Table 2. The characteristics of machine learning–based prediction models on ART.
| Study | Technique(s) | ART method | Target (outcome) | External validation |
|---|---|---|---|---|
| Kaufmann et al. (1997) | Artificial Neural Networks (ANN) | IVF | Pregnancy | No |
| Jurisica et al. (1998) | Case-based reasoning (CBR) | IVF | Pregnancy | No |
| Kim and Jung (2003) | Bayesian network | IVF | Pregnancy | No |
| Passmore et al. (2003) | C5.0 Decision Tree | IVF | Pregnancy | No |
| Wald et al. (2005) | 4-hidden node neural network | ICSI/IVF | intrauterine pregnancy | No |
| Morales et al. (2008) | Bayesian classification | IVF | Embryo implantation | No |
| Linda et al. (2009) | Bayesian network | IVF | ongoing pregnancy | No |
| Chen et al. (2009) | PSO, Decision Tree J48, Naïve Bayes, Bayes Net, MLP ANN | ICSI/IVF | Pregnancy | No |
| Nanni et al. (2010) | SVM, NN, DT | ICSI | Pregnancy | No |
| Guh et al. (2011) | genetic algorithm and decision tree | ICSI | Pregnancy | No |
| Corani et al. (2013) | Bayesian network | IVF | Pregnancy | No |
| Durairaj and Ramasamy (2013) | MLP ANN | IVF | pregnancy | No |
| Malinowski et al. (2013) | ANN | IVF/ICSI | Pregnancy | No |
| Uyar et al. (2014) | NB, KNN, SVM, DT, MLP, radial basis function network | IVF/ICSI | Implantation | No |
| Güvenir et al. (2015) | NB and RF | IVF | clinical pregnancy | No |
| Chen et al. (2016) | multivariable logistic regression (LR) and multivariate adaptive regression splines (MARS) | IVF/ICSI | clinical pregnancy | No |
| Mirroshandel et al. (2016) | NB, SVM, MLP, IBK, KStar, Bagging (KStar), RandomCommittee, J48, RF | ICSI |
1) 2PN degree prediction 2) Embryo quality prediction 3) Clinical pregnancy (Beta test) prediction |
No |
| Hafiz et al. (2017) | SVM, RPART, RF, Adaboost, 1NN | IVF/ICSI | Implantation | No |
| Blank et al. (2018) | RF | IVF/ ICSI | Ongoing pregnancy | No |
| Hassan et al. (2018) | MLP, SVM, C4.5, CART, RF | IVF | pregnancy | No |