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Abstract
Abundances of a range of air pollutants can be inferred from satellite UV-Vis spectroscopy measurements by using the
unique absorption signatures of gas species. Here, we implemented several spectral fitting methods to retrieve
tropospheric NO2, SO2, and HCHO from the ozone monitoring instrument (OMI), with radiative simulations providing
necessary information on the interactions of scattered solar light within the atmosphere. We analyzed the spatial
distribution and temporal trends of satellite-observed air pollutants over eastern China during 2005–2017, especially in
heavily polluted regions. We found significant decreasing trends in NO2 and SO2 since 2011 over most regions, despite
varying temporal features and turning points. In contrast, an overall increasing trend was identified for tropospheric
HCHO over these regions in recent years. Furthermore, generalized additive models were implemented to understand
the driving forces of air quality trends in China and assess the effectiveness of emission controls. Our results indicated
that although meteorological parameters, such as wind, water vapor, solar radiation and temperature, mainly
dominated the day-to-day and seasonal fluctuations in air pollutants, anthropogenic emissions played a unique role in
the long-term variation in the ambient concentrations of NO2, SO2, and HCHO in the past 13 years. Generally, recent
declines in NO2 and SO2 could be attributed to emission reductions due to effective air quality policies, and the
opposite trends in HCHO may urge the need to control anthropogenic volatile organic compound (VOC) emissions.

Introduction
Nitrogen dioxides (NO2), sulfate dioxides (SO2), and

formaldehyde (HCHO) are short-lived and reactive trace
gases that play important roles in atmospheric chemistry
and air pollution1. NO2 and SO2 can be converted into
secondary inorganic aerosols, i.e., nitrate and sulfate,
respectively, via reactions with OH radicals2. HCHO
usually originates from the photochemical reactions of
volatile organic compounds (VOCs) and can be used as a

proxy for the total reactivity of VOCs3. The sources of
VOCs include fire, vegetation and anthropogenic emis-
sions4. VOCs are important precursors of secondary
organic aerosols and ozone (O3)

5. Anthropogenic emis-
sions from the power, industrial, residential, transporta-
tion, and agricultural sectors enhance the concentrations
of these gases in the troposphere, especially in the
boundary layer, over urban areas.
Spectroscopy techniques greatly advance the comprehen-

sive understanding of air pollution evolution6–9, especially
with the broad application of ground-based and space-based
passive and active remote sensing. Since the 1990s,
numerous space-borne ultraviolet-visible (UV-Vis) spectro-
meters, e.g., the Global Ozone Monitoring Experiment
(GOME)10, SCanning Imaging Absorption SpectroMeter for
Atmospheric CHartographY (SCIAMACHY)11, Ozone
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Monitoring Instrument (OMI)12, and Global Ozone Mon-
itoring Experiment–2 (GOME-2)13,14, have achieved the
global monitoring of atmospheric trace gases, including
NO2, SO2, HCHO, and O3, by using their unique absorption
signatures in a shorter wavelength range (250–500 nm). In
principle, the numerical inversion methods of these key
atmospheric variables could be achieved by incorporating
radiative transfer simulations on the interactions of solar
scattered light within the atmosphere15.
With rapid economic growth and urbanization, central

and eastern China have been suffering from severe air
pollution over the last decade16–18. Anthropogenic pol-
lutant emissions are a primary cause of ambient air pol-
lution. In addition, meteorological factors could also
impact air quality through atmospheric processes such as
formation, transport, convection and both the dry and wet
deposition of air pollutants1. The role of emissions and
meteorological conditions in the evolution of air pollution
has been investigated for cases such as heavy pollution
episodes in winter in Beijing19 and several important
international events during which the government has
conducted strict emission controls in Beijing and Nanj-
ing20–22. Nevertheless, there still remain a series of
unanswered questions, e.g., the separation of meteor-
ological effects from the human-induced variations in air
pollution and the evaluation of the effectiveness of
emission control measures or air quality policies imple-
mented by the Chinese government, such as the Air
Pollution Prevention and Control Action Plan (APPCAP)
issued in 201323.
A number of studies have focused on the relative con-

tributions of emissions and meteorological conditions.
However, their conclusions were restricted to either small
geographical areas or short periods based on limited
in situ measurements. Due to the advantage of satellite
observations in terms of spatiotemporal coverage, some
studies have clearly captured the temporal variability in
tropospheric air pollutants over China and attributed the
long-term pollutant trends to the variation in anthro-
pogenic emissions such as nitrogen oxides (NOx) and
SO2

