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Abstract

Biological age (BA), derived from molecular and physiological measurements, has been proposed to better predict mortality and disease than 
chronological age (CA). In the present study, a computed estimate of BA was investigated longitudinally in 3,558 individuals using deep phenotyping, 
which encompassed a broad range of biological processes. The Klemera–Doubal algorithm was applied to longitudinal data consisting of genetic, 
clinical laboratory, metabolomic, and proteomic assays from individuals undergoing a wellness program. BA was elevated relative to CA in the 
presence of chronic diseases. We observed a significantly lower rate of change than the expected ~1 year/year (to which the estimation algorithm 
was constrained) in BA for individuals participating in a wellness program. This observation suggests that BA is modifiable and suggests that a 
lower BA relative to CA may be a sign of healthy aging. Measures of metabolic health, inflammation, and toxin bioaccumulation were strong 
predictors of BA. BA estimation from deep phenotyping was seen to change in the direction expected for both positive and negative health 
conditions. We believe BA represents a general and interpretable “metric for wellness” that may aid in monitoring aging over time.
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Age is the most important risk factor for most common diseases. 
There is considerable interest in mitigating aging-related disease 
risks through lifestyle, pharmaceutical, and environmental interven-
tions that attenuate biological aging. A hurdle in this quest is the 
quantification of an individual’s “wellness,” which is not only the 
absence of disease but also their resilience to future disease, general 
satisfaction with one’s health and wellbeing, and energy for activ-
ities that enrich a person’s life. While a multitude of signals relevant 
to an individual’s health and wellness can be captured, meaningful 
clinical relevance remains a challenge. The development of tools 
and methods for the collation, integration, analysis, and applica-
tion of these signals is essential to realizing the goals of precision 
and personalized medicine (1). More sensitive and precise assess-

ments of health status and trajectory, guided by dense longitudinal 
phenotyping, will enable a transformation in modern health care. 
Such a paradigm shift can only occur by converting these sophisti-
cated, high-dimensional measures into actionable metrics. Biological 
age (BA), to the extent it can be estimated, may provide one such 
personalized and intuitive metric of overall health status that can be 
communicated effectively to a general population.

Estimation of BA was first proposed in 1969 (2). In 1988, Baker 
and Sprott proposed that a biomarker of aging is a biological par-
ameter of an organism that either alone or in some multivariate 
composite will, in the absence of disease, predict physiologically func-
tional capacity at some later stage better than chronological age (CA) 
(3). More recently, BA has been assessed via epigenetic markers (4), 
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proteomics (5), and Electronic Medical Records (6). The Klemera–
Doubal (KD) method has been suggested as a better predictor of 
all-cause mortality than either CA alone or using multiple linear re-
gression of ten clinical biomarkers (7,8). Studies using small numbers 
of highly informative clinical variables to develop KD-computed BA 
measures have demonstrated these measures associated with poor 
balance, physical weakness, declining cognitive performance, phys-
ical appearance, cardiovascular risk, frailty indices, extrinsic epigen-
etic age, caloric restriction (CR), and gene expression (9–13).

Deep phenotyping offers the opportunity to explore multiple 
systems that contribute to BA in greater depth, and generate more 
comprehensive metrics of overall health that change over time, 
aimed at reflecting an individual’s changing health (14). Herein, we 
also explore estimated BA by distinct data types: the metabolome, 
proteome, and clinical labs, as well as a BA calculation that inte-
grates all of these together. BA appears to be modifiable, and thus 
may be a simple metric that is useful to monitor general health.

In this work, KD was applied to over 900 disparate (principal com-
ponent analysis, PCA, transformed) biomarkers, including metabolites, 
proteins, genomics, and clinical measures. This collection of biomarkers 
is herein termed personal, dense, dynamic data (PD3) clouds (15). Data 
type (eg, different omics measures)-specific BA estimates were com-
pared to each other and changes in BA over time were examined by data 
type, and among subgroups that were hypothesized to have different 
BA trajectories (including stratifications by sex, ethnicity, age group, 
and baseline BA). Differences between biological and chronological age 
(BA–CA) were utilized as a metric, noted as ΔAge (more negative indi-
cates scoring younger than CA), and associations between ΔAge and 
lifetime prevalence of common health conditions were examined.

In this study, we ascertained the effects of conditions and behav-
iors generally thought of as being healthy or unhealthy upon the 
introduced BA measure. We found that “healthy” behaviors, such 
as participation in a scientific wellness program (16), were found 
to be associated with a decreasing ΔAge over time. Conversely, “un-
healthy” conditions, such as self-reported diseases, were found to in-
crease ΔAge in every condition we had data for where there was a 
significant effect (no significant effects in the opposite direction). The 
observation indicated that ΔAge was sensitive to changes in the blood 
associated with common disease states. Association strength and 
computed BA estimates varied significantly by data type (proteomics, 
metabolomics, and clinical labs), demonstrating that BA depends on 
the systems being interrogated. These results support the construc-
tion of a BA measure that integrates diverse information across dif-
ferent—omics, biological systems, and disease biomarkers—and/or 
the use of multiple BA measures to reflect different biological sys-
tems—to help assess individual health and for the quantification and 
exploration of aspects of the aging process in humans.

