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Abstract
Ocean warming (OW) and acidification (OA) are intensively investigated as they 
pose major threats to marine organism. However, little effort is dedicated to another 
collateral climate change stressor, the increased frequency, and intensity of storm 
events, here referred to as intensified hydrodynamics. A 2‐month experiment was 
performed to identify how OW and OA (temperature: 21°C; pHT: 7.7, 7.4; control: 
17°C‐pHT7.9) affect the resistance to hydrodynamics in the sea urchin Paracentrotus 
lividus using an integrative approach that includes physiology, biomechanics, and 
behavior. Biomechanics was studied under both no‐flow condition at the tube foot 
(TF) scale and flow condition at the individual scale. For the former, TF disk adhe‐
sive properties (attachment strength, tenacity) and TF stem mechanical properties 
(breaking force, extensibility, tensile strength, stiffness, toughness) were evaluated. 
For the latter, resistance to flow was addressed as the flow velocity at which individu‐
als detached. Under near‐ and far‐future OW and OA, individuals fully balanced their 
acid‐base status, but skeletal growth was halved. TF adhesive properties were not 
affected by treatments. Compared to the control, mechanical properties were in gen‐
eral improved under pHT7.7 while in the extreme treatment (21°C‐pHT7.4) breaking 
force was diminished. Three behavioral strategies were implemented by sea urchins 
and acted together to cope with flow: improving TF attachment, streamlining, and es‐
caping. Behavioral responses varied according to treatment and flow velocity. For in‐
stance, individuals at 21°C‐pHT7.4 increased the density of attached TF at slow flows 
or controlled TF detachment at fast flows to compensate for weakened TF mechani‐
cal properties. They also showed an absence of streamlining favoring an escaping 
behavior as they ventured in a riskier faster movement at slow flows. At faster flows, 
the effects of OW and OA were detrimental causing earlier dislodgment. These plas‐
tic behaviors reflect a potential scope for acclimation in the field, where this species 
already experiences diel temperature and pH fluctuations.
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1  | INTRODUC TION

Over the past ~300 million years of Earth's history, several elevated 
atmospheric CO2 events have been reported, but nowadays, CO2 
is been released at unprecedented fast rates due to anthropogenic 
activity (Honisch et al., 2012). Indeed, atmospheric CO2 concen‐
tration increased from preindustrial levels of 280  ppm to the cur‐
rent value of 410 ppm (Dlugokencky & Tans, 2018) and might rise 
to approximately 1,000 ppm by the end of this century (Caldeira & 
Wickett, 2003; IPCC, 2014). Consequently, sea‐surface temperature 
has increased by approximately 0.8°C in the past 150 years and is 
predicted to rise by a further 2–4.5°C by the end of this century 
(IPCC, 2014). Simultaneously, the ocean has absorbed ~26% of an‐
thropogenic atmospheric CO2 (Le Quéré, Takahashi, Buitenhuis, 
Rödenbeck, & Sutherland, 2010), inducing changes in the carbonate 
system equilibrium such as reduced carbonate ion concentration and 
pH. These processes are merged under the term ocean acidification 
(OA, Feely et al., 2009). Seawater pH is predicted to decrease by 
0.3–0.4 units by 2,100 and by a further 0.7 by 2,300 according to 
the RCP 8.5 scenario (Caldeira & Wickett, 2003; IPCC, 2014; Orr et 
al., 2005).

The effects of predicted ocean warming (OW) and/or OA on 
marine invertebrates range from individual physiologies (Pörtner, 
2010; Somero, 2002), to changes in population dynamics (Ling, 
Johnson, Ridgway, Hobday, & Haddon, 2009), food availability 
(Hoegh‐Guldberg & Pearse, 1995; O'Connor, Piehler, Leech, Anton, 
& Bruno, 2009), increased diseases (Lester, Tobin, & Behrens, 
2007), or mortality (Coma et al., 2009). OA increases the energetic 
cost of building calcified skeletons (Bach, 2015; Pörtner, 2008) and 
could influence dissolution of existing skeletons if they are not pro‐
tected by organic layers (Dery, Collard, & Dubois, 2017; Manno, 
Sandrini, Tositti, & Accornero, 2007; Melzner et al., 2011). In ad‐
dition, significant interactive effects of OW and OA have been 
observed on fertilization and early development, survival, calcifi‐
cation, or growth (e.g., Byrne, 2011; Kroeker et al., 2013; Kroeker, 
Kordas, Crim, & Singh, 2010).

Ocean warming and acidification take often the leading role 
in discussions about how global climate change will alter marine 
biota, while little attention has been dedicated to another collat‐
eral stressor, here referred to as intensified hydrodynamics. There 
is strong evidence suggesting that the frequency and intensity of 
extratropical cyclones in the North Atlantic basin have increased 
since the 1950s (Hartmann et al., 2013). As cyclones get their en‐
ergy from warm water (Gautam, Cervone, Singh, & Kafatos, 2005), it 
is suggested that the recent increase in storminess is in nexus with 
human‐induced global warming (Donat et al., 2011; Komar, 2007; 
Latif, Keenlyside, & Bader, 2007), though there is no absolute con‐
sensus about this relationship (IPCC, 2013; Ulbrich, Leckebusch, & 
Pinto, 2009). In addition, increased storminess can intensify the se‐
verity of wind‐driven waves. A rise of the yearly mean wave height 
in the North East Atlantic by 20% to 40% has been already observed 
during the 20th century (Bacon & Carter, 1991; Bertin, Prouteau, & 
Letetrel, 2013).

As wave‐induced water motion can potentially dislodge organ‐
isms from the substratum, hydrodynamics is considered as a major 
driver shaping the benthic intertidal and upper infralittoral commu‐
nities (Denny, 1988). To resist dislodgement caused by hydrody‐
namic forces, benthic organisms rely on both the mechanics of their 
adhesive organs and their behavior (Hofmann & Todgham, 2010). 
If OW and OA affect the ability of benthic organisms to withstand 
the hydrodynamic stress, the structure and dynamics of the ecosys‐
tems where they play key roles can be significantly affected (Agüera, 
Koppel, Jansen, Smaal, & Bouma, 2015; Britton‐Simmons, Foley, & 
Okamoto, 2009; Duggins, 1981).