24,25. However, to better understand the effects of
anthropogenic emissions and emission control measures,
the influences of meteorological conditions should be
separated from the long-term satellite-observed air quality
trends.
In this study, satellite spectroscopic measurements from

the OMI were first used to retrieve the tropospheric
abundances of NO2, SO2 and HCHO over central and
eastern China (20°–45°N, 100°–125°E), and then air
quality trends were analyzed based on the derived spa-
tiotemporal data. The OMI was selected due to its high
signal-to-noise ratio, fine spatial resolution, stable spectral
performance, and most importantly, long temporal cov-
erage26 compared to other satellite sensors of its type,

such as GOME-2, SCIAMACHY, etc. Several heavily
polluted and densely populated regions were focused on,
e.g., Beijing-Tianjin-Hebei (BTH), Changjiang River Delta
(YRD), Zhujiang River Delta (PRD), and Sichuan Basin
(SCB). These regions have drawn increasing scientific
attention to their widespread air pollution in the last
decade. Due to the complex interactions and feedbacks
between meteorological conditions and air quality19,
separating the effects of emission variations on air quality
trends from meteorological factors remains challenging.
Here, we have implemented generalized additive models
(GAMs) to quantitatively assess the impacts of meteor-
ological and anthropogenic variables on air quality var-
iations for typical megacities over these regions. The
GAMs make use of penalized smoothing splines, which
could address the complex non-linearity existing in air
quality and meteorology research27. Contrary to previous
studies20–22 relying on the atmospheric chemistry model,
this novel statistical method based on long-term satellite
observations provides an explicit solution for quantifying
natural and anthropogenic impacts and assessing the role
of emission control measures on air quality trends.

Results
The spatiotemporal variability in OMI-measured air
pollutants
The spatial distributions of the tropospheric VCD

retrievals of NO2, SO2, and HCHO during 2005–2017 are
presented in Fig. 1a–c, respectively. Extremely high con-
centrations of air pollutants can be clearly found with a
large spatial coverage over typical industrial and densely
populated regions in China, e.g., BTH, YRD, PRD, and
SCB. Spatially, BTH suffered from the most severe NO2

and SO2 pollution levels compared to other regions. A
large hotspot of HCHO pollution can also be seen over
these industrial areas, especially in PRD. Based on the
VCD variation patterns shown in Fig. 1d–f, we concluded
that the interannual variability in OMI-measured pollu-
tants during 2005–2017 over central and eastern China
was not monotonically increasing or decreasing but had
different temporally varying regimes for individual gas
species and regions. In addition, the temporal trends of
these pollutants were spatially consistent for the satellite
ground pixels within each region (See Fig. S1). Therefore,
for each region, we could use the spatial average to ana-
lyze the regional trends in air pollution and choose one
typical megacity to explore its driving forces regarding air
quality trends.
For the tropospheric NO2 column, the increases were

estimated as 59.5, 26.7, and 45.2% for the BTH, YRD and
SCB regions from 2005 to 2011, followed by significant
decreases of 74.1, 45.1, and 33.2% during 2012–2017,
respectively. In contrast to other regions, PRD showed a
continuous decrease in the NO2 column at an annual rate
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of 2.1% since 2005. However, the OMI SO2 over most
regions showed an overall decrease before the rising peak
occurred around 2007, despite a relatively large inter-
annual variation. The average annual concentrations of
OMI SO2 decreased by 60.6%, 59.2%, 48.7%, and 69.2% in
the BTH, YRD, PRD, and SCB in 2017, respectively,
compared to levels in 2005. Unlike primary pollutants
such as NO2 and SO2, the HCHO column over central
and eastern China showed an overall increasing trend of
13.7–27.0%. Note that these percentage changes are well
within the 95% confidence interval (P-value less than
0.05), which were calculated based on the annual con-
centration relative to the year 2005.