Methods

Study Population
The sample studied consisted of men and women participating in 
a consumer data-intensive wellness program (Arivale, now closed) 
that varied by age and health status (demographics given below). 
The program involved lifestyle coaching on exercise, nutrition, stress 
management, and sleep all tailored to the participants’ health goals, 
specific genetic markers, and clinical metrics as detailed in a prior 
publication (16). Deidentified data from consenting participants 
were collected from July 2015 to July 2018. A total of 3,558 parti-
cipants were observed for an average of 214 days, with an average 
of 2.1 longitudinal data points with a total of 7,634 observations. In 

total, 1,354 participants had a single time point, 1,105 had two, 711 
had three, and 388 had four or more, with two participants having 
the maximal (8) number of time points. Average time between obser-
vations was 190 days among participants with multiple time points. 
The study was approved by the Western Institutional Review Board.

Personal, Dense, Dynamic Data Clouds (PD3 
Clouds)
We previously developed and published analyses incorporating prote-
omic, metabolomic, microbiomic, and genetic data (the PD3 cloud) 
on 108 participants in the context of health and wellness (15). This 
cohort ultimately expanded to 3,558 individuals at the time data 
were collected for this study. Participants’ genetic profiles were as-
sessed either by whole genome sequencing (2845) or by single nucleo-
tide polymorphism (SNP) chip (713). Detailed information on the 
acquisition, storage, generation, and analyte-specific pre-processing 
of these measures is available in the Supplementary Methods. After 
pre-processing, the PD3 clouds included genomics plus longitudinal 
measures from blood, including 54 clinical lab tests from LabCorp or 
67 clinical lab tests from Quest, 243 proteins, and 611 metabolites 
with CA ranging across the adult lifespan (18–89+ years).

Creating the BA Measure
The KD method, with a PCA transformation on the input features, 
was used to create the BA measure (7). Briefly, KD is a weighted 
average of independent linear regressions of biomarkers to CA. Ten 
iterations of 10-fold cross-validation were performed to estimate 
BA from each data type (clinical labs, metabolites, and proteins). 
Male and female data were trained separately, as were observa-
tions from different laboratory vendors. Training/testing set splits 
were generated by randomly shuffling participants, partitioning 
them into ten sets, and iterating over those sets, with one set as the 
test set and the remaining nine being used for training. Training 
sets were restricted to baseline measurements, ensuring those 
participants had minimal wellness coaching, and only one obser-
vation of a participant was trained on. All observations of partici-
pants in the test set were predicted from the training set. Clinical 
labs had two vendors, so only the earliest observation among both 
vendors was included in the training. All samples were z-score 
normalized using the mean and SD estimated from the training 
set at each fold.

Similarly, principal components were estimated using the 
training, and the transformation was then applied to all samples. 
Principal components were used to satisfy the biomarker linear 
independence requirement of the KD algorithm. Slopes, SDs, and 
intercepts were calculated for each of the strongest components ex-
plaining up to 90% of the variance. These variables were then used 
to calculate BA using KD. The contribution of each analyte to BA 
was calculated by multiplying the weights learned for each compo-
nent by the analyte contribution to each component and summing 
across all components. These representations are equivalent be-
cause PCA and KD are linear transformations (see Supplementary 
Methods). CA was excluded as a biomarker, although KD allows its 
inclusion. Doing so reduces variance, but adds limited information 
regarding BA’s relationship to health outcomes (10). For each data 
type, the 10 predictions were averaged. For each observation of a 
participant, all available data type predictions were averaged and 
presented as the overall BA prediction. A total of 2,742 observations 
had only one data type, 3,634 had two, and 1,258 had all three. See 
Supplementary Figure 1 and Supplementary Table 2 for details.
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Trajectory of the BA Measure Over Time
To determine whether BA changed over time after initiation of 
health coaching, Generalized Estimating Equations (GEEs) with 
exchangeable correlation structure were utilized, which accounts 
for the correlation between multiple observations (time points) per 
participant (17). Participants with two or more blood draw visits 
were included in the trajectory models. The primary model assessing 
linear change in BA included time in the program as the independent 
variable, starting at time zero (time of first blood draw), and BA as 
the dependent variable; baseline CA was included as a covariate. 
Models were stratified by baseline age group, sex, and race (white 
vs non-white), and interaction terms between study time and sex/
race were included to assess for effect modification. Additionally, as 
factors that may impact BA over time are of interest, models were 
stratified by CA decade and BA starting point to model BA changes 
due to differences in initial health status at coaching initiation 
(model A: participants with an initial BA that was 5 or more years 
greater than CA; model B: participants with an initial BA that was 
5 or more years less than CA. This analysis was repeated with BA 
±10 years from CA).

