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Pharmacogenetic testing can help identify primary care patients at increased risk for medication toxic-
ity, poor response or treatment failure and inform drug therapy. While testing availability is increasing,
providers are unprepared to routinely use pharmacogenetic testing for clinical decision-making. Practice-
based resources are needed to overcome implementation barriers for pharmacogenetic testing in primary
care.The NHGRI’s IGNITE I Network (Implementing GeNomics In pracTicE; www.ignite-genomics.org) ex-
plored practice models, challenges and implementation barriers for clinical pharmacogenomics. Based
on these experiences, we present a stepwise approach pharmacogenetic testing in primary care: patient
identification; pharmacogenetic test ordering; interpretation and application of test results, and patient
education. We present clinical factors to consider, test-ordering processes and resources, and provide guid-
ance to apply test results and counsel patients. Practice-based resources such as this stepwise approach to
clinical decision-making are important resources to equip primary care providers to use pharmacogenetic
testing.

First draft submitted: 12 April 2019; Accepted for publication: 29 July 2019; Published online:
7 October 2019

Keywords: clinic • implementation • pharmacogenetics • pharmacogenomics • precision medicine • primary care

Pharmacogenetic testing can help predict variability in drug response to identify patients at risk for adverse effects
or treatment failure with selected drugs. Although significant needs remain in building the clinical evidence base,
pharmacogenetic testing is increasingly available across diverse practice settings to guide medication selection and
dosing [1–4]. Much of the interest in pharmacogenetic and other genomic tests has been driven at the patient level
by growth in the direct-to-consumer genetic testing marketing, which is expected to reach $6.36 billion dollars by
2028 [5]. This uptick in patient and provider interest in pharmacogenetic testing has been particularly notable in
the primary care setting, where the majority of prescriptions in the USA are written [6]. Nearly 30% of primary
care patients take a medication that is associated with genetic variability, with more than 300 medications having
pharmacogenetic information in the US FDA-approved label [3,7,8]. One analysis found that 65% of medical
home (mostly primary care) patients at one academic medical center were exposed to medications affected by
pharmacogenetic variability over a 5-year period. Study authors concluded that implementation of pharmacogenetic
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testing could have potentially averted 383 severe adverse events [9]. It is anticipated that as precision medicine grows,
the demand for primary care providers to apply pharmacogenetic principles in practice will rise sharply [10–13].

The primary care setting is a logical clinical entry point for pharmacogenetic testing. Primary care providers
are an initial point of access into the healthcare system, focus on preventive care, treat a wide variety of illnesses,
and communicate frequently with patients and other clinicians [14–17]. They are ideally positioned to identify
patients who may need a pharmacogenetic test, determine prior testing, order necessary tests, and document
and communicate test results to patients and other clinicians. Pharmacogenetic testing is also consistent with
the longitudinal chronic care model employed in primary care that utilizes a patient- and community-centered
approach [16,18,19]. Finally, incorporating pharmacogenetic testing into primary care is consistent with the evolution
of this practice area, in which providers have long taken on new roles in specialized areas, such as HIV drug therapy
and detection and management of certain cancers [20–22].

However, in spite of increasing accessibility of pharmacogenetic testing and its potential to guide the use of
many medications commonly prescribed in primary care (e.g., selective serotonin reuptake inhibitors, codeine and
tramadol), routine testing remains limited [8,11,12,23–25]. This lack of real-world adoption is driven, in large part,
by clinical knowledge and evidence gaps in pharmacogenetics. In recent surveys, physician respondents agreed
that genetic variability influences drug response, but fewer than 20% had ordered a pharmacogenetic test in
the previous year. Less than 15% of physicians reported feeling informed about pharmacogenetic testing, with
prescribers consistently expressing a desire for additional evidence and clinical guidance on applications and use of
pharmacogenetics in practice [25–28]. Practical barriers have also slowed uptake of clinical pharmacogenetic testing,
including poor access to systems to facilitate testing and return of results, electronic health record limitations, and
sparse clinical resources [16,18,29–31]. Research in this area is ongoing and experience is increasing with strategies to
help clinicians overcome these barriers, such as use of patient-centered and case-based provider education, clinical
decision support, novel test reimbursement strategies and interdisciplinary collaboration [32].