The reported effects of low pH on biomechanics of noncal‐
cified materials include no significant effect on TF mechanical 
properties in the starfish Asterias rubens, reduced mechanical per‐
formance of the byssus in bivalves, decreased clapping force in the 
scallop Pecten maximus, and lowered spore attachment in intertidal 
rhodophyta algae (Collard, Catarino, Bonnet, Flammang, & Dubois, 
2013; George & Carrington, 2018; Guenther, Miklasz, Carrington, & 
Martone, 2017; Li, Liu, Zhan, Xie, & Zhang, 2017; O'Donnell, George, 
& Carrington, 2013; Schalkhausser et al., 2013). Behavioral studies 
under climate change conditions mainly concentrate on OA effects 
on fishes (Cripps, Munday, & McCormick, 2011; Dixson, Munday, & 
Jones, 2010; Domenici, Allan, McCormick, & Munday, 2012; Ferrari 
et al., 2012; Hamilton, Holcombe, & Tresguerres, 2014; Jutfelt, 
Bresolin de Souza, Vuylsteke, & Sturve, 2013; Munday et al., 2009; 
Nilsson et al., 2012; Simpson et al., 2011) and, to a lesser extent, 
on marine invertebrates focusing on predator–prey relationships 
(Bibby, Cleall‐Harding, Rundle, Widdicombe, & Spicer, 2007; Chan, 
Grünbaum, Arnberg, & Dupont, 2016; Dodd, Grabowski, Piehler, 
Westfield, & Ries, 2015; Manríquez et al., 2013).

In adult echinoids, the effects of simultaneous OW and OA vary 
according to the stressors magnitude, acclimation period, species, and 
response variable (e.g., Dubois, 2014; Kroeker et al., 2010; Wittmann 
& Pörtner, 2013). Regarding physiology, metabolism upregulation 
resulted from both warming and acidification in Heliocidaris erythro‐
gramma (Carey, Harianto, & Byrne, 2016), while in Paracentrotus lividus, 
it resulted only from acidification (Catarino, Bauwens, & Dubois, 2012). 
However, a longer exposure to these stressors can follow acclimation 
as observed in Sterechinus neumayeri (Morley, Suckling, Clark, Cross, & 
Peck, 2016; Suckling et al., 2015). Concerning behavior, simultaneous 
OW and OA increased grazing activity in Amblypneustes pallidus, while 
in H.  erythrogramma, feeding rate increased with warming (Burnell, 
Russell, Irving, & Connell, 2013; Carey et al., 2016). After long exposure 
to OW and OA, Loxechinus albus feeding preference disappeared in re‐
sponse to acidification and not warming, while the vertical foraging 
speed and tenacity were not affected (Manríquez et al., 2017).

The impact of hydrodynamics on mechanical and behavioral 
responses of echinoids have been extensively studied. High flow 
velocity or wave exposure reduced movement distance and speed, 
feeding rate and particle capture efficiency, influenced righting and 
spine streamlining behavior, and enhanced TF mechanical properties 
(Cohen‐Rengifo et al., 2018; Cohen‐Rengifo, Moureaux, Dubois, & 
Flammang, 2017; Dance, 1987; Denny & Gaylord, 1996; George & 
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Carrington, 2014; Jacinto & Cruz, 2012; Kawamata, 1998; Lauzon‐
Guay, Scheibling, & Barbeau, 2006; Lissner, 1980; Morse & Hunt, 
2013; Stewart & Britton‐Simmons, 2011; Tuya, Cisneros‐Aguirre, 
Ortega‐Borges, & Haroun, 2007). However, mechanical resistance 
and behavioral responses of sea urchins under the simultaneous im‐
pact of OW and OA coupled to an additional hydrodynamic stress 
have never been investigated. As echinoids play a major structuring 
role in many coastal ecosystems through their grazing activity re‐
sults in a reference (Steneck, 2013), the impact of OW and OA in a 
more hydrodynamic ocean could be of tremendous importance.

The present study seeks to understand how OW and OA in‐
fluence the resistance to an increasing flow regime in the echinoid 
P.  lividus (Figure 1a). During a two‐month experiment, echinoids 
were exposed to 6 fully crossed treatments including two tempera‐
tures (17 and 21°C) and three pHT (7.9, 7.7, and 7.4) according to the 
RCP8.5 scenario (IPCC, 2014). Potential functional effects on TF ad‐
hesive and mechanical properties under no‐flow conditions, as well 
as behavioral responses associated with movement and shape mod‐
ification (through spine reorientation) under flow conditions, were 
evaluated to identify their role in the resistance to dislodgment. 
Compensation of extracellular pH, respiration rate, and somatic 
growth was also studied to address the overall physiological state.

2  | MATERIAL S AND METHODS

2.1 | Sea urchin collection and experimental setup

In September 2014, 216 sea urchins (ambital test diameter, 
dtest = 17.1–34.4 mm) were hand‐collected from intertidal pools in 
Aber beach (48°14′15″N 4°27′18″W), France. Animals were trans‐
ported alive to Belgium and let to acclimate for 12  days (Cohen‐
Rengifo et al., 2018). At day 3, individuals were soaked during 24 hr 
in the fluorescent marker calcein (20  mg/L) to tag their skeletal 
components (Rodríguez, Hernéndez, & Clemente, 2016; Russell & 
Urbaniak, 2004).

Aquaria were held within climate rooms to allow constant sea‐
water temperature (°C). Between 10 and 20% of the water volume 
within each tank was renewed each day. Once a day, temperature, 
salinity, pH in NIST scale (pHNIST), and electromotive force (mV) were 
measured as in Cohen‐Rengifo et al. (2018). Daily electromotive 

force measurements were converted to pH in total scale (pHT) using 
Tris/AMP buffer calibration (DelValls & Dickson, 1998). At day 5 of 
acclimation, temperature and pH were progressively modified from 
control values (17°C‐pHT7.9, +0.5°C/day, −0.05 pH per day). Target 
treatments (17°C‐pHT7.7, 17°C‐pHT7.4, 21°C‐pHT7.9, 21°C‐pHT7.7, 
21°C‐pHT7.4) were reached after 12 days and were maintained for 
12 more weeks. A computer‐controlled IKS system was employed to 
manage experimental pH by bubbling CO2 independently into each 
aquarium. IKS‐pH measurements were calibrated against Metrohm 
pH meter daily measurements. Treatments were triplicated inde‐
pendently (1 aquarium = 1 replicate, 6 treatments = 18 aquaria).

