Skip to main content
. 2019 Sep;27(3):205–211. doi: 10.5455/aim.2019.27.205-211

Table 2. The characteristics of machine learning–based prediction models on ART.

Study Technique(s) ART method Target (outcome) External validation
Kaufmann et al. (1997) Artificial Neural Networks (ANN) IVF Pregnancy No
Jurisica et al. (1998) Case-based reasoning (CBR) IVF Pregnancy No
Kim and Jung (2003) Bayesian network IVF Pregnancy No
Passmore et al. (2003) C5.0 Decision Tree IVF Pregnancy No
Wald et al. (2005) 4-hidden node neural network ICSI/IVF intrauterine pregnancy No
Morales et al. (2008) Bayesian classification IVF Embryo implantation No
Linda et al. (2009) Bayesian network IVF ongoing pregnancy No
Chen et al. (2009) PSO, Decision Tree J48, Naïve Bayes, Bayes Net, MLP ANN ICSI/IVF Pregnancy No
Nanni et al. (2010) SVM, NN, DT ICSI Pregnancy No
Guh et al. (2011) genetic algorithm and decision tree ICSI Pregnancy No
Corani et al. (2013) Bayesian network IVF Pregnancy No
Durairaj and Ramasamy (2013) MLP ANN IVF pregnancy No
Malinowski et al. (2013) ANN IVF/ICSI Pregnancy No
Uyar et al. (2014) NB, KNN, SVM, DT, MLP, radial basis function network IVF/ICSI Implantation No
Güvenir et al. (2015) NB and RF IVF clinical pregnancy No
Chen et al. (2016) multivariable logistic regression (LR) and multivariate adaptive regression splines (MARS) IVF/ICSI clinical pregnancy No
Mirroshandel et al. (2016) NB, SVM, MLP, IBK, KStar, Bagging (KStar), RandomCommittee, J48, RF ICSI 1) 2PN degree prediction
2) Embryo quality prediction
3) Clinical pregnancy (Beta test) prediction
No
Hafiz et al. (2017) SVM, RPART, RF, Adaboost, 1NN IVF/ICSI Implantation No
Blank et al. (2018) RF IVF/ ICSI Ongoing pregnancy No
Hassan et al. (2018) MLP, SVM, C4.5, CART, RF IVF pregnancy No