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A B S T R A C T

Polyhydroxyalkanoates (PHA) are prokaryotic macromolecules accumulated within the cytoplasm as granules.
Due to their suitable mechanical properties, biocompatibility, degradation time, ability to be blended, surface
modified, and form copolymers, it is widely used in medical devices and as scaffolds in bone tissue engineering.
This review describes in brief the production and extraction sources, physico-chemical characteristic, mechan-
ical properties, degradation rate and applications of various PHAs and its copolymers with special emphasis to its
role as scaffolds in bone tissue engineering.

1. Introduction

Polyhydroxyalkanoates (PHA) are biocompatible and biodegradable
polyesters accumulated within the cytoplasm of prokaryotic cells as
water insoluble granules. PHA extracted from these granules exhibits
good tensile strength, thermoplasticity and elastomeric nature. These
properties of PHA and its polymers are comparable to bone and thus
qualify them to be used as scaffolds for bone engineering.

2. PHAs

Polyhydroxyalkanoates (PHAs) are prokaryotic storage macro-
molecules, accumulated intracellularly as energy storage materials by
various microorganisms under unbalanced specific growth conditions
i.e. when the growth medium contains excess carbon (C), or low con-
centrations of nitrogen (N), phosphorus, or magnesium. These granules
are often known as “carbonosomes” and are around 0.2–0.4 μm in
diameter and contribute to more than 90% of the cell mass. Dyes like
Sudan Black B and oxazine dyes like Nile Blue A or Nile Red can be used
to stain the accumulated PHA in the cells.1

PHAs are aptly referred as ‘green plastics’ due to their positive social
and environmental impact in production and recycling. With recent
advancements, they can even be developed from non-PHAs producing
strains with no toxins.2

3. PHYSIO-CHEMICAL characteristics

PHAs can be classified on the basis of the number of carbon atoms in
the monomer incorporated into the polymers by their chain length; as

short-chain-length PHAs (SCL-PHAs; 1-5-carbon atom monomer),
medium-chain-length (MCL-PHA) with C6–C14 and long-chain-length
(LCL-PHA) with>C14 monomers. The physicochemical properties of
the PHAs may vary depending on their composition. While the SCL-
PHA has properties similar to conventional plastics polyethylene or
polypropylene, MCL-PHA has properties close to elastomers and rub-
bers. The SCL-PHA has high (60–80%) crystallinity, is stiff and brittle,
while the MCL-PHA has low crystallinity, low glass transition tem-
perature, low tensile strength and high elongation at break.3

The composition of PHAs varies depending upon the organism and
their carbon substrate. Its molecular mass ranges between 200 and
300 kDa depending on the metabolic capability of the bacteria.4

The chief characteristics of PHA include non-antigenicity, bio-
compatibility, good tensile strength, enantiomeric purity, thermo-
plasticity and elastomericity.5 However, PHAs differ from other cur-
rently available biodegradable plastics due to moisture resistance, and
water insolubility.6

4. Mechanical properties

The mechanical properties depend upon the monomeric composi-
tion of PHA, its chain length and the distance between R-group and
ester linkage. Poly-3-hydroxybutyrate (P3HB) is SCL-PHA with 3-hy-
droxybutanoic acids units, is versatile and can be extruded, molded,
spun into fibers, made into films or blended. It is stiff with a tensile
modulus (3.5 GPa), tensile strength (40MPa) and an elongation at
break (6%) and shows good oxygen impermeability.7

Another member, poly 4-hydroxybutyrate (P4HB) is strong ther-
moplastic, malleable material, with tensile strength equivalent to
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polyethylene, flexible with 100% elongation at break, tensile modulus
(0.15 GPa), tensile strength (104MPa). PHB also presents piezoelectric
properties, similar to natural bone.5 Though both are SCL-PHA and
have equal number of carbon in their chains, they differ in R group
positions, leading to difference in their 3D structure, polymer crystal-
linity and mechanical properties.8

Integration of 3-hydroxyvalerate (HV) units in PHB results in fab-
rication of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) or copolymer
PHBV, with a lower melting point and crystallinity, tougher, better
flexibility, and tolerance to thermal processing.9 PHBV is water in-
soluble and moisture resistant, does not degrade under normal condi-
tions of storage, and is indefinitely stable in air.

Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) has
lower crystallinity, broader processing window and higher elasticity
compared with PHB and PHBV due to its long alkyl chain. It also pos-
sesses piezoelectric behavior and cytocompatibility when cultured with
stem cells.10,11

Currently PHB, PHBV, P4HB, PHBHHx, copolymers of 3HB and 4-
hydroxybutyrate (P3HB4HB), and poly-3-hydroxyoctanoate (PHO) are
being used for tissue engineering.12

5. PHA production and extraction

PHA polymer, PHB/P3HB (Poly-3-hydroxybutyrate) was the first
isolated and characterized in 1925 by Maurice Lemoigne. The main
constraint lies in its high cost of production. However, currently several
ways are being used to make the process cheaper, for example, using
suitable bacterial strains and inexpensive carbon sources like those
described in Table 1. Another cause of increased cost of production is
the intracellular location of PHA along with complexity of the proce-
dure of extraction. The methods employed for PHA production and
extraction are described in brief in Table 2.

Porous scaffolds can be produced by thermally induced phase se-
paration, evaporation, freeze-drying, solid-free fabrication, 3D printing,
selective laser sintering, solvent casting, foam-coating, and many other
techniques13

6. Degradation of PHA

PHAs are biodegradable although the rate of degradation observed
is very slow and is primarily microbial ie. PHAs gets converted into CO2
and energy by microorganisms such as bacteria, fungi, and algae.
Following degradation, the products pass though the cell wall and are
metabolized. Tokiwa Y et al. (2004) demonstrated that PHB and
PHBHV degrades in vivo to D-3- hydroxybutyrate (3HB), a common
human blood constituent. Hence PHAs have an edge over other bio-
degradable polymers as are hydrolyzable, being degraded to soluble
monomers without the help of other organisms.5 The hydrolysis pro-
ducts, 3HB and 4HB monomers, are natural metabolites that exist in
brain, lung, heart, liver, kidney, muscle and expired as carbon dioxide
from our body.14 Biodegradability of polymers is inversely related to
melting point, crystallinity and molecular weight of the polymer15

Table 1
Source of Carbohydrates for low cost PHA production.

S no. Chief content Source

1 Carbohydrates Sugar beet molasses
Starch and starch hydrosylates
Maltose and Lactose from whey Cellulose hydrosylates
Reject fiber wastes from the paper industry after
hydrolysis

2 Alcohols Wastes from biodiesel production Methanol and Glycerol
3 Fats and oils Plant and animal wastes
4 Organic acids Lactic acid from dairy industry
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7. Applications

Mechanical properties, biocompatibility, and degradation times of
PHA make it suitable for application in tissue engineering. The fact that
PHAs can be blended, surface modified, and form copolymers, enhances
its application in medical devices and bone tissue engineering.

PHA, PHB, PHBV, P4HB, its composites and copolymers of 3-hy-
droxybutyrate, PHBHHx, and PHO are used to develop sutures, patches,
slings, pins, barriers, stents, medical devices for guided tissue re-
generation, cartilage or tendon repair, nerve guides, bone scaffolds, and
wound dressings16

8. PHA as biomaterial for bone scaffolds

PHA and its composites possess several characteristics to qualify as
biomaterial for scaffolds. When compared to other polymers like
polylactide-co-glycolid (PLGA), polyglycolic acid (PGA), and polylactic
acid (PLA), PHB scaffolds local pH during degradation remains un-
changed, making them well tolerated by immune system.17

Blend of P(HB-co-8%HV)/hydroxyapatite (30% w/w) has a me-
chanical compressive strength as of human bones (62MPa), evokes
lower inflammatory response and causes higher mineralization.18

Shishatskaya et al. (2004) and Volova et al. (2003) implanted rats with
PHA sutures and observed them in long-term studies to find PHA
threads remain active throughout and do not show any adverse ef-
fects.19

Ellis et al. prepared laser-perforated biodegradable scaffold films of
PHBHV and observed that the human keratinocytes attached and grew
on film surface, penetrated pores and reached the damaged tissue. The
decreased crystallinity at pore edges enabled faster cell adhesion,
growth and migration20

Puppi et al. blended PHBHHx with PCL by computer-aided wet-
spinning to avoid any adverse effect on the PHA molecular mass and
provide pre-defined macro- and micro-porosity in the scaffold. They
observed successful adhesion and proliferation of pre-osteoblast cells.21

There are several successful reports on PHB and PHBV in vitro and in
vivo, for bone tissue regeneration approaches.22 PHBHHx has been used
in the form of micro-grooved membrane,23 aligned nanofibers23 or
carbon nanotubes-loaded composite materials24 and has shown to
support human mesenchymal stem cells in osteogenesis.