To determine seawater total alkalinity (AT‐SW), a 50 ml sample was 
collected once a week from each aquarium and immediately filtered 
(0.22 μm MilliPore) and fixed with HgCl2 7% (w/vol). Potentiometric 
titrations according to Gran (1950) were carried out using a Titrino 
718 STAT (Metrohm AG). Quality control was performed using 
reference material supplied by Dickson laboratory (University of 
California, Batch 135), with measures being always within ±2% of 
the reference value. pCO2 and the concentration of the carbonate 
system components (CO2, HCO−

3
, CO2−

3
) and calcite and aragonite 

saturation states (Ω) were calculated using the software CO2SYS 
(Pierrot, Lewis, & Wallace, 2006) and the dissociation constants 
for carbonate from Mehrbach, Culberson, Hawley, and Pytkowicz 
(1973) refitted by Dickson and Millero (1987).

In each of the 18 aquaria, 12 sea urchins were separated into 
three compartments (plastic‐mesh cages). One compartment con‐
tained three individuals that were employed to monitor physiolog‐
ical state. Another compartment housed three individuals employed 
to evaluate biomechanics under no‐flow conditions, and the last 
compartment housed six individuals employed to evaluate skeletal 
growth as well as biomechanics and behavior under hydrodynamic 
conditions. Samplings were carried out at week 1 (w1, just after the 
12‐day acclimation), 8 (w8), and 12 (w12). Individuals were fed ad 
libitum with Zeigler Bros., Inc. (USA) food pellets.

2.2 | Physiological state

Physiological state was assessed by evaluation of growth, respira‐
tion rate (µmol O2 hr−1 g−1), coelomic fluid (CF) pH (pHNIST‐CF), total 
alkalinity (AT‐CF, mmol/kgsw), and buffer capacity. CF buffer capacity 

F I G U R E  1   (a) Sea urchin Paracentrotus 
lividus showing its extended tube feet. (b) 
Unit circle illustrating the zone between 
180 and 10° where spines angle was 
measured with respect of the positive Y 
mathematical axis that corresponds to 0°. 
F: flow direction

(a) (b)
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was calculated as the difference between total alkalinity of the CF 
and that of the seawater (ΔAT‐CF  =  AT‐CF–AT‐seawater, mmol/kgsw). 
Measurements were taken at w1 and w8 on three individuals per 
aquarium (n = 3). Only growth was measured at w1 and w12 in 6 
individuals per aquarium (n = 3), considering the increment (%) in am‐
bital sea urchin test diameter with spines (durchin), test diameter (dtest) 
and height (htest) without spines, ambital spine length (lspine), and the 
increment (mm) in jaw size. See S2 in Appendix S1 for details.

2.3 | Microhabitat conditions

At Aber beach, sea urchins inhabiting intertidal pools are mainly 
wedged in self‐burrowed pits where water movement and gas 
exchange are reduced during low tide. We hypothesized that sea 
urchins could be locally preadapted to low pH at the scale of the 
microhabitat. Therefore, pHT and AT over, below, and inside (i.e., 
the CF) an echinoid within its pit (Figure S1) were measured in 
two tide pools at different tidal periods. See S3 in Appendix S1 
for details.

2.4 | No‐flow biomechanics

Biomechanical variables were measured at w1 and w8 following 
Cohen‐Rengifo et al. (2018). Tenacity tests were performed on 
a whole individual or on a single tube foot disk. An individual was 
clamped with a metal grab and let to attach to a glass aquarium, 
while a single tube foot was directly let to attach to a glass piece. 
The metal grab or the glass piece was connected to an Instron 5543 
force stand (© Illinois Tool Works Inc). A force perpendicular to the 
substratum was applied at a constant speed of 25 mm/min. Force 
and displacement were recorded at a frequency of 10 Hz until de‐
tachment. Sea urchin detachment force (Furchin, N) or tube foot disk 
detachment force (Fdisk, N) was documented. The adhesive surface 
area of a single tube foot disk (Sdisk, mm2) was estimated from stained 
footprints (Cohen‐Rengifo et al., 2017; Santos & Flammang, 2007) 
while that of the sea urchin (Surchin) was calculated by multiplying 
Sdisk and the number of adoral TF (Cohen‐Rengifo et al., 2018). Furchin 
was measured for three individuals per aquarium while Fdisk and Sdisk 
for three TF per sea urchin per aquarium (1 aquarium = 1 replica, 
n = 3). Tenacity of the sea urchin (Turchin, MPa) and disk (Tdisk, MPa) 
was calculated as the respective detachment force per unit of adhe‐
sive surface area.

Traction tests were performed on single tube foot stem that was 
clipped and connected to the same instrument. A pulling force per‐
pendicular to the test was applied at a constant speed of 25 mm/min 
until stem breakage. Breaking force (N) was recorded. Transverse 
histological sections of 3 stems per individual per aquarium (n = 3) 
were prepared to measure the cross‐sectional surface area of the 
stem connective tissue layer (SCT, μm2), as this tissue bears all the 
external load exerted on a tube foot (Santos & Flammang, 2005). 
SCT was then used to calculate stem mechanical properties such as 
tensile strength (MPa), extensibility (unitless), stiffness (MPa), and 
toughness (MJ/m3).