Health History, Behaviors, and Associations With 
ΔAge
GEE models with exchangeable correlation structure were used 
to examine associations between ΔAge under combined and inde-
pendent data modalities and the lifetime prevalence of the 40 most 
common self-reported health conditions, along with lifetime and/or 
current smoking. In the minimally adjusted model, ΔAge was mod-
eled as the outcome variable, and self-reported past or current con-
dition was the predictor, with CA at each prediction included as a 
covariate. Each condition was modeled separately. Since obesity was 
hypothesized to be strongly associated with ΔAge and many condi-
tions, obesity (0 for body mass index [BMI] < 30, 1 for BMI ≥ 30) was 
included as a covariate. Association between obesity and BA itself 
was also calculated. A Bonferroni correction at alpha = .05/(43(con-
ditions)*4 (modalities) = 3E-04 threshold for statistical significance 

was applied. Many health outcomes are highly correlated with one 
another, and thus, this correction is highly conservative.

Results

Population Characteristics
Mean age was 47.5 years, with more females than males (58.6% fe-
male). Baseline characteristics are presented in Table 1. The percent 
of obese participants was 27.9%, lower than the Center for Disease 
Control reported estimate of 37.9% for all U.S.  adults. This bias 
appears to be driven primarily by regional makeup, rather than the 
self-selection of lower BMI individuals. This cohort is predomin-
antly (~80%) drawn from Washington or California. Given the state/
province of residence, the expected percentage of obese individuals is 
27.7% (18). Socioeconomic status of participants is presumably higher 
than the national average, but that information was not captured.

BA Estimation Through PD3 Clouds
BA estimates using the KD method are shown in Figure 1. The 
Pearson correlation between BA and CA was .78 overall, .70 for 
the clinical labs, .81 for the metabolomics, and .88 for the prote-
omics. The median absolute error, that is, the median absolute dif-
ference between BA and CA, of these predictions was 5.54  years 
overall, 8.04  years for clinical labs, 4.82  years for metabolomics, 
and 4.39 years for proteomics. Mean (SD) over repeated predictions 
for the same observation was 3.83 years overall, 1.05 years for clin-
ical labs, 1.52  years for metabolomics, and 1.03  years for prote-
omics. ΔAge had a mean (SD) of −0.78 (9.28) years overall, −0.43 
(12.18) years for clinical labs, −0.11 (7.48) years for metabolomics, 
and −0.73 (6.57) years for proteomics. ΔAge was largely uncorrel-
ated with CA, at a Pearson r of −.06 overall, −.03 for clinical labs, 
−.18 for metabolomics, and −.10 for proteomics. See Supplementary 
Table 2 for summary statistics. 

Pearson correlation of ΔAge between multiple observations of 
the same participant, that is, ρ(ΔAget, ΔAget+1), was .66 overall, .67 
for clinical labs, .67 for proteomics, and .64 for metabolomics. These 

Table 1.  Baseline Self-reported Characteristics of Study Sample

Characteristic Alla Womena Mena p Valueb

Chronological age, mean years (SD) 47.6 (12.2) 48.7 (11.6) 47.9(11.8) .1
Non-white, no. (%), n = 3,452 784 (22.7) 416 (20.5) 368 (25.8) <.001
BMI, mean (SD), n = 3,227 27.7 (6.3) 27.8 (7.1) 27.4 (4.9) .05
Obesec, no. (%), n = 3,227 901 (27.9) 584 (30.7) 317 (23.9) <.001
Moderate activity ≥ 3×/wk, no. (%), n = 3,468 2,253 (65.0) 1,278 (62.0) 975 (69.3) <.001
Vigorous activity ≥ 3×/wk, no. (%), n = 3,467 1,121 (32.3) 528 (25.6) 593 (42.1) <.001
Sitting >8 h/d, no. (%), n = 3,467 2,303 (66.4) 1,392 (67.6) 911 (64.7) .09
Ever smoker, no. (%), n = 2,825 774 (27.4) 448 (25.9) 326 (29.7) .03
Current smoker, no. (%), n = 3,469 174 (5.0) 73 (3.5) 101 (7.2) <.0001
Cholesterol-lowering meds, no. (%), n = 2,817 337 (12.0) 163 (9.5) 171 (15.7) <.001
Past and/or current self-report of:
  High cholesterol, no. (%), n = 3,351 788 (23.5) 408 (20.4) 380 (28.1) <.001
  Hypertension, no. (%), n = 3,361 579 (17.2) 313 (15.6) 266 (19.6) .003
  Asthma, no. (%), n = 3,389 559 (16.5) 370 (18.3) 189 (13.8) <.001
  Type 2 diabetes, no. (%), n = 3,309 125 (3.8) 78 (4.0) 47 (3.5) .6
  Breast cancer, no. (%), n = 3,235 63 (1.9) 59 (3.0) 4 (0.3) <.001
  Coronary artery disease, no. (%), n = 3,280 50 (1.5) 19 (1.0) 31 (2.3) .003

Note: BMI = body mass index.
aTotal N = 3,558; women, N = 2,087; men, N = 1,471. bFor comparisons between men and women, chi-square tests were run for categorical variables and two-

sided t-tests for continuous variables. cObese defined as BMI ≥30.
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correlations were stronger than the between-data type ΔAge, with 
clinical labs correlating with metabolomics at an r of .26, clinical 
labs with proteomics at .25, and metabolomics with proteomics at 
.27 (Supplementary Figure 2).