Various Additive manufacturing techniques like stereolithography
and fused deposition modelling were used to develop a predefined
scaffold shape and porosity at macro-to micrometric scale25 Despite the
promising results, the narrow melt processing temperature window of
this technique hindered its application in production of 3D PHA porous
scaffolds. Now a days, a hybrid technique, computer-aided wet-spin-
ning (CAWS), is gaining attention. This technique involves processing
of PHBHHx into 3D scaffolds wherein, a computer-controlled deposi-
tion of a solidifying polymeric fiber extruded directly into a coagulation
bath occurs.26

9. PHA blends

PHB has been explored extensively as a scaffold biomaterial and
approved by FDA. However, PHB is highly crystalline with a brittle
nature, a relatively long degradation time and hydrophobic in nature
thus limiting its application.27,28 A number of studies have attempted to
modify the material properties of PHB through blending.29,30 A 50: 50
(w/w) blend of PHB with PHBV has shown better support for attach-
ment and proliferation of human osteoblast cells.31 Daranarong D et al.
(2014) fabricated electrospun nanofibrous scaffolds using fibrous
membranes of PHB with polyL-lactide-co–caprolactone (PLCL) and
observed them to be more hydrophilic (< 120°) with lower tensile
strength, increased extension at break, greater adhesion. This scaffold
showed enhanced proliferation and mitochondrial activity of cells.
PLCL/PHB nanofibrous membranes have also shown to promote cell

cycle progression and reduce the necrosis.32

Electrospun PHB/cellulose acetate (CA) blended nanofiber scaffolds
altered the crystallization of PHB by formation of hydrogen bonds and
the CA content increased the glass transition temperature. Percentage
increase in PHB increased the tensile strength, yield strength and
elongation at break of the blended nanofiber scaffolds and decreased
the water contact angle. In vitro degradation rate of blended nanofiber
scaffolds was much higher, and the cells showed better biocompatibility
and were capable of cell adhesion and proliferation.33

When blends of PHBHHx and polyD,L-lactic acid (PDLLA) were
fabricated into fibrous membranes by electrospinning, the mechanical
properties of the electrospun fibrous membranes depended on the or-
ientation of fibers. They had higher elongation; tensile strength and
modulus. As PDLLA increased, the electrospun fibrous membranes
showed higher elongation and lower tensile modulus. PDLLA degraded
faster than PHBHHx.34

When PHA was used to prepare open porous microspheres of
300–360 μm diameter, it could be used as injectable carrier harbouring
proliferating stem cells. In contrast to PLA, PHA presented a high in
vitro cell adhesion of 93.4% with surface pores of 10–60 μm and in-
terconnected passages of 8.8 μm average size, continuous proliferation
for 10 days, improved differentiation, a stronger osteoblast-regenera-
tion and protection of cells against stresses during injection, which al-
lowed proliferation and migration of more living cells to the damaged
tissues.35

When hydrophobic PHBHHx scaffolds were coated with a PHA
granule binding protein fused with RGD peptide (PHAp-RGD), it en-
abled homogeneous spread of cells for better adhesion, proliferation
and chondrogenic differentiation, more production of ECM and sig-
nificantly more cartilage-specific sulphated glycosaminoglycans (sGAG)
and total collagen content.36

10. Conclusion

The application of PHA as scaffold in bone tissue regeneration is
quite recent, and has a lot of potential due to its biocompatibility.
However, their major disadvantage is that mostly they are produced by
microorganisms in stressful environments (lacking nitrogen, oxygen,
magnesium phosphate or sulphate), that limits their availability and
hence increases the cost of fabrication. One of these PHB has a high
molar mass, a decreased biodegradation rate and low electronic density
because of which it cannot absorb enough photons to produce high-
contrast images and thus cannot be seen radiographically.
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