2.5 | Biomechanics and behavior under 
hydrodynamic conditions

2.5.1 | Flume tank setup and sea urchin 
dislodgement

At week 10, the whole experimental setup together with 107 alive sea 
urchins (18 aquaria, each containing 6 individuals; 1 died) was trans‐
ported (duration 90  min) to the Royal Netherlands Institute for Sea 
Research (NIOZ‐Yerseke). Hydrodynamic trials were performed in a 
recirculating flume tank (maximal speed: 90  cm/s; working section: 
0.6 m wide × 2 m length) that was calibrated with a Vectrino Acoustic 
Doppler Velocimeter (Nortek Group). Before the trials, individuals were 
acclimated to their respective treatments for one week. In the aquaria, 
temperature, pHT‐SW, and salinity were measured and controlled daily 
as described above. Hydrodynamic trials lasted 14 days (n = 14). In the 
flume tank, seawater parameters (mean ± SD) were salinity = 31.6 ± 0.5 
(n = 14) and pHT‐SW = 7.90 ± 0.01 (n = 14), while temperature was meas‐
ured during the first 7 days for the control = 17.0 ± 0.4°C (n = 7) and dur‐
ing the last 7 days for the high‐temperature treatment = 20.9 ± 0.5°C 
(n = 7). Because individuals were maintained for less than 30 min in the 
flume tank, pHT‐SW was not manipulated.

A unidirectional flow parallel to the substratum was generated 
(Bouma et al., 2005). A transparent polymethyl methacrylate plate was 
employed as attachment substratum. Flow velocity (VF, in cm/s) in the 
flume tank was set at 30 cm/s to create an abrupt transition of water 
motion conditions. Each individual (6 per aquarium, n = 3) was placed 
alone, oral‐side down in the middle of the working section under a 
plastic basket to limit displacement and allow attachment. After 5 min, 
the basket was removed, and VF was increased by 5 cm/s every 2 min 
(flow2′ regime) until reaching 90 cm/s or until detachment. During a 
hydrodynamic trial, detachment velocity (VDet, cm/s) and behavioral 
variables (see below) were measured for each individual. Afterward, 
skeletons were dried at 50°C for 48 hr and cleaned with NaOCl 2.5% 
for 2 hr. Four additional hours were needed to clean Aristotle's lanterns.

2.5.2 | Active movement

Sea urchin active movement velocity (VMov, cm/min) and direction 
(DirMov, degrees, circular variable) under flow conditions were meas‐
ured following Cohen‐Rengifo et al. (2018). Briefly, individuals were 
photographed from above to track their position, and pictures were 
analyzed with the ImageJ v1.50i software MTrackJ plug‐in. Sea ur‐
chin coordinates per picture were extracted with the software R 
v3.4.1 (R Development Core Team, 2015) and used to estimate VMov 
and DirMov. To determine at which VF, VMov is significantly different 
from zero, a 95% confidence interval was calculated with a confi‐
dence level of 95% (α = 0.05).

2.5.3 | Spine orientation and shape analysis

Sea urchin planform silhouettes were photographed with a Canon 
Powershot SX260HS camera at every VF to measure spine angle 
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(Spine°, degrees, circular variable). A single spine situated between 
180 ± 10° (considering that 0° corresponds to the positive Y mathe‐
matical axis; Figure 1b) was chosen for each individual. Using ImageJ 
v1.50i software, the angle formed by the tip of the spine with re‐
spect to 0° was measured in a clockwise direction (Cohen‐Rengifo 
et al., 2018).

To determine whether the streamlined shape under climate 
change conditions was adopted earlier than in the control (i.e., 
55  cm/s), planform shape was analyzed using pictures taken be‐
tween 30–55  cm/s and at VDet. Shape analyses were performed 
with MATLAB v2015 software Image Processing Toolbox™, based 
on shape indices (S1 in Appendix S1) and elliptic Fourier coeffi‐
cients (Agüera & Brophy, 2011; Cohen‐Rengifo et al., 2018). Briefly, 
twenty elliptic Fourier harmonics were calculated per individual and 
VF. Shape of individuals from the same VF was averaged, so that a 
reconstructed overall shape can be visualized per VF according to 
treatment.

2.5.4 | Attached tube feet

A waterproof Canon Powershot d10 camera was placed under the 
transparent working section and took 10 frames/min of individuals' 
oral side. Individuals moved very fast reaching areas where photo‐
graphs could not be taken. Therefore, a flow velocity gradient in 
which velocity increased every minute (Flow1′ regime) was imple‐
mented. Sea urchin photographs were used to count the number of 
attached TF was counted. The density of total attached TF relative 
to oral test surface area (TFatt, mm−2) and the percentage of total 
attached TF relative to the number of adoral TF (TFatt%, %) were 
calculated. The number of adoral TF (from the ambitus toward the 
oral peristome) was estimated on cleaned tests, considering that a 
pair of ambulacral pores corresponds to a single tube foot (Santos & 
Flammang, 2007; Smith, 1978).

2.6 | Statistics

Statistical tests are explained in detail in S4 in Appendix S1. A first 
general linear model (model 1) was developed to determine the 
probability of dislodgement according to flow velocity (VF), mor‐
phology (dtest, htest, lspine), and flow regime (Flow2′, Flow1′) between 
treatments. A second model (model 2) was conceived to identify the 
behavioral variables controlling VDet, while a third model (model 3) 
aimed to determine whether VMov varied according to treatment 
and/or VF. See Tables S1–S3 in Appendix S1 for model details. Model 
selection and validation were performed using R v3.4.1 software (R 
Development Core Team, 2015) as in Cohen‐Rengifo et al. (2018).

3  | RESULTS

Target treatments were maintained stable during the 81  days of 
experiment. Seawater and carbonate system parameters per treat‐
ment, averaged over the whole experiment, are available in Table 1. TA
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Values for seawater parameters and all linear variables are through‐
out expressed as mean ± SD.

3.1 | Physiological state

Increment in echinoid diameter, with and without spines, showed 
the highest values in control conditions (21 ± 6% and 19 ± 3%, re‐
spectively) and the lowest ones in the extreme treatment (10 ± 5% 
and 2  ±  3%, respectively). However, these differences were only 
significant for sea urchin diameter with spines (p =  .001, Table 2). 
Jaw size increment of control individuals significantly doubled that 
of individuals in all other treatments (p < .001).