The marginal effect of individual meteorological variables
on air pollutants
We selected four typical megacities, including Beijing,

Shanghai, Guangzhou, and Chengdu (from BTH, YRD,
PRD, and SCB, respectively), for the GAM analyses. The
marginal effect of the smooth term S(Xi) in the GAMs is
calculated as 100% � ½eS Xið Þ � 1�, representing the relative
contribution of the individual term to the overall response
while other covariates are assumed to remain constant.
Figure 2 and Figs. S2–12 illustrate the marginal effect of
individual meteorological and temporal covariates, i.e., the
water vapor mixing ratio (qv), zonal wind (ua), meridional

wind (va), temperature (temp), downward shortwave solar
radiation (swdown), precipitation (rain), day number
(daynum), and day of the week (dow), for different trace
gases and cities, respectively. Note that for each panel in
the plots, the estimated degrees of freedom (EDFs) cor-
responding to the smooth term are noted inside the
bracket of the text. An EDF of 1 indicates a linear effect.
See the model details in the Materials and Methods
section.
The reaction of water vapor with O (1D) atoms is a

major source of tropospheric OH radicals, especially in
the lower troposphere, where qv is large2. Therefore,
water vapor may affect most reactive atmospheric pollu-
tants through OH oxidation. An overall inverse relation-
ship of tropospheric NO2 or SO2 with qv was found for
most cities, which was possibly due to the reaction of the
OH radical with NOx or SO2. A positive relationship
between HCHO and qv could possibly be related to sec-
ondary HCHO formation from the oxidation of VOCs4.
Local favorable wind conditions for air mass transport

could have a determinant impact on air pollution levels.
From the marginal effects in Beijing, we found that a
southerly wind at a speed of 2 m s–1 could increase the
tropospheric pollution level of NO2 by ~30%, that of SO2

by ~26%, and that of HCHO by ~4% compared to their
overall means during 2005–2017 and that a northerly
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wind could effectively reduce air pollution levels by con-
siderable amounts (see Figs. 3, S2–3). This finding is
consistent with previous conclusions that a southerly
wind aggravates haze pollution and that a northerly wind
mitigates haze pollution28,29. Similar distinct positive
correlations between a westerly wind and primary pollu-
tants were also noticed in Shanghai (see Figs. S4–6). The
wind effects indicated that the regional transport of pol-
lutants plays an important role in the air quality of
megacities. Compared to primary pollutants, the impact
of wind speed on HCHO over these cities was much
smaller. This could be explained by the short lifetime of
tropospheric HCHO, which prevents the regional trans-
port of its primary emissions30.
Furthermore, meteorological variables such as temp,

swdown, and rain also play important roles in the forma-
tion, dispersion, and deposition of tropospheric pollutants1.
The aggregated impacts of these variables could partially
explain the seasonal variation in air pollutants, as seen by
the marginal effect. Specifically, we found that there were

almost no reductions in tropospheric NO2, SO2, and
HCHO over these Chinese megacities during weekends, as
seen by the marginal effect of dow. Such a weekly cycle was
observed for developed countries such as the US and
Japan31,32. The discrepancies may indicate the differences in
the variation patterns of their major emissions.