BA Changes Over Time
Mean linear trajectory of BA over time, calculated using longitudinal 
measurements among participants with at least two visits, varied ac-
cording to whether the predictions were based on clinical labs, metab-
olites, proteins, or a combination of all three categories (Table 2). In 
the minimal model adjusted for baseline CA, BA prediction based on 
all available analytes showed that BA stayed statistically stable over 
time. On average, BA decreased by 0.16 years for every year of par-
ticipation in the wellness program (β = −0.16, 95% CI: −0.45, 0.19). 
This is significantly lower than the expected increase of 1 year/year. 
BA estimates from all data types had a β coefficient < 1, the nat-
ural rate of aging, with all data types except metabolomics being 
significantly <1.

Potential Modifiers of BA Trajectory Over Time
Exploratory analyses to examine several baseline factors (sex, eth-
nicity, age group, and baseline health status) that were hypothesized 
a priori might have an impact on BA trajectories were performed. 
In sex-stratified models based on the “all analyte” BA predictions 
(clinical labs, metabolites, and proteins combined), BA decreased in 
women over time (coefficient: −.48, 95% CI: −0.93, −0.04), but stayed 

Figure 1.  Scatter plots of Biological Age estimates using the Klemera–Doubal 
algorithm for each data type individually, and in aggregate (All Data Sources). 
Each point is one observation of an individual. The solid line in each plot is 
the ordinary  least squares regressed line, and the dotted line is biological 
age = chronological age. The Clinical Lab plot contains estimates from two 
vendors: Labcorp (circle) and Quest (triangle).

Table 2.  Regression Coefficients for Changes in Mean Biological Age Over Time for Individuals With Two or More Blood Draws (N = 2,205)

Data Set Used for BA Predictiona β Coefficient SE 95% CI Interaction pc

All analytes −0.160 0.181 −0.452, 0.194 NA
Proteins 0.524 0.179 0.174, 0.874 NA
Metabolites 0.274 0.471 −0.648, 1.196 NA

All clinical chemistries −0.374 0.216 −0.798, 0.049 NA
Stratified Analysesb

Sex
  Males (n = 908) 0.192 0.281 −0.359, 0.742
  Females (n = 1,297) −0.484 0.229 −0.932, −0.036 .043
Self-reported ethnicity
  White (n = 1,705) −0.111 0.198 −0.498, 0.276  
  Non-white (n = 433) −0.589 0.465 −1.500, 0.322 .371
Age at baseline, by decade
  18–29 y (n = 130) −2.720 0.744 −4.180, −1.270  
  30–39 y (n = 388) −0.055 0.419 −0.877, 0.766  
  40–49 y (n = 658) −0.356 0.332 −1.010, 0.295  
  50–59 y (n = 638) 0.530 0.356 −0.168, 1.230  
  60–69 y (n = 322) −0.285 0.393 −1.050, 0.484  
  70+ y (n = 69) −0.895 0.853 −2.570, 0.776 NA
Baseline BA prediction
  BA = 5 y > CA (n = 481) −0.985 0.423 −1.814, −0.157  
  BA = 5 y < CA (n = 540) 0.024 0.377 −0.715, 0.764  
  BA = 10 y > CA (n = 167) −1.540 0.686 −2.88, −0.194  
  BA = 10 y < CA (n = 187) 1.613 0.651 0.388, 2.890 NA

Note: BA = biological age; CA = chronological age; NA = not applicable.
aGEE model: BA ~ time in wellness program + baseline CA; clustered by client ID, family = Gaussian, with an exchangeable correlation matrix; only individuals 

with at least two visits were included.
bGEE models, stratified by sex, ethnicity, age group, and baseline BA prediction: ΔAge (BA−CA) ~ time in wellness program + baseline CA; clustered by client 

ID, family = Gaussian, with an exchangeable correlation matrix; all models use BA predictions based on the “all analyte” data set. 
cInteraction models: ΔAge (BA−CA) ~ time in wellness program + predictor variable + baseline CA + predictor variable × time in wellness program; clustered by 

client ID, family = Gaussian, with an exchangeable correlation matrix.
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constant in men (coefficient: .19, 95% CI: −0.36, 0.74) (Table 2). The 
sex–time interaction term was weakly significant (p < .05), indicating 
a difference between men and women in their BA trajectories over 
time. A similar pattern in BA derived from proteins and clinical labs 
was observed (Supplementary Table 3), with BA from clinical labs also 
indicating a weakly significant difference between men and women 
(interaction p = .02). Since race was unevenly distributed throughout 
CA, self-reported race (white vs non-white) was also stratified; the 
interaction term was not significant, and both groups had slowed 
BA compared to CA. In models stratified by age (in decades), the 
youngest age group had the slowest rate of biological aging (using BA 
estimates from the all-analyte data set), though all age groups except 
50–59 years indicated slowed aging (upper 95% CI < 1). This effect 
was not dose dependent (ie, rate of aging did not increase monoton-
ically) and was roughly consistent across data types. This analysis for 
BA was repeated for each data type and observed similar patterns in 
BA derived from clinical labs; β coefficients derived from proteins and 
metabolites were highly variable and had wide CIs, likely due to small 
N per age group (Supplementary Table 3).