Respiration rate and pHNIST‐CF did not vary between treatments 
at any time (p  >  .13) and ranged between 0.72 and 1.28  µmol O2 
hr−1 g−1 or between 7.54 and 7.69 pH units, respectively (Table 2). 
Buffer capacity of the CF (i.e., ΔAT‐CF = AT‐CF–AT‐seawater) was signifi‐
cantly higher at pHT7.4 at w1 (p < .001) but it was not affected by 
treatment at w8 (Table 2).

3.2 | Microhabitat conditions

Coastal pHT‐SW was 8.10  ±  0.05 (n  =  4) while tide pool pHT‐SW 
ranged from 7.4 to 8.8 and varied with time and compartment (S5 in 
Appendix S1). pHT‐SW below the sea urchins was significantly lower 
than that over them during the day low tides (p ≤ .013), but not dur‐
ing the night low tides (S5 in Appendix S1, Figure S3). Seawater AT‐SW 
was not affected by time nor by compartment (S5 in Appendix S1).

3.3 | No‐flow biomechanics

3.3.1 | Individual and tube foot disk 
adhesive properties

None of the disk properties varied with treatment at any time 
(Table S4). Sea urchin detachment force significantly differed with 
treatment only at w1 (p =  .013), but not compared to the control. 
Interestingly, whereas Furchin declined with time, Tdisk remained 
stable.

3.3.2 | Tube foot stem mechanical properties

Breaking force varied significantly at w1 (p  =  .018) and at w8 
(p  =  .020), but only between the two extreme treatments (17°C‐
pHT7.9 vs. 21°C‐pHT7.4, Figure 2a). SCT differed significantly only 
at w1 (p < .001), being the largest at 17°C‐pHT7.7 and the smallest 
at 21°C‐pHT7.4 compared to the control (Figure 2b). Extensibility 
did not differ between treatments at any time (Figure 2c). Tensile 
strength, stiffness, and toughness (Figure 2d–f) showed significant 
differences at both times (p < .021; Table S5). At w1, these proper‐
ties were the highest in the control and differed significantly from 
those at 17°C‐pHT7.7, in which the lowest values were observed. At 
w8, these properties were not significantly different between the 
control and other treatments.TA
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3.4 | In‐flow biomechanics

In the flume tank, individuals detachment started to occur at a 
flow velocity of 40 cm/s (VF40) at 17°C, while at 21°C detachment 
started at VF30 (Figure 3a). At pHT7.7, 40% of sea urchins detached 
at slow flows (VF45). Mean detachment velocity (VDet; Figure 3c) 
significantly varied with treatments (F5,85 = 3.54, p = .006). Control 
animals detached at the fastest flow (VDet  =  67.3  ±  5.7  cm/s), 
while those at pHT7.7 detached at the slowest flow for 
both 17°C (VDet  =  49.3  ±  2.1  cm/s, p‐Tukey  =  .017) and 21°C 
(VDet = 51.7 ± 6.6 cm/s, p‐Tukey = .046). VDet in every treatment was 
modulated by the density of attached TF (p = .007) and by the inter‐
action of both shape variables (spine° circularity: .003 ≤ p ≤ .007, 
estimate  =  1.13; circularity is a shape index, see S1 in Appendix 
S1) and movement variables (VMov‐DirMov: .044  ≤  p  ≤  .045, esti‐
mate = −0.005; Table S2, Figure S4). The probability of dislodgment 
increased with VF for every treatment (Figure 2b, Table S1), being 
the lowest in control conditions while the highest at 21°C‐pHT7.7 
(Figure 3b); this probability was higher for wider and taller individu‐
als presenting longer spines (Table S1).

3.5 | Active movement

Active movement velocity (VMov) was affected by the interaction 
between treatment and VF (p <  .047; Table S3, Figures S5 and S6). 
Sea urchins reduced their VMov with increasing VF in all treatments. 
The combined effect of temperature and pH increased VMov at 
17°C‐pHT7.7 (p  <  .001), 21°C‐pHT7.9 (p  <  .001), and 21°C‐pHT7.7 
(p = .017), while it did not affect VMov at pHT7.4 (p > .051; Table S3, 

Figure S7). The median maximal VMov was higher with increased 
temperature for pHT7.9 (17°C:0.059 cm/s; 21°C:0.123 cm/s), pHT7.7 
(17°C:0.071 cm/s; 21°C:0.100 cm/s), and pHT7.4 (17°C:0.091 cm/s; 
21°C:0.101  cm/s). According to confidence intervals, individuals 
stopped moving at VF65 in the control and at 17°C‐pHT7.4 while in 
the other treatments they stopped at VF55.

At initial flow velocities (VF30–VF35), the proportion of sea ur‐
chins moving upstream was >78% in the 17°C treatments, but <59% 
in the 21°C treatments (Figure S8). At pHT7.9 (Figure 4a,d), indi‐
viduals shifted to the downstream at VF50 at 17°C (p‐TukeyMoore's_

Test = .02) and at VF45 at 21°C (p‐TukeyMoore's_Test = 0.002). At pHT7.7, 
the relationship between VF and direction of movement (DirMov) is 
poor and nonsignificant. Indeed, at 17°C (Figure 4b) there is no clear 
shift in direction, while at 21°C most sea urchins moved downstream 
(Figures 4e and S8). At pHT7.4, a significant shift in movement di‐
rection occurred sooner than in the control, at VF40 (at 17°C, p‐
TukeyMoore's_Test = 0.002 and at 21°C, p‐TukeyMoore's_Test = 0.02). But, 
from VF40 on, the small lengths of vector (Figure 4c,f) indicate that 
individuals got progressively dispersed; hence, DirMov seemed dis‐
connected from VF.

3.6 | Attached tube feet

The density of total attached TF (TFatt) decreased with VF 
(preg ≤ 0.001) in all treatments (Figure 5), though VF only accounted 
for 11%–34% of the variation. TFatt significantly differed between 
treatments (F5,754 = 10.8, p < .001), being the lowest at 21°C‐pHT7.7. 
The percentage of detached TF at VF90 was the highest (83%) in the 
control and the lowest (42%) at 17°C‐pHT7.4 (Table S6).