Discussion
In addition to the marginal effects of particular covari-

ates, the time series accumulations of meteorological and
non-meteorological (i.e., temporal) smooth terms are
compared for these megacities. Figure 3 presents com-
parisons of the accumulated daily or annual series of
meteorological and non-meteorological smooth terms
during GAM modeling on OMI NO2 in Beijing, as indi-
cated by S(meteos) and S(non-meteos), respectively. Simi-
lar results were also shown for other gaseous pollutants
over these four megacities in Figs. S13–21.
For OMI NO2 over these megacities, it was found that S

(meteos) generally agreed well with the daily NO2
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variations, with correlation coefficients (R) within
0.45–0.65. However, S(non-meteos) showed a lower fre-
quency of variations and poor correlations with daily OMI
NO2 (R= 0.16–0.29). Seasonally, S(meteos) varies
between the maximum in winter and minimum in sum-
mer, which is consistent with the NO2 concentration.
However, for interannual variability, S(non-meteos) gen-
erally coincides well with the measured OMI NO2 varia-
tions (R= 0.95–0.98), which is much better than S
(meteos), with an R smaller than 0.17 (see Figs. 3, S13–15).
In addition, the magnitudes of the interannual variations
in S(non-meteos) are 2.93–3.94 times larger than those in
S(meteos) for these megacities. These statistical findings
indicated that synoptic meteorological conditions

dominate the short-term scale variability in tropospheric
NO2, especially for megacities, with stronger seasonality
in the mid-high latitudes, while the long-term or inter-
annual NO2 variations are dominated by non-
meteorological causes. Similar regular patterns were also
found for SO2 and HCHO.
Given that the S(non-meteos) components have already

been largely isolated from the meteorological influences,
we further examined the ability of S(non-meteos) as an
indicator of the anthropogenic causes of the ambient
concentrations of air pollutants. For NO2 in Beijing, an
overall high correlation was found between S(non-meteos)
and NOx emission inventory data from both bottom-up
(R= 0.59, with the MEIC emission inventory33) and top-
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down (R= 0.72, with the OMI-derived emission inven-
tory34; see Fig. S22) estimates. This suggests that S(non-
meteos) could denote the variation in annual NOx emis-
sions by penalized regression splines for temporal cov-
ariates during GAM NO2 modeling. For SO2 and HCHO
in these megacities, S(non-meteos) also generally corre-
lated well with the emission inventories (see Figs. S13–
21). This indicated that S(non-meteos) can be used to
present the influence of anthropogenic emissions to some
extent. Due to the complicated chemical process of dif-
ferent HCHO species in the atmosphere, the correlation
coefficients between S(non-meteos) and VOC emission
amounts varied over a large range.
Based on these GAM results, we can conclude that the

downward trend in tropospheric NO2 in Beijing during
2012–2017 could be largely explained by the NOx emis-
sion reductions due to the strict NOx emission controls in
the industrial sector and on vehicles since the APPCAP
was issued in 201333,35. Similar sharp decreases in NO2 S
(non-meteos) were also found for Chengdu and Shanghai
before the increase to its maximum in 2011 and 2012.
However, a continuous reduction in NO2 S(non-meteos)
occurred in Guangzhou in the PRD since 2007, indicating
the effectiveness of stricter and earlier NOx emission
controls during the 11th Five-Year-Plan (2006–2010) in
Guangdong Province36. Overall, local and nationwide
efforts such as the APPCAP and other air quality policies
have achieved a considerable reduction in anthropogenic
NOx emissions and therefore significantly improved air
quality in these cities.
The sharp reductions in both OMI SO2 and S(non-

meteos) over these cities were found during 2012–2017
(see Figs. 4, S16–18), which was possibly attributed to a
combination of factors, such as the upgraded emission
standards published during the 12th Five-Year Plan
(2011–2015), deployment of flue gas de-sulfurization at
coal-fired power plants, stricter emission controls during
the APPCAP, and declines in coal consumption37,38. In
addition, a smaller reduction during 2008–2010 was
noticed for Beijing, Shanghai, and Guangzhou, which was
possibly caused by the economic recession and local
emission regulations for important events such as the
Beijing 2008 Summer Olympics and the Expo 2010 in
Shanghai, China.
For HCHO, an overall increasing trend was found for

these cities, especially during recent years since 2012 or
2013 (see Figs. 5, S19–21). In contrast to NO2 and SO2,
which experienced sharp reductions recently, an unex-
pected HCHO increase was noted during 2013–2017 in
Beijing. This could be explained by increases in interannual
HCHO S(non-meteos) in the GAMs, which was also evi-
denced by the VOC emission inventory data33. This finding
emphasises the vital role of VOC emission regulations when
controlling HCHO pollution in these megacities.