Lastly, baseline ΔAge was stratified, with the idea that partici-
pants with higher ΔAge at study entry would be less healthy (under 
the assumption that ΔAge is an adequate summary metric for health 
and wellness), and therefore experience greater benefit from health 
coaching. Participants with BA 5 or more years higher than their CA 
at baseline experienced approximately 1-year decline in BA for every 
1 year in the program (coefficient: −.99, 95% CI: −1.81, −0.16), while 
participants who entered the program with BA at least 5 years less than 
CA maintained their youthful BA over time based on the all-analyte 
BA estimates (coefficient: .02, 95% CI: −0.72, 0.76). These effects were 
more pronounced in individual data modalities, though many stratified 
analyses had small N, which likely inflated estimates. Regression-to-
the-mean effects could not be ruled out in the absence of a control 
group, particularly when N was small or when baseline deviations 
were extreme (ie, the >10 years plus or minus for ΔAge) (19).

ΔAge Is Associated With Health and Behavior and 
Especially With Type 2 Diabetes
Among the top 43 most common health conditions and behaviors in 
our cohort, after correcting for multiple comparisons, obesity, hyper-
tension, high cholesterol, lung infection, type 2 diabetes (T2D), and 
breast cancer were associated with increased ΔAge in models ad-
justed for CA and obesity (Figure 2). T2D had the highest increase in 
ΔAge in combined models, such that these participants had a BA that 
was higher than their CA by an average of 6.4 years (95% CI: 4.6, 
8.2). This effect was consistent among data types for T2D. However, 
effects varied slightly among the different data types. For instance, 
the combined data type–derived BA provided highest statistical sig-
nificance for increased ΔAge among participants with high choles-
terol, the estimates based on metabolomics and clinical labs were also 
associated with increased ΔAge, though below the threshold for mul-
tiple corrections. Estimates derived from proteomics did not show 
as pronounced an effect, with the coefficient having a p-value >.05. 
Since the all-data modality and the clinical labs had the largest N, 
these associations were well powered and most likely to show signifi-
cant associations. However, several nonsignificant trends of interest 
were observed indicating potential disease-specific differences in sen-
sitivity among different data modalities, with some health conditions 
having a trending association (p < .05) with only one of the four 
modalities (such as concussion, endometriosis, kidney stone, gall-
stones, cataracts, and coronary artery disease). While these trends 

were not strong enough to be significant individually after a con-
servative Bonferroni correction for multiple hypothesis testing, col-
lectively, every one is in the direction of increasing ΔAge with none 
in the opposite direction, adding confidence in their likely validity.

Analytes That Are Most Predictive of a High or Low 
BA Measure
The top mean model coefficients, representing the importance of in-
dividual analytes in the model, are shown in Figure 3. The value 
of each analyte coefficient corresponds to the contribution of that 
analyte to the computed BA. For instance, a coefficient of +1 indi-
cates an increase in BA of 1 year per SD higher than the mean, while 
a coefficient of −1 indicates a corresponding decrease in BA of 1 year 
per SD above the mean. Most markers that were strongly predictive 
of BA were dominated by three axes of aging: metabolic health, in-
flammation, and bioaccumulation of toxins.

In clinical labs, glycated hemoglobin (HbA1c) was the strongest 
positive predictor of BA independent of sex, with other (highly cor-
related) metabolic health markers demonstrating similar effects, that 
is, adiponectin and glucose. Metabolic health was also reflected in 
proteomics, where agouti-related peptide (AgRP) was the strongest 
negative predictor of BA for both men and women. AgRP is involved 

Figure 2.  Forest plot of ΔAge estimates and 95% confidence intervals 
associated with the 40 most common health conditions, plus ever 
smoking, current smoking, and obesity. Each condition or behavior was 
modeled individually, with ΔAge as the dependent variable, the health 
condition/behavior as the independent variable, and further adjustment for 
chronological age (CA) and obesity (body mass index > 30)  in Generalized 
Estimating Equation models clustered by client ID with an exchangeable 
correlation matrix to account for multiple observations from individual 
clients. The obesity outcome was adjusted for CA only. Biological age (BA) 
estimates for each data type are shown. The blue dotted line at 0 indicates no 
difference between BA and CA; point estimates to the right of the blue line 
indicate higher BA than CA associated with the health condition/behavior (eg, 
based on the all-data-type BA estimate, individuals with type 2 diabetes have 
BAs that are, on average, 6.4 years greater [95% CI: 4.6, 8.2] than their CAs, 
after adjustment for CA and obesity). ***p < .0003 (Bonferroni threshold); 
**p < .005; *p < .05. GERD = gastroesophageal reflux disease; IBS = irritable 
bowel syndrome; PTSD = Post-traumatic stress disorder.
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in energy balance through regulation of appetite and energy expend-
iture (20). Similarly, analytes reflective of redox balance, an integral 
component of metabolic homeostasis, were strongly predictive of BA. 
The metabolite subfamily of glutathione was one of the strongest pre-
dictors of BA for both men and women (Supplementary Figure 3).