F I G U R E  2   Tube foot mechanical properties (mean ± SD, n = 3) of Paracentrotus lividus per treatment at weeks 1 (w1) and 8 (w8). (a) 
Breaking force (N), (b) SCT: cross‐sectional surface area of the stem connective tissue layer (µm2), (c) extensibility (unitless), (d) tensile 
strength (MPa), (e) stiffness (MPa), and (f) toughness (MJ/m3). Significant differences between treatments for w1 or w8 are indicated by 
lowercase or uppercase letters, respectively; means sharing the same letter are not significantly different (p‐Tukey ≥ .05)
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3.7 | Shape and spine analyses

The shape outline of the sea urchins differed according to VF and 
treatments (Ftwo‐way_MANOVA(30,210)  =  1.33, p  ≤  .001). Variation in 
shape according to VF was not significant at pHT7.7 for both tem‐
peratures (ppairwise_MANOVA ≥ .37). In the control, shape significantly 
started to change at VF60 (ppairwise_MANOVA ≤  .001) and was mainly 
modulated by homogeneous movements of upstream spines to‐
ward the downstream, that is, symmetrically to the right and left 
of the flow (Figure 6). At 17°C‐pHT7.4, shape started to change at 
VF55 (ppairwise_MANOVA  =  .016), but the final streamlined shape was 
poor (Figure 6). At 21°C‐pHT7.9, shape variation occurred at VF50 
(ppairwise_MANOVA =  .011), and the streamlined shape was more pro‐
nounced than in the control (Figure 6). Finally, at 21°C‐pHT7.4, shape 
started to change at VF50 (ppairwise_MANOVA = .024), but as spines situ‐
ated upstream moved asymmetrically (Figure 6) and spines situated 
perpendicular to the flow moved very little (pMoore's_Test > 0.2), the 
resulting shape was not streamlined.

Spine angle (Spine°) analysis revealed that spines situated per‐
pendicular to the flow moved significantly downstream at VF60 in the 
control (pMoore's_Test‐VF30_Vs_VF60 = .04) and at VF65 (pMoore's_test‐VF30_Vs_

VF65 = .03) at 17°C‐pHT7.4. At 21°C‐pHT7.9, spine° differed between 
VF35–VF70 (pMoore's_Test  =  0.03) and VF50–VF60 (pMoore's_Test  =  .03) 
indicating an unclear shift in spine orientation. Spine° did not vary 
with VF at pHT7.7 for both temperatures (17°C:pMoore's_Test  >  0.6, 
21°C:pMoore's_Test > 0.1). Mean Spine° is shown in Figure S10.

4  | DISCUSSION

The integrative approach of this study revealed that resistance to hy‐
drodynamism in Paracentrotus lividus resulted from a complex array 
of behavioral and mechanical strategies performed to trade‐off for 
negative effects in physiology, TF biomechanics, and behavior that 
occurred under a mid‐term exposure to simultaneous OW and OA. 
Furthermore, our experiments revealed plastic responses that were 
highly variable according to treatments and increasing flows.

4.1 | Physiological state and microhabitat 
preadaptation

Within pits, P. lividus experiences dual pHT‐SW values at the same 
temporal scale, being significantly lower (−0.2 units) below the indi‐
vidual than over it. This difference in pHT‐SW is probably linked to (a) 
the absence of water motion at low tide which restrains water re‐
newal and gas exchange and to (b) the respiratory activity of the rock 
biofilm and the sea urchin. So, the natural pH and temperature diel 
fluctuations (Kwiatkowski et al., 2016; Moulin, Catarino, Claessens, 
& Dubois, 2011; Truchot & Duhamel‐Jouve, 1980), together with 
the dual pH conditions, can explain P.  lividus plastic physiological 
responses observed under a broad pH spectrum, and the tolerance 
to experimental chronic low pH that allows to maintain stable both 
coelomic fluid pH and respiration rate (Catarino et al., 2012; Collard 
et al., 2013; Collard, Dery, Dehairs, & Dubois, 2014).

Jaw and sea urchin (test diameter with spines) growths were 2.6‐
fold and 2.5‐fold, respectively, lower in the treatments compared to 
the control. Coping with warming and extracellular acidosis over the 
course of 8 weeks could have led to a lower resource allocation to 
growth (Hofmann & Todgham, 2010; Stumpp, Trübenbach, Brennecke, 
Hu, & Melzner, 2012). Although individuals were fed equally in every 
treatment, a possible modified digestive efficiency due to OW and/or 
OA (not measured) could account for the observed growth differences.

4.2 | No‐flow tube foot mechanical performance

At w1, control breaking force is comparable with values previously 
reported for P. lividus (Cohen‐Rengifo et al., 2017). Overall, mechani‐
cal properties showed no clear pattern at w1, which could reflect the 
different individual rates of acclimation to seawater changes. At w8, 
stems at 17°C‐pHT7.7 can absorb more energy during deformation 
(toughest stems) and therefore are more resistant to an external load 

F I G U R E  3   (a) Proportion of attached Paracentrotus lividus per 
flow velocity (cm/s) and treatment. (b) Probability of dislodgement, 
gray dots represent probability of detachment per flow, while lines 
reflect their mean values per treatment. (c) Detachment velocity 
according to treatment (n = 3), means sharing the same superscript 
are not significantly different (p‐Tukey ≥ .05)
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(strongest stems). In contrast, at 21°C‐pHT7.4 (extreme) stem break‐
ing force seemed deteriorated, being 1.5‐fold lower than that in the 
control. In the starfish Asterias rubens, TF strength was not affected 
by pHT7.4, while several mechanical properties of the byssus threads 
in the bivalves Pinctada fucata and Mytilus trossulus (O'Donnell et al., 
2013) were reduced probably due to a shift in energy allocation or to 
a pH‐induced alteration during the adhesive curing process (Collard 
et al., 2013; George & Carrington, 2018; Li et al., 2017; O'Donnell 
et al., 2013).

The lower adhesive strength of whole individuals observed at w8 
compared to w1 could be related, to some extent, to a downregula‐
tion of the adhesive protein Nectin under experimental conditions 
(Toubarro et al., 2016). However, since neither disk tenacity nor disk 
detachment force declined with time, reduced adhesive strength of 
the whole individual is more likely due to a lower number of attached 
TF, in response to a lack of external stimuli (Cohen‐Rengifo et al., 
2018) under no‐flow conditions.

