o
u

t
ru

n
n

in
g

ti
m

e
li
m

it

P
ro

g
ra

m
s

G
1

(2
0
0

b
p
)

G
2

(5
0
0

b
p
)

G
3

(1
0
0
0

b
p
)

N
o
.
o
f

d
a
ta

se
ts

w
it

h
th

e
P
M

fo
u
n
d

A
v
e.

n
o
.
o
f

m
o
ti

fs
fo

u
n
d

A
v
e.

n
o
.
o
f

k
n
o
w

n
m

o
ti

fs
b

A
v
e.

n
o
.
o
f

co
o
p
er

a
ti

v
e

m
o
ti

fs
c

N
o
.
o
f

d
a
ta

se
ts

w
it

h
th

e
P
M

fo
u
n
d

A
v
e.

n
o
.
o
f

m
o
ti

fs

fo
u
n
d

A
v
e.

n
o
.
o
f

k
n
o
w

n
m

o
ti

fs

A
v
e.

n
o
.
o
f

co
o
p
er

a
ti

v
e

m
o
ti

fs

N
o
.
o
f

d
a
ta

se
ts

w
it

h
th

e
P
M

fo
u
n
d

A
v
e.

n
o
.
o
f

m
o
ti

fs

fo
u
n
d

A
v
e.

n
o
.
o
f

k
n
o
w

n

m
o
ti

fs

A
v
e.

n
o
.
o
f

co
o
p
er

a
ti

v
e

m
o
ti

fs

P
ro

S
a
m

p
le

r
9
0

(8
5
.7

%
)a

4
9
.6

1
2
.9

2
.7

9
3

(8
8
.6

%
)

9
3
.8

1
7
.9

3
.4

8
8

(8
3
.8

%
)

1
1
9
.0

1
7
.5

3
.7

B
io

P
ro

sp
ec

to
r

7
7

(7
3
.3

%
)

1
5
0
.0

8
.7

0
.9

7
5

(7
1
.4

%
)

1
5
0
.0

7
.9

1
.1

6
0

(5
7
.1

%
)

1
5
0
.0

5
.9

0
.8

D
R

E
M

E
8
8

(8
3
.8

%
)

2
2
.7

8
.0

2
.5

9
0

(8
5
.7

%
)

4
2
.1

9
.0

2
.4

8
1

(7
7
.1

%
)

4
8
.0

6
.6

1
.6

X
X

m
o
ti

f
8
6

(8
1
.9

%
)

4
9
.4

1
2
.4

2
.7

6
8

(6
4
.8

%
)

5
0
.5

1
0
.3

2
.4

4
2

(4
0
.0

%
)

5
4
.3

6
.4

1
.5

H
o
m

er
7
7

(7
3
.3

%
)

1
2
1
.2

2
0
.6

3
.5

8
5

(8
1
.0

%
)

1
3
6
.9

1
8
.9

3
.2

8
9

(8
4
.8

%
)

1
4
7
.1

1
7
.0

2
.8

m
o
ti

fR
G

4
3

(4
1
.0

%
)

1
2
6
.8

9
.4

1
.8

4
6

(4
3
.8

%
)

1
3
4
.6

1
1
.5

2
.0

4
9

(4
6
.7

%
)

1
3
2
.5

1
3
.1

2
.2

D
im

o
n
t

6
8

(6
4
.8

%
)

4
.3

1
.6

0
.6

7
7

(7
3
.3

%
)

2
.8

1
.4

0
.6

7
7

(7
3
.3

%
)

2
.0

1
.3

0
.5

a
N

u
m

b
er

s
in

b
o
ld

ty
p
e

re
p
re

se
n
t

th
e

b
es

t
p
er

fo
rm

a
n
ce

in
th

e
co

lu
m

n
.

b
A

v
er

a
g
e

n
u
m

b
er

o
f

p
re

d
ic

te
d

m
o
ti

fs
m

a
tc

h
ed

to
th

o
se

in
JA

S
P
A

R
in

ea
ch

d
a
ta

se
t.

c
A

v
er

a
g
e

n
u
m

b
er

o
f

p
re

d
ic

te
d

m
o
ti

fs
m

a
tc

h
ed

to
th

o
se

in
T

C
o
F
-D

B
fo

r
th

e
ta

rg
et

T
F

in
ea

ch
d
a
ta

se
t.

ProSampler: an ultrafast and accurate motif finder in large ChIP-seq datasets 4637

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz290#supplementary-data
Deleted Text: , 
Deleted Text: , 
Deleted Text: the 
Deleted Text: p
Deleted Text: p
Deleted Text: p
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz290#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz290#supplementary-data
Deleted Text: , S3 and 
Deleted Text: p
Deleted Text: p
Deleted Text: -
Deleted Text: p
Deleted Text: p
Deleted Text: &hx201C;
Deleted Text: &hx201D;


indirectly through cooperative TFs, or the TF might bind other

motifs in addition to the primary one. Nonetheless, the superior per-

formance of ProSampler suggests that it might be used to identify

these technical artifacts and their impacts on ChIP-seq data

analyses.

3.4 Comparison of the programs for identifying

cooperative motifs in real ChIP-seq datasets
We designed ProSampler to identify not only the primary motifs of

target TFs, but also the motifs of cooperators in the binding peaks.

Thus, we compared ProSampler with the six other programs for

identifying cooperative motifs in the three groups of datasets. As

shown in Figure 3A–C and Table 2, the programs returned a highly

varying number of putative motifs in each group of the datasets.