Multiple proteomic markers of inflammation were associated 
with BA, including chemokine C-X-C motif ligand 9 (CXCL9), 
interleukin 17D (IL17D), and growth/differentiation factor 15 
(GDF15); additionally, the lymphocyte produced lymphotoxin alpha 
(LTA) was a negative predictor of BA in men, but not in women. 
Inflammation plays a crucial role in BA prediction in the clinical labs 

as well, where monocyte count was a strong positive predictor of BA 
and lymphocytes were a strong negative predictor.

Several environmental pollutants, including the heavy metals lead 
and mercury, were identified as strong predictors of BA. Within the 
metabolomics, the bioaccumulated toxin perfluorooctanesulfonic 
acid (PFOS) emerged as the second strongest positive predictor. The 
related metabolite, perfluorooctanoic acid (PFOA) was a strong posi-
tive predictor in men but not in women (Figure 3).

Sex steroid hormones dominated the calculation of BA in metabol-
ites for men and women. Dehydroepiandrosterone (DHEA-S) and its 
direct metabolite androstenediol monosulfate were strong negative pre-
dictors with the stress-related hormone vanillylmandelic acid (VMA) 
being a strong positive predictor. Similar to PFOA and LTA, several 
other analytes demonstrated sex-specific differences (Supplementary 
Table 4). Alkaline phosphatase (ALP) proved to be a strong positive 
predictor in women but not in men (Figure 3). In contrast to ALP, cre-
atine metabolites emerged as an important subfamily for calculation 
of BA in men, but not women (Supplementary Figure 3). Within the 
creatine metabolite subfamily, creatinine was one of the stronger nega-
tive predictors in men. Several elements of the immune system also 
showed sex-specific differences in calculating BA, including Spondin 2 
(SPON2), which was a negative predictor in women, but not in men. 
Macrophage receptor with collagenous structure (MARCO) was a 
positive predictor in women, but a negative predictor in men. IL-16 
was a positive predictor in women, but a negative predictor in men. 
The intestinal mucosa secreted protein trefoil factor 3 (TFF3) was a 
positive predictor in men, but a negative predictor in women.

Discussion

The BA measure was generated by integrating and comparing di-
verse data types, including clinical labs, proteomics, metabolomics, 
and genetics. The key findings of this paper are as follows (1). 
Higher ΔAge was shown to be associated with lifetime prevalence 
of common disease conditions, and BA was seen to decrease over 
time after joining a wellness program, supporting the hypothesis 
that BA is reflective of increasing or decreasing health as commonly 
understood (2). The degree of plasticity in BA is dependent on sev-
eral factors such as sex, current health status, and CA (3). Blood 
factors corresponding to metabolic health, inflammation, and bio-
accumulation of toxins were found to be the most strongly related 
to BA across data types (4). Men and women showed distinct dif-
ferences in the features most relevant to the determination of BA, 
especially those related to aspects of sex-specific physiology, such as 
bone density, muscle mass, immune system function, and sex-related 
metabolism of environmental pollutants (5). BA was affected by the 
data type used in their determination, and different BAs can thus be 
derived from different data sources.

The complexity and variability of the aging process justify the 
development of system-level predictive and analytical models to de-
scribe it, with the ultimate goal of maintaining healthy aging and 
improving the extent and quality of healthspan through actionable 
lifestyle, environmental, and pharmaceutical interventions. Following 
an unscreened sample enabled the observation of health-related 
changes across the spectrum of commonly observed health condi-
tions. The highest ΔAges, perhaps indicating poor wellness relative to 
CA, are in the T2D subpopulation (+6 years) which is consistent with 
studies observing 5–9 years shortened life expectancy with T2D (21). 
Average ΔAge was higher among participants self-reporting multiple 
types of current or past health conditions. This finding does not sug-
gest that BA is a useful diagnostic for any specific disease, but instead 

Figure 3.  Shown are the strongest 20 analytes per data type by average 
effect for males (red) and females (blue). The y-axis demonstrates the effect 
in years per SD of the analyte, that is, 1 SD greater than the mean value for 
HbA1c in the Labcorp clinical labs would result in a roughly 4-year increase 
in biological age, all other values held constant.
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that ΔAge maps consistently to the concept of general wellness, where 
every disease condition in which a statistically significant association 
was discovered (or even a lower-threshold trend observed) was in 
the direction of increasing ΔAge. Stationary or negative BA trajec-
tories over time, after initiation of a wellness program, was consistent 
with the potential utility of BA as an aggregate marker (metric) of 
increasing wellness. In general, the all-analyte predictions of BA did 
not increase or decrease over time in this sample on average, despite 
increasing CA. Further study is required to determine the persistence 
of these effects or efficacy relative to other interventions.

Stratified analyses highlight differences between groups in re-
sponse to their engagement in a wellness program. Both men and 
women experienced slowed BA on average, but the effect was stronger 
in women with their BA decreasing over time, while men maintained 
their BA. On average, the youngest participants (18–29) tended to 
show more ability to reduce their BA, while older participants de-
creased their ΔAge but maintained their initial BA. Importantly, a 
dose-dependent response was not observed, that is, participants over 
29 have roughly similar trends. Participants tended to maintain a 
high degree of consistency in ΔAge over time for all data types.