It is important to highlight that a sevenfold higher force is needed 
to break the stem than to detach the disk from the substratum, 

meaning that, under a given external load, tube foot detachment can 
occur before tube foot breakage. It is probably more cost‐effective 
to produce new adhesive compound than to lose an entire adhesive 
organ. Support for this statement comes additionally from nonquan‐
tified observations during flume tank trials in which TF detachment 
involved very low rates of stem breakage. In addition, the fact that 
mechanical properties of the stem decrease with time, while adhe‐
sive properties of the disk did not, can indicate that mechanical prop‐
erties of the stem played a less relevant role in attachment capacity 
than adhesive properties of the disk. Indeed, the noncovalent adhe‐
sive and cohesive interactions between the adhesive compound and 
the substratum and, within the adhesive itself, could be influenced 
by pH, but larger pH changes would be necessary to significantly 
modify these interactions (Flammang, Demeuldre, Hennebert, & 
Santos, 2016). Our observation that adhesion strength is not influ‐
enced by reduced pH seems to corroborate this hypothesis. In the 
light of this, sea urchin dislodgement should be mainly modulated by 
behavioral responses to cope with the impact of high temperature 
and low pH.

F I G U R E  4   Mean vectors of displacement direction (in degrees) per flow velocity (VF) and treatment in Paracentrotus lividus. Colored 
arrow length is inversely proportional to data dispersion. White arrow showing the flow provenance (F), with angles between 0 and 180° 
implying a downstream displacement direction and angles between 180 and 360 an upstream displacement. Displacement direction at 17°C‐
pHT7.9 from Cohen‐Rengifo et al. (2018)
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4.3 | In‐flow behavioral strategies in warmer and 
more acidic ocean

Three main behavioral strategies were observed to avoid de‐
tachment: (a) improving TF attachment, implemented during the 
whole flow velocity range; (b) escaping the flow, at slow flow ve‐
locities (VF30–VF45); and (c) streamlining, at fast flow velocities 
(VF50–VF90). The latter two have been already reported for P. livi‐
dus under current seawater conditions by Cohen‐Rengifo et  al. 
(2018).

4.3.1 | Improving tube foot attachment strategy

Intuitively, the first reaction of an organism that depends on its ad‐
hesive appendages to resist flow is by using them. According to our 
results, a first behavioral strategy, when climate change had me‐
chanically weakened these organs, was to compensate by increasing 
the number of attached TF or by controlling the percentage of de‐
tached TF. This either amplifies the total adhesive force or avoids its 
decrease. The mean percentage of detached TF at VF90 was lower in 
every climate change treatment, being even halved at 17°C‐pHT7.4 
(−42%) with respect to the control (−83%). In the extreme condition, 
animals initially improved the density of attached TF, but the persis‐
tent hydrodynamic stress combined with OW and OA was detrimen‐
tal (TF detachment up to 69%) and lead to earlier detachment.

4.3.2 | Escaping strategy

VMov increased with temperature at pHT7.9 and pHT7.7. Enhanced 
locomotion and activity have been observed in response to warming 
(Kidawa, Potocka, & Janecki, 2010; Pewsey, 2004; Young, Peck, & 
Matheson, 2006) and acidification (Cripps et al., 2011; Manríquez 
et al., 2013; Nilsson et al., 2012; Spady, Watson, Chase, & Munday, 
2014), but there is a poor understanding about the effects of com‐
bined stressors. As with the echinoid Loxechinus albus (Manríquez et 
al., 2017), our results revealed positive synergistic effects of OW and 
OA, since sea urchins were driven to adopt a riskier behavior by mov‐
ing faster despite the hydrodynamic stress. On the contrary, nega‐
tive synergistic effects of OW and OA were reported on locomotion 
of jumbo squid (Rosa & Seibel, 2008) and a decapod (Dissanayake & 
Ishimatsu, 2011) as a result of reduced metabolic scope.

At slow flow velocities, sea urchins reared under climate change 
conditions displayed an escaping behavior by moving fast, looking for 
less hydrodynamically stressful zones. Yet, their movement stopped 
sooner, probably because they cannot move safely anymore. In 
the control, at VF50, 31% of sea urchins moved at the slowest VMov 
and stopped moving at VF65 (Cohen‐Rengifo et al., 2018). This pro‐
portion increased to 50%–69% in individuals reared under climate 

F I G U R E  5    Regression slopes with R2 and p‐values for the 
density of total attached TF relative to ambital test surface (TFatt) 
per treatment and flow velocity. Data were transformed with 
X�

= log10
(

X+1
)

. Significant differences between treatments 
are indicated by letters; means sharing the same letter are not 
significantly different (p‐Tukey ≥ .05). *Data from Cohen‐Rengifo 
et al. (2018)

F I G U R E  6    Initial and final shape of 
Paracentrotus lividus for treatments in 
which shape varied significantly with 
flow velocity. Reconstructed outlines in 
white and planform shape in gray. Arrow 
represents flow provenance
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change conditions, in which a complete interruption of movement 
occurred mainly at VF55.

Modified behavior resulted from three main pathways: elevated 
metabolic load, avoidance behavior away from the localized source 
of change, and information disruption (Briffa, Haye, & Munday, 
2012; Lürling & Scheffer, 2007). The observed negative effects on 
growth and on behavior were probably due to an overall increase in 
metabolic load to cope acidosis and a shift in energy allocation. In 
addition, the implementation of an escaping behavior suggests that 
detection of the hydrodynamic stressor was well accomplished but 
as sea urchins adopted a riskier behavior, their interpretation of the 
hazardous hydrodynamic conditions may have been altered. Indeed, 
in marine vertebrates and crustaceans, behavioral changes often 
take place through info‐disruption that occurs when their ability to 
gather and assess information and consequently their decision‐mak‐
ing are impaired (Briffa et al., 2012; de la Haye, Spicer, Widdicombe, 
& Briffa, 2011).

Control P.  lividus favored a mean downstream displacement at 
fast flows while in the other treatments, movement was random and 
characterized by constant back and forth. A change in movement 
patterns in acidified waters has been observed in a teleost probably 
because CO2 affected its neurophysiology or because CO2 was de‐
tected as a constant stressor (Green & Jutfelt, 2014).