However, it is our experience that clinical resources to help prescribers use pharmacogenetic and other precision
medicine data in practice are not being developed quickly enough to keep pace with the rapidly growing commercial
and direct-to-consumer genomic testing market. As we move into a future of increasing consumer and clinician
access to precision medicine data, it is imperative that primary care clinicians and the healthcare system as whole are
prepared to face this reality and use healthcare resources to apply pharmacogenetic data in an informed, efficient,
and evidence-based manner that compliments routine clinical care. To achieve this goal, primary care clinicians
and other frontline providers need clear clinical guidance to order pharmacogenetic tests, interpret results, and
answer patients’ questions in practice (e.g., from commercial clinical laboratories or DTC testing), while researchers
continue to build the pharmacogenetic evidence base [26,33–35].

The National Human Genome Research Institute established and funded the IGNITE I Network in 2013
(Implementing GeNomics In pracTicE; https://gmkb.org/) to develop and test clinical models for using genomic
information in diverse practice settings, including primary care [36]. All IGNITE I research sites actively investigated
practice models, needs, challenges and pragmatic strategies to overcome implementation barriers in primary care
settings. IGNITE I investigators explored methods to engage nongenetics specialists, specifically primary care
providers, to manage pharmacogenetic tests and guide clinical decision-making. Our experiences have confirmed
an urgent need for solutions to systems- and provider-level and challenges. While many barriers require systems-level
solutions for education, reimbursement, point-of-care clinical decision support and increased capabilities for storage
and use of pharmacogenetic data within electronic health records, in our experiences, provider-level guidance and
resources are essential to support clinical adoption of genomic testing [16,18,19,26,29–31,33–35].

Herein, we present a stepwise process for ordering pharmacogenetic testing in primary care with clinical consider-
ations that we have consistently seen emerge at each step. We hope that describing this process may provide a clinical
scaffolding for prescribers who are interested in ordering pharmacogenetic tests but are unsure how to approach this
process clinically. This process may also be of benefit for prescribers who are seeking a systematic approach to clinical
pharmacogenetics to streamline provider education, use a consistent clinical approach to pharmacogenetic testing
or improve efficiency and documentation of the testing and patient education process. Of note, in developing this
stepwise process, we targeted an audience of clinicians who have already decided to adopt pharmacogenetic testing
in their practice. We therefore do not address preimplementation planning steps (e.g., stakeholder engagement and
provider education) or provide an extensive review of clinical utility literature for specific gene–drug pairs.
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A stepwise approach to implementing pharmacogenetic testing
Although specific clinical needs and workflow vary among practices, we have observed the emergence of four
primary steps and a number of clinical considerations that consistently arise with adoption of pharmacogenetic
testing in the primary care setting. These steps include: patient Identification, test ordering, application of test
results and patient education (Figure 1). This list of steps is not intended to be inclusive or prescriptive. Instead,
providers can adapt the steps and considerations below to their individual practice structure, patient needs and
clinical priorities.

Step 1: patient identification
When determining whether an individual patient may be a candidate for pharmacogenetic testing, providers should
consider a patient’s medications, the level of evidence supporting a link between variability in a specific gene and
clinically meaningful changes in drug effects or outcomes, the prevalence of specific genetic variants in individual
patient subpopulations, and patient-specific factors. As with all tests, pharmacogenetic testing should be reserved for
patients in whom test results will provide clinically meaningful information. This may include individuals currently
taking or likely to need a drug for which genetic variability has been linked to drug response or toxicity and for
which evidence-based clinical recommendations exist to guide drug dosing and/or selection based on genotype
(Table 1). Within these agents, pharmacogenetic testing can be considered in patients who are not responding to
or experiencing toxicity from an existing drug, patients taking multiple medications, those who have comorbid
conditions that complicate drug therapy selection and/or dosing, or those who could otherwise benefit from
pharmacogenetic data when initiating or changing treatment regimens.

Once a patient is identified as a candidate for pharmacogenetic testing, clinicians should consider having a brief
discussion of the rationale, benefits and limitations of testing; implications for informing current and future drug
therapy selection/changes; and potential testing strategies and reimbursement options to ensure joint clinician-
patient decision-making. This discussion could be woven into traditional discussions in which they explain why
they recommend specific medication choices, akin to discussing the use of renal function testing. There is no
consensus on the need for an informed consent process for pharmacogenetic testing [37–40].