Of interest is baseline health status. Participants with high ΔAge 
experienced a greater decline in BA over time in the program, which 
may be expected, given that less healthy participants had more ac-
tionable “wellness targets” to work on. Diminishing returns were 
also observed as those with extremely low baseline BA relative to 
CA had a slope of approximately the expected standard rate of BA 
(though confidence intervals were wide). While this seems expected 
from a biological perspective, the direction and magnitude of these 
trends are consistent with regression-to-the-mean effects, especially 
at the most extreme strata (ie, > 10 years |ΔAge|). An independent 
control group, not undergoing wellness coaching, would be required 
to differentiate these two effects regression to the mean and im-
provement from the wellness program.

Metabolic health, inflammation, and bioaccumulation of toxins 
represent dominant themes under our BA models across data types. 
The importance of metabolic health is well supported in aging litera-
ture, and a major concern in the developed world with nearly 40% of 
Americans expected to develop T2D in their lifetime and diagnosed 
diabetes patients accounting for one in four health care dollars in the 
United States in 2017 (22,23). The substantial effect of HbA1c, where 
1 SD increase corresponded to a roughly 4-year increase in BA, par-
tially explained the considerable effect on BA observed in participants 
that self-reported T2D. Adiponectin and AgRP are involved in the 
regulation of appetite and energy balance, with their levels in the blood 
rising in response to fasting and CR (24,25). Interestingly, adiponectin 
was a positive predictor of BA in our models, despite its aforemen-
tioned beneficial role in metabolic regulation. This is consistent with 
the proposed “adiponectin paradox,” where despite its beneficial role 
throughout the life span, increased circulating adiponectin levels in 
elderly populations are associated with a higher risk of mortality (26). 
The purported health benefits of CR are, in part, attributed to its 
ability to slow down metabolic decline and decrease oxidative stress. 
Consistently, strong beneficial effects from the anti-oxidant gluta-
thione subfamily observed in the metabolites are consistent with these 
inter-relationships. Chronic inflammation is a common risk factor 
in many age-associated diseases, including heart disease, depression, 
cancer, osteoarthritis, and diabetes (27,28). Concordantly, changes in 
immune activity as people age were reflected in BA (5,29). CXCL9, a 
strong positive predictor of BA, is involved in the chemo-attraction of 
T cells and NK cells and has been demonstrated as a biomarker for the 
development of heart failure (30,31). CXCL9 and GDF15 were shown 

to explain significant variability in arterial stiffness and myocardial 
relaxation (32). The negative association of LTA with BA is aligned 
with its broad anti-tumor active, via multiple pathways, including the 
recruitment of NK cells (33). Bioaccumulation of toxins is known to 
be detrimental to human health, especially in Alzheimer’s disease, and 
a growing concern as people age (34–37). Several environmental pol-
lutants, including the heavy metals lead and mercury, were identified 
as strong positive predictors of BA.

While most of the strongest predictors of BA were shared, sex-
specific analyte contributions illuminate some differences in the bio-
logical aging process. For example, ALP was a strong positive predictor 
of BA in women, but not in men (Figure 3). Circulating ALP levels are 
commonly used as a marker for liver or bone disease, as total ALP con-
sists mainly of bone and liver-derived isoforms. Particularly relevant to 
bone, increase in total and bone-specific ALP levels has been associated 
with increased rates of bone turnover (38,39). Given postmenopausal 
women experience higher bone turnover rate and accelerated bone 
mineral density loss with age compared to men, the difference in the 
effect of ALP on BA between men and women may result from sex-
specific differences in bone physiology across the life span (40).

In contrast to ALP, creatine metabolites emerged as a notable sub-
family for BA estimation in men, but not in women (Supplementary 
Figure 3). Within the creatine metabolite subfamily, creatinine was 
one of the stronger negative predictors for men. While creatinine 
build-up can be an indicator of reduced kidney function, it is also 
commonly used as a surrogate marker for muscle mass (41,42). This 
difference may reflect age-related muscle loss (sarcopenia) that is 
generally more pronounced in males than females (43). PFOA was 
also a strong positive predictor of BA in men only. Kinetic studies 
suggest sex differences in the excretion of PFO metabolites, which 
may in part explain the observed effects (36,44). Additionally, 
animal studies have shown that higher testosterone levels increase 
the rate of elimination of PFOA (45). Decreasing testosterone levels 
as men age or with obesity may partially explain the predictive cap-
acity of PFOA levels in men but not in women.

Particularly intriguing is the fact that different data types illu-
minate different facets of wellness (Supplementary Figure 2), even 
though each data type was independently effective at estimating CA 
(Figure 1 and Supplementary Table 2). While each data type provides 
rich information about an individual’s biological state, the view into 
that state is inextricably affected by the modality of those measures. It 
has previously been demonstrated that different omics profiles of the 
same individuals do not cluster together (46). Data type–dependent 
differences among associations between ΔAge and some health con-
ditions were observed (Table 2). For instance, ΔAge estimates de-
rived from proteomics were associated with coronary artery disease, 
while estimates from the other data types had CIs showing little ef-
fect. While this association was not significant after FDR correction 
(unadjusted p = .004), the protein panels used were heavily focused 
on inflammation and cardiovascular disease, and so this result is not 
surprising. Determining which data types are most appropriate for 
certain diseases may help create condition-specific calculations of BA, 
and lead to greater precision based on an individual’s specific health 
concerns and history. This study argues that a fuller picture of an 
individual’s health emerges by incorporating multiple views of aging 
systems. As costs decrease over the next 10–15 years, expanding the 
protein, clinical chemistry, and metabolites panels to the largest ex-
tent reasonable will enable each of the different analyte classes to re-
flect in the broadest possible manner the “integrated” aging process.