Interestingly, ProSampler identified an intermediate average number

of 49.6, 93.8 and 119.0 motifs in G1, G2 and G3, respectively, which

are significantly (P<0.05 or P<0.01, Wilcoxon rank sum test)

larger or smaller than those obtained by the other programs except

XXmotif in G1 (Fig. 3A–C). Since there is no golden standard bench-

mark to validate the predictions of cooperative motifs, we resorted

to an alternative approach: we counted the number of known motifs

as well as the number of known cooperative motifs of the primary

motifs recovered by top-ranked motifs returned by each program.

As shown in Figure 3D and Table 2, in the G1 datasets, the cumula-

tive number of known motifs recovered by the top-ranked motifs by

both ProSampler and XXmotif increased rapidly and entered the

saturation phase around the top 50 predicted motifs, close to the

average number of predicted motifs in each dataset by both pro-

grams (Fig. 3A). ProSampler recovered a total of 1357 known motifs

in the G1 datasets, which is larger than those recovered by the other

programs except Homer that recovered a total of 2160 known

motifs. In the G2 (Fig. 3E and Table 2) datasets, ProSampler (1857)

recovered approximately the same number of known motifs with

that of Homer (1968). In the G3 datasets (Fig. 3F and Table 2),

ProSampler outperformed all the six other algorithms by recovering

the largest number of known motifs by most choices of N top-

ranked motifs. Since the probability to find known motifs by chance

is low, these matching motifs are likely to be true motifs, and may

cooperate with the primary motifs in transcriptional regulation.

Moreover, as shown in Figure 3G–I and Table 2, the motifs

returned by ProSampler in all the three groups of datasets are signifi-

cantly (P<0.05 or P<0.01) more similar to the known motifs than

those predicted by all the other programs except that XXmotif per-

formed significantly (P<0.01) better in G3 and Dimont in G1�G3

(P<0.01). However, as a trade-off, both XXmotif and Dimont pre-

dicted far fewer known motifs (Fig. 3D–F). For identifying the

lengths of the matched known motifs in the three groups of datasets,

ProSampler had significantly (P<0.01) better performance than, or

comparable performance to the other four programs for PC, PPV

and SN (Fig. 3J–L). The results are largely similar to those obtained

for the primary motifs (Fig. 2J–L).

ProSampler also identified the largest average number (3.4 and

3.7) of motifs in G2 and G3 matching those of known cooperative

TFs of the target TFs documented in the TcoF-DB database

(Fig. 3M–O and Table 2) (Schaefer et al., 2011; Schmeier et al.,

2017) (see Supplementary Table S5 for all known cooperative fac-

tors of the 21 target TFs), although Homer (3.5) outperformed

ProSampler (2.7) in G1. These matching motifs are likely to be true

cooperative motifs of the primary ones. As expected, with the in-

crease in the binding peak length of the datasets, ProSampler identi-

fied an increasing average number of known cooperative motifs.

However, the reverse, an unexpected result, was true for Homer for

unknown reasons.

4 Discussion

We designed ProSampler aiming at finding not only the primary

motifs of the target TFs, but also motifs of cooperators in the bind-

ing peaks with a length of typical CRMs (500�1000 bp) in very big

ChIP-seq dataset. To this end, we took the following tactics: (i)

instead of performing Gibbs sampling on original sequences directly

(Liu et al., 2001), we sample on preliminary motifs formed by com-

bining highly similar significant k-mers, with the aid of the motif

similarity graph. As the number of possible k-mers is fixed in any

size of a ChIP-seq data, this step runs in an almost constant time. (ii)

Fig. 3. Performance comparison of the programs for identifying cooperative

motifs in real ChIP-seq datasets. (A, B and C) Number of motifs returned by

the programs in the G1, G2 and G3 datasets, respectively. (D, E and F)

Cumulative number of known motifs matched by top ranked motifs of the

programs in the G1, G2 and G3 datasets, respectively. (G, H, I) Box plot of the

q-values of motifs predicted by the programs matching known motifs in the

G1, G2 and G3 datasets, respectively. (J, K and L) Performance of the pro-

grams for predicting the lengths of known motifs in the G1, G2 and G3 data-

sets, respectively. (M, N and O) Cumulative number of the target TFs’ known

cooperative motifs matched by top ranked motifs of the programs in the G1,

G2 and G3 datasets, respectively. Labels * and ** have the same meanings as

in Figure 1
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Unlike most of the existing algorithms that identify the motif length

by exhaustively evaluating each length within a specified interval

(Bailey, 2011), we determine the motif length by extending the k-

mer core motif using a two-proportion z-test, saving a few fold of

CPU time. (iii) By storing the flanking l-mers in memory, we avoid

extensive I/O. (iv) We combine the strength of k-mer numeration

and Gibbs sampling approaches to identify subtle weak motifs.

Indeed, as we demonstrated in this work, these strategies render

ProSampler to outperform the six state-of-the-art tools in speed, ac-

curacy and robustness in identifying the primary motifs as well as

cooperative ones in very big ChIP-seq datasets with a length of typ-

ical CRMs. Thus, ProSampler allows researchers to fully exploit

valuable ChIP-seq datasets and identify all possible TFBSs enriched

in them. The results can provide new insights into the cooperative

regulation of gene transcription by multiple TFs and possible tech-

nical issues in generating the datasets. Therefore, by enabling fast

and accurate mining of the entire big ChIP-seq datasets, ProSampler

can greatly facilitate the efforts to identify the entire cis-regulatory

code in genomes.
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