Step 2: pharmacogenetic test ordering
Providers should determine which pharmacogenetic tests should be ordered and identify the optimal testing method.
In our experience, it can be helpful, at least initially, to approach this step from the perspective of ‘gene–drug’ pairs
since the specific pharmacogenetic test(s) that is/are needed may differ for the same gene within varying patient
populations, drugs or dosages, or even drug indications. The gene–drug pairs listed in Table 1 include medications
commonly encountered in primary care that have the highest level of evidence across diverse patient populations and
also have clinical guidance available to inform drug therapy changes. We recommend limiting genotype-based drug
therapy changes to these and other gene–drug pairs with strong supporting evidence to maximize time and resource
efficiency and provide the highest likelihood of a meaningful change in clinical outcomes. If a gene–drug pair is not
included in this table and providers are unsure whether to order a pharmacogenetic test, we recommend consulting
PharmGKB (www.pharmgkb.org/), an NIH-funded searchable online pharmacogenomics knowledgebase that has
clinical evidence summaries to inform decision-making [41].

Pharmacogenetic tests are generally ordered as single-gene tests (e.g., CYP2D6 alone) or as part of a broader
multigene panel [42]. There are advantages and disadvantages to these two strategies from clinical, practical and
reimbursement perspectives [43,44]. Panel-based, multigene testing is often ‘preemptively’, in which test results for a
broad number of genes are available in the medical record to be used at a later time when needed. Single gene tests are
usually ordered ‘reactively’ (e.g., a CYP2D6 test to provide clinical insight in a patient who is experiencing a toxicity
or a poor response to a specific drug). Therefore, panel-based testing allows providers to consider pharmacogenetic
data before they prescribe a drug and use these data to guide future drug therapies and thus may offer certain cost
and care advantages over single gene tests. Reactive single-gene test results are usually not available prior to initial
drug use and may delay the time to treatment optimization. However, panel-based tests may be more challenging
to order and/or access testing information. Panel-based test results are commonly available through standalone
commercial laboratories, may require additional steps for test ordering and sample processing, and test results are
usually reported in an external online portal or in a printed laboratory report that must be scanned and uploaded
into the electronic health record. Single-gene tests are more likely to be offered by mainstream clinical laboratories
and are usually ordered, processed and reported back to clinicians in the same manner as other laboratory tests.
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Is patient taking drug for which genetic variability has been linked to
changes in drug response/toxicity?

Which genes influence patient’s current or future medication(s)?

Drug therapy change(s) No drug therapy change

Follow clinical pharmacogenetic guidelines, FDA label, or other evidence-
based recommendations for genotype-guided drug selection or dosing.

Review potential gene-drug, drug-drug, or drug-drug-gene interactions.
Integrate pharmacogenetic data with patient-specific clinical factors.

Consider impact of genotype on future drug therapy choices.

Focus on clinically relevant information (e.g., current or potential drug 
therapy changes).

Provide/review written summary of test results and current/future 
implications for drug therapy changes.

Explain implications of a “lifetime” test result.
Address any patient concerns about genetic information.

Does the level of evidence support testing for each gene-drug pair?
Do evidence-based recommendations exist to guide drug selection and/or 
dosage based on genotype? 

Do patient-specific factors (e.g., ancestry) affect which test to order?
Appropriate testing strategy? (Preemptive or reactive, single-gene test(s) or 
multi-gene panel)

What are reimbursement/cost considerations?

Monitor patient for drug 
therapy or other clinical 
changes that would support 
future and/or added 
pharmacogenetic testing

Use genotype data to inform 
future drug regimen:

Addition of drug affected 
by genotype variability

New/changed status of 
gene-drug, drug-drug, or 
drug-drug-gene
interaction

Availability of new clinical 
guidance for gene or drug

Need for future and/or 
added pharmacogenetic
testing

Yes

Single-gene test(s) Multi-gene panel

Not at this time

Order pharmacogenetic test(s)

Interpret and apply test results

Educate patient

Is patient a candidate for pharmacogenetic testing?
Does the patient agree to pharmacogenetic testing?

Is additional clinical guidance on optimal drug selection or dose 
optimization needed for this patient (e.g., non-response, adverse effect)?

Are evidence-based recommendations available for genotype-guided drug 
selection and/or dosing?

Have influencing patient-specific factors and/or preferences been 
considered (e.g., pre-test patient education if appropriate)?

Identify patient
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Figure 1. Clinical decision making process for pharmacogenetic testing.