This study confirms previously identified biomarkers that also 
estimated BA. Eight of the 10 biomarkers identified in Levine (2012) 
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are measured in the clinical labs, with 6 being top predictors in 
our clinical lab models (Figure 3 and Supplementary Table 4) (8). 
Creatinine was not directly a top predictor in the clinical labs, but 
the blood urea nitrogen and creatinine ratio was, and creatinine is 
one of the strongest predictors of BA in men in the metabolomics. 
Presence of a large number of inflammatory markers may explain 
why C-reactive protein does not emerge as a particularly strong pre-
dictor. Another study demonstrated GDF15 as a potent predictor 
of BA (5). These verifications reinforce the generalizability and rele-
vance of these biomarkers to BA.

Strengths of this study include deep phenotyping, large cohort size, 
a broad age distribution (18–89+), and longitudinal measurement of 
participants actively improving their health through lifestyle changes. 
Limitations of this study include the lack of many aging-specific 
covariates (such as grip strength, balance, and cognition), the short 
duration of observation relative to earlier epidemiological studies, and 
the lack of uniformity of measures across all people and observations. 
As mentioned, since a suitable control population (individuals not 
enrolled in a wellness program) was not available, regression-to-the-
mean effects in analyses stratified by baseline BA subgroups could not 
be ruled out, particularly those with the largest deviation (outside of 
±10) of ΔAge away from zero. The lack of a control group addition-
ally raises issues for interpretation of these results. Neither causality 
nor the relative efficacy of this program compared to other interven-
tions can be determined. Data type–specific stratified analyses were 
often underpowered, yielding large CIs and inconsistent estimates. 
Nevertheless, these exploratory analyses demonstrate intriguing 
trends for future studies. This study focuses on the applicability of 
BA to the whole adult life span as a general measure of wellness by 
assessing through hundreds of blood analytes literally 100s of bio-
logical networks. The lack of uniformity of measured variables over 
time presents challenges in integration and analysis, which are inevit-
able in the process of utilizing real-world data. Interest in repurposing 
incidental measures, electronic medical records, patient-contributed 
data, and mining of public databases is high. Thus, developing flexible 
methods that robustly integrate existing data is a superior strategy to 
ignoring essential features of human health due to partial missingness.

One question raised by application of deep phenotyping to 
calculate BA is whether measuring these large sets of variables is 
justified. They are at the level of discovery—that is, you want to 
survey the largest possible set of analytes to discover those which 
have the dominant effects on BA. Once these are discovered, far 
more limited feature tests can likely be assembled to calculate BA. 
Notably, a perfect predictor of CA would be useless as a wellness 
marker, giving no more information than the individual’s birthday 
(47). The main point is whether deviations in prediction represent 
deviations from wellness states and the extent to which this measure 
is modifiable. Longitudinal, deep phenotyping of individuals allow 
us to fully realize the broad dimensionality of a given population—
and they allow us to stratify the population based on personal data 
clouds of the individuals and not on averaged data from popula-
tions. Additionally, if BA or ΔAge were used as a summary metric 
for wellness, a drop in BA over time may encourage participants to 
persist with healthful behaviors in order to maintain their “healthy” 
progress and allow one to carry out individual N  =  1 studies on 
interesting compounds to facilitate healthy aging with lower BA as a 
target measure. Thus, it is proposed that ΔAge can be a useful metric 
to facilitate healthy aging. While the population insights herein are 
robust, reducing the high variance in the metric, however, is clearly 
an important factor in how such a measure might be used in the fu-
ture on an individual basis.

This study estimates BA measures from PD3 clouds as gross, ag-
gregate measures of health and wellness, which are useful because 
they constitute the averaging of many different biological systems. 
Importantly, BA has the potential to serve as a metric that can be used 
to track progress towards healthy aging. The factors affecting BA rep-
resent acute and cumulative damage that occurs over an individual’s 
lifetime and are mostly actionable through lifestyle, environmental, 
and pharmaceutical intervention. BA measures may be positive or 
negative wellness markers that can be used in instances where an in-
dividual lacks any specific disease conditions but is still interested in 
increasing wellness and preventing disease. Additionally, as CA is used 
to determine risk categories for many prophylactic tests such as colon-
oscopies, prostate exams, and mammograms, so too might BA provide 
personalized guidance on the relevance of those tests. As health care 
moves its focus from treatment to prevention, this actionable, holistic, 
and easily interpretable metric of wellness can be a valuable tool.

Supplementary Material

Supplementary data are available at The Journals of Gerontology, 
Series A: Biological Sciences and Medical Sciences online.
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