Apart from interpreting the long-term air quality
trends, we also investigated the short-term impact of
emissions change and synoptic meteorology on air quality
changes. For example, we compared the measured con-
centrations, S(non-meteos) and S(meteos) of NO2 for the
periods before, during, and after the Beijing 2008 Summer
Olympics (see Fig. 6). The NO2 concentration sig-
nificantly decreased compared with the same periods
during the previous year, and such reductions could be
largely attributed to the decrease in S(non-meteos), i.e.,
emission reductions due to regulations in the industrial
and vehicle sectors. Compared to the same period in 2007,
NO2 VCDs and S(non-meteos) during the Beijing Olym-
pics decreased by 4.9 × 1015 and 2.5 × 1015 molecules
cm–2 (with P-values of the two sample T-tests less than
0.05), respectively, while S(meteos) decreased by 0.1 × 1015

molecules cm–2 (with a P-value of 0.2). Similar reductions
in S(non-meteos) for other trace gases and those for the
Guangzhou 2010 Asian Games are shown in Figs. S23–27.
We can conclude that emission reductions play a domi-
nant role during air pollution, controlling air quality
during these important events, despite unfavorable
meteorological conditions.
In summary, the recent declines in primary pollutants

such as NO2 and SO2 could be attributed to reductions in
NOx and SO2 emissions due to the effective emission
regulations and other air quality policies, especially after
the APPCAP was implemented in 2013. In contrast to
primary pollutants, the opposite trends in HCHO during
recent years may encourage the need to control the
anthropogenic emission sources of VOCs. Moreover, the
variations in these important aerosol precursors sig-
nificantly affected the temporal trends in fine particles
(PM2.5). For example, a slight decrease in PM2.5 during
2006–2012 was indicated by satellite aerosol optical depth
data and surface observations39,40 and was possibly caused
by the onset of SO2 emissions control around 2007. The
following sharp decrease in PM2.5 concentration during
2012–2017 could be possibly caused by the trend reversal
in NO2 in 2011 and the effective emission reductions in
other aerosol precursors, such as SO2 and NH3 (ammo-
nia), due to the APPCAP41. This study provides novel
insight into natural and human factors affecting air quality
evolution over eastern China and will be further extended
by satellite spectral measurements with higher spatial
resolution from newly launched space-borne instruments,
such as TROPOMI42 and EMI43.

Materials and methods
Satellite UV-Vis spectroscopy
The OMI is a nadir viewing push-broom spectrometer

onboard NASA’s EOS Aura spacecraft in a low-earth
polar orbit, measuring the entire solar spectrum from 270
to 540 nm at a moderate resolution of ~0.5 nm12. The
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OMI generally shows stable performance in radiometric
and spectral calibrations since its launch in 2005, pro-
viding continuous spectroscopic measurements for
Earth’s atmospheric components during its entire mission
time26.
Figure 7a illustrates a typical observing geometry of a

space-borne UV-Vis spectrometer that receives solar
photons backscattered by air molecules or particles and
reflected by surfaces and clouds. By numerically modeling
the measured satellite spectra, information on the abun-
dances of trace gases and particles and surface conditions
can be effectively obtained. In the UV-Vis range, thermal
emissions can be ignored, and the scattering of trace gases

spectrally varies much slower than the absorption, as
shown from the top-of-atmosphere reflectance spectra for
different surface types in Fig. 7b. Therefore, the absorp-
tion of trace gases with high-frequency structures could
be well distinguished in the observed spectra.
The atmospheric components can be retrieved from the