Pharmacogenetic testing in primary care Special Report

Table 1. Gene–drug pairs used in primary care with supporting clinical evidence.
Medication(s) Gene CPIC guideline PGx in US FDA label

Opioids/Analgesics

Codeine, tramadol CYP2D6 X X

Celecoxib CYP2C9 X

Selective serotonin reuptake inhibitors

Paroxetine, fluvoxamine CYP2D6 X X

Citalopram, escitalopram CYP2C19 X X

Sertraline CYP2C19 X

Tricyclic antidepressants

Amitriptyline, imipramine CYP2C19
CYP2D6

X
X X

Nortriptyline, desipramine CYP2D6 X X

Doxepin, trimipramine CYP2C19
CYP2D6

X
X

X
X

Other antidepressants

Venlafaxine, vortioxetine CYP2D6 X

Proton pump inhibitors

Esomeprazole, lansoprazole, dexlansoprazole, omeprazole, pantoprazole, rabeprazole CYP2C19 X

Cardiovascular medications

Clopidogrel CYP2C19 X X

Simvastatin SLCO1B1 X X

Warfarin CYP2C9
CYP4F2
VKORC1

X
X
X

X

X

Antipsychotics

Aripiprazole, risperidone, brexpiprazole CYP2D6 X

Anticonvulsants

Carbamazepine HLA-A
HLA-B

X
X

X
X

Oxcarbazepine HLA-B X X

Phenytoin CYP2C9
HLA-B

X
X

X
X

Other medications

Allopurinol HLA-B X

Atomoxetine CYP2D6 X X

Ondansetron CYP2D6 X X

Tamoxifen CYP2D6 X

Table includes medications with a Clinical Pharmacogenetics Implementation ‘A’ or ‘B’ evidence-level rating that are relevant to a primary care practice setting (source:
www.cpicpgx.org).
CPIC: Clinical Pharmacogenetics Implementation Consortium; PGx: Pharmacogenetics.

Reimbursement for pharmacogenetic testing varies widely among insurance carriers. Single-gene tests ordered for
specific clinical situations (e.g., a CYP2C19 test ordered in a postacute coronary syndrome patient taking clopidogrel)
that have established current procedural terminology (CPT) codes are currently more likely to be covered by insurers
than panel-based preemptive pharmacogenetic tests or those without CPT codes [45]. Commercial laboratories that
offer panel-based testing may provide reimbursement support for patients through patient assistance programs,
income-based sliding scale payment models and/or by helping individuals navigate the reimbursement process.
This support is generally not provided by mainstream laboratory companies with single-gene testing. Clinicians
should recommend patients contact their insurance provider directly to determine coverage if they are not confident
a test or panel will be covered by insurance.

The IGNITE Network developed an interactive map of pharmacogenetic test reimbursement providing state-
specific information coverage of genetic tests according to the Medicare Administrative Contractor, a list of
pharmacogenetic tests determined to be medically necessary for Medicare coverage, and indications and noncovered
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indications for nonmedically necessary pharmacogenetic tests, available at: https://gmkb.org/ignite/. Information
about which laboratories perform specific pharmacogenetic tests is freely available online through the National
Center for Biotechnology Information’s Genetic Testing Registry (www.ncbi.nlm.nih.gov/gtr/) by searching for a
targeted gene (e.g., CYP2C19).

Step 3: application of pharmacogenetic test results
Although turnaround time varies, pharmacogenetic test results are generally accessible within a few days to a couple
of weeks after a test is ordered. Once results are available, they must be interpreted and integrated into evidence-based
clinical recommendations for genotype-guided drug therapy changes (adding, discontinuing, changing medications
or changing dosages) alongside individual patient-specific factors. The PharmGKB website (www.pharmgkb.org/)
is an essential resource to help clinicians understand and interpret pharmacogenetic test results if additional
information is needed.

In regards to clinical recommendations, most disease/treatment guidelines are silent on pharmacogenetic testing
at this time, primarily due to the lack of randomized controlled trials definitively linking genotype-guided therapy
to improved patient outcomes [46]. Until such data are available, multiple scientific groups have developed consensus
recommendations based on the best available clinical evidence, which may include pharmacokinetic or pharmaco-
dynamic studies, multisite pooled analyses, pragmatic clinical trials, and retrospective and/or observational data.
The Clinical Pharmacogenetics Implementation Consortium (CPIC; www.cpicpgx.org), has developed more than
20 peer-reviewed, evidence-based guidelines with genotype-guided dosing recommendations for individual drugs
and/or drug classes [47–50]. Guidelines are also available from other groups, including the Dutch Pharmacogenetics
Working Group (www.pharmgkb.org/page/dpwg) and the European Pharmacogenomics Implementation Con-
sortium (www.eu-pic.net). When CPIC guidelines are available, we recommend using them first to inform drug
therapy changes as they provide the most updated, evidence-based recommendations for genotype-guided dosing
or drug selection.

Additional pharmacogenetic recommendations are available in US FDA-approved labeling for more than 300
medications [3], although many of these are indicated to treat specialized conditions that may be encountered infre-
quently in primary care. Pharmacogenetic biomarker information is particularly helpful when a significant patient
safety issue has been identified in drug development or through postmarketing adverse event reports. Drug labeling
may include data supporting specific dose recommendations (e.g., eliglustat dosing based on CYP2D6 genotype),
boxed warnings (e.g., life-threatening respiratory depression with codeine use in CYP2D6 ultrarapid metabolizers)
and informational data (e.g., drug level may be affected by CYP2D6 variability or enzyme inhibition). A list-
ing of drugs and labeling recommendations is available through the FDA’s Table of Pharmacogenomic Biomarkers
(www.fda.gov/drugs/science-research-drugs/table-pharmacogenomic-biomarkers-drug-labeling) and this informa-
tion is curated on the PharmGKB website alongside clinical guideline recommendations. If guidelines or FDA
labeling are not available for a specific gene–drug pair, PharmGKB also provides level-of-evidence ratings (levels 1
through 4, with level 1 representing the strongest evidence) for individual gene–drug pairs that can be found by
searching for the gene or drug on the PharmGKB website.

Genotype-based recommendations may also be included in the laboratory report accompanying a pharmaco-
genetic test result. However, we strongly recommend clinicians review clinical guidelines (e.g., CPIC) and/or
FDA-approved labeling prior to making drug therapy changes. This is especially true with commercial laboratories
that test for multiple genes and/or drugs that have varying levels of evidence as well as for laboratory reports that
display drug therapy recommendations in simplified proprietary formats (e.g., categorizing drugs as ‘safe’ or ‘unsafe’
without a clear evidentiary link). In our experience, lengthy commercial laboratory reports may ‘information over-
load’ and often fail to effectively communicate the degree of variability in supporting evidence among individual
gene–drug pairs. Reports may also make clinical recommendations based on lower-quality evidence (e.g., conflicting
studies, small sample sizes, preliminary results not yet confirmed or replicated) [13,42]. Although it may be necessary
at times in practice to make drug therapy decisions based on the best available clinical evidence, we feel it essential
that providers are aware of the level of evidence supporting specific clinical pharmacogenetic recommendations to
better integrate this information with other patient-specific factors. When available, providers should also refer to
point-of-care clinical decision support resources for pharmacogenetic testing, such as automated electronic health
record alerts that fire at the time of prescribing, test order or return of results [51].

It is essential that clinicians integrate available genotype-guided dosing recommendations with other clinical
and patient-specific factors that influence drug response for each individual. For example, CYP2D6 genotype
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Table 2. Common medications that may inhibit or induce CYP2C19 or CYP2D6 enzyme activity.
Inhibitor(s) Inducer(s)

CYP2C19 Strong:
– Fluconazole
– Fluoxetine
– Fluvoxamine
Moderate:
– –

Weak:
– Omeprazole
– Voriconazole

Strong:
– Rifampin
– Ritonavir

Moderate:
– Efavirenz
– Phenytoin
Weak:
– –

CYP2D6 Strong:
– Bupropion
– Fluoxetine
– Paroxetine
Moderate:
– Cimetidine
– Duloxetine
– Fluvoxamine
Weak:
– Amiodarone
– Celecoxib
– Cimetidine
– Desvenlafaxine
– Escitalopram
– Labetalol
– Ritonavir
– Sertraline

None

Source: FDA, drug development and drug interactions: table of substrates, inhibitors and inducers. Available at: www.fda.gov/Drugs/default.htm (accessed July 24, 2019).

data can help predict response and/or toxicity with selected opioids in patients with chronic pain but should be
considered alongside other influencing factors such as patients’ previous response to opioids, concomitant medical
conditions, and individual insurance and financial considerations. Consideration of the effects of drug–drug, drug–
gene (