4.3.3 | Streamlining strategy

Whereas spine movements led to a change in the overall shape, the 
direction and amplitude of these movements determined whether 
the final shape was streamlined or not. For instance, at 21°C‐pHT7.4 
even though shape significantly changed, the final shape was not 
streamlined (Figure 6). The lack in coordination between spines 
movements and shape modification demonstrated that individuals 
displayed streamlining behavior in an atypical way. Although atypi‐
cal or absent streamlining is detrimental for detachment, it can also 
favor feeding behavior as spines in a “up position” can capture drift‐
ing algae.

Control P. lividus displayed a first reaction to increasing flows at 
VF35 as observed in Strongylocentrotus franciscanus that perceives 
flow variations at flow velocities as slow as <10 cm/s, a behavior that 
hitches always leads to a streamlining behavior (Stewart & Britton‐
Simmons, 2011). In the climate change treatments, no early reaction 
to flow was observed in P. lividus, attesting for a possible disruption 
in information processing. In various organisms, behavioral abnor‐
malities have been attributed to changes in seawater chemistry that 
leads malfunctions in neurological mechanisms (such as information 
processing) involving type A γ‐aminobutyric acid (GABAA) recep‐
tors (Chivers et al., 2014; Domenici et al., 2012; de la Haye et al., 
2011; Nilsson et al., 2012; Tuomainen & Candolin, 2011). These ion‐
otropic receptors present a high conductivity for Cl− and for HCO−

3
 

(Bormann, Hamill, & Sakmann, 1987; Nilsson et al., 2012). Echinoids 
including P.  lividus protect themselves against acidosis through 
accumulation of HCO−

3
 in the extracellular fluid, inducing compen‐

satory reductions in Cl− (Collard et al., 2014; Miles, Widdicombe, 

Spicer, & Hall‐Spencer, 2007; Stumpp et al., 2012). The excitatory 
action of GABA resulting in increased Cl− has been already reported 
in echinoid tube feet (Florey, Cahill, & Rathmayer, 1975). We hy‐
pothesize that high CO2 could alter information processing through 
the GABAA pathway, leading to the behavioral modifications ob‐
served in P. lividus.

4.3.4 | Integration of responses and ecological 
implications

Responses facing simultaneous OW and OA did not follow an in‐
tuitive pathway and were sometimes conflicting, making difficult 
to identify causalities and to discriminate the drivers governing 
one behavior or another. For instance, animals held at 21°C‐pH7.7 
showed improved TF mechanical properties but worst behavioral 
performance than animal held at 21°C‐pH7.4. This might indicate 
that the biochemical paths and neurological mechanisms operate 
better in acidic environments. Likewise, sea urchins that attached 
with the lowest density of TF (21°C‐pHT7.7) did not move conse‐
quently at the lowest velocity, but on the contrary, showed the 
same median maximal velocity as individuals that attached with the 
highest number of TF (21°C‐pHT7.4). Therefore, TFatt did not modu‐
late the velocity at which sea urchins moved, at least not directly 
or not only by itself.

Figure 7 provides a conceptual framework showing the effects of 
OW and OA on physiology, biomechanics and behavior according to 
flow velocity. Weakened TF stems and unaltered TF disks under OW 
and OA seemed to have a moderate role in sea urchin overall attach‐
ment. Concerning physiology, the energy flux to maintain acid‐base 
balance probably disfavored energy allocation for skeleton and spine 
growth. However, under increased hydrodynamics, a smaller size can 
reduce dislodgement risk. Alteration in information processing leads 
to varied behavioral modifications. To avoid detachment in a warmer 
and more acidic environment with simultaneous increase in flow 
velocity, sea urchins implemented a first strategy by increasing the 
density of attached TF and controlling the percentage of TF detach‐
ment. Info‐disruption could have altered risk assessment of the hy‐
drodynamic stress and decision‐making, and drove animals through 
two routes. First, at slow flow velocities (VF30–VF45), spines did not 
react normally to flow variations, favoring the second strategy, es‐
caping the flow. Echinoids in every climate change treatment moved 
faster to optimize shelter search. Yet, their movement stopped 
sooner. Second, at fast flow velocities (VF50–VF90), the third strat‐
egy, streamlining was performed atypically or was not achieved at 
all. In both cases, this accounted for an earlier dislodgement.

When animals experience an environmental change, their earliest 
response is often a plastic modification of their behavior (Tuomainen 
& Candolin, 2011). The success of the behavioral change will depend 
on the rapidity of their reaction (Price, Qvarnstro, & Irwin, 2003) 
and whether populations have or not encountered similar condi‐
tions during their recent evolutionary history (Ghalambor, McKAY, 
Carroll, & Reznick, 2007). Adjustments in behavior could be bene‐
ficial if they improve fitness by increasing survival or reproductive 
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success (Tuomainen & Candolin, 2011). Moving fast to escape the 
flow can be considered as an adaptive response as it reduces the 
probability of dislodgment and therefore improves survival. On the 
contrary, atypical or impaired streamlining can be maladaptive as it 
causes earlier dislodgment which reduces survival. Individuals show‐
ing plasticity are often selected to constitute populations that can 
survive rapid environmental changes and ensure population per‐
sistence (Kinnison & Hairston, 2007), which might be the case for 
the P. lividus Aber population.

In intertidal pits, sea urchins experience fluctuating pH that is 
often close to 7.7 or even lower below the animal. Whereas this re‐
ality induced adaptive physiological and mechanical responses when 
only two stressors were evaluated (OW and OA), maladaptive behav‐
ioral responses appeared when another factor (hydrodynamics) was 
included. In the near‐future, P. lividus inhabiting pits will experience 
more severe pH/pCO2 conditions. However, this could be partially 
compensate by diel natural fluctuations since animals will be ex‐
posed progressively to reduce pH (Jarrold, Humphrey, McCormick, 
& Munday, 2017). It is probable that P. lividus would successfully face 

pH stress, yet the outcome of the interaction with a fluctuating tem‐
perature remains unknown.
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