satellite measurements in a simplified way by solving the
Beer-Lambert’s law equation on radiative transfer. How-
ever, some inverse problems are usually ill-posed, which is
mainly due to nonlinear effects from instrument calibra-
tion errors and the ring effect. Typically, several algo-
rithms are developed to resolve these problems, including
nonlinear least-square fitting, principal component
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analysis, optimal estimation (OE), and neural networks.
Figure 7b gives an example of OMI spectral fitting of the
slant column densities (SCDs) for NO2, HCHO, and SO2

using the state-of-the-art Differential Optical Absorption
Spectroscopy (DOAS) technique44.
The absorption of the target trace gas in measured

atmospheric radiation depends not only on the gas
abundance but also on the average length of the path
that a photon travels through in the atmosphere. Thus,
numerical simulations by the atmospheric radiative
transfer model (RTM) are needed to calculate the
effective photon transfer path compared to a single

vertical path, i.e., the so-called air mass factor (AMF),
which converts the SCDs into vertical column densities
(VCDs). The AMF is usually formulated by the integral
of the vertical profile of the target gas weighted by
altitude-dependent scattering weights. The uncertainty
in AMF calculations is one of the dominant error
sources for tropospheric trace gas retrievals45 (see the
illustration of the SCD, VCD and altitude-dependent
AMF in Fig. 7a, c). In addition, more realistic con-
siderations in the radiative simulation of satellite-
measured spectra, e.g., the ring effect, polarization and
surface reflectance anisotropy, could effectively improve
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the accuracy and precision of trace gas retrievals,
especially for weak absorbers such as SO2 and HCHO.

Description of trace gas retrieval
The tropospheric retrieval of NO2 and HCHO followed

a two-step approach, in which the spectral fitting of SCDs
and the AMF calculations with the RTM were

separated44. For SO2, an OE method was implemented by
iteratively minimizing the differences between the mea-
sured and simulated spectra and between the retrieved
and a priori state vectors using the RTM as the forward
model46,47. The main algorithm improvements include
the use of local-updated a priori information from the
regional chemical transport model, direct RTM
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calculations instead of interpolations by a look-up table,
and optimized configuration parameters such as instru-
ment slit functions and gas cross-sections48.
The algorithm details for the NO2, SO2, and HCHO

retrievals are provided in the Supplementary Information.
Note that the data used in this study were screened first
by cloud fraction, retrieval error and related quality flags
for each satellite ground pixel (see Supplementary Infor-
mation). Compared with the operational OMI trace gas
products, our trace gas retrievals showed improved

consistencies with independent ground-based measure-
ments from MAX-DOAS and LiDAR over eastern
China49.

The GAMs
To further quantify the impact factors for air quality

trends, a statistical fitting approach based on GAMs27 was
implemented. GAMs make use of penalized smoothing
splines, which address the complex non-linearity existing
in air quality research. Meteorological variables were
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obtained from the NCEP FNL global meteorological
dataset and then simulated at a horizontal resolution of
~20 km by using the WRF (Weather Research and
Forecasting) model.
The GAM associated with daily series of pollutant

concentrations can be written with the following equa-
tion:

log yð Þ � βþ
Xn

i

S Xið Þ þ ε

where y is the daily pollutant concentration, β is the
constant mean of the response, S(Xi) is the smoothing
function term of the ith component of n total covariates,
and ε is the fitting residual. Here, the covariates Xi

included meteorological variables such as zonal wind (ua),
meridional wind (va), water vapor mixing ratio (qv),
downward shortwave solar radiation at the surface
(swdown), precipitation (rain), and temperature (temp),
as well as other temporal variables such as the day
number (daynum) and day of the week (dow), to account
for the short-term temporal persistence and control for
temporal autocorrelation in the residuals. Note that ua,
va, qv, and temp are selected at a pressure level of 850 hPa
(~1.5 km altitude), representing the lower troposphere,
which is where most air pollutants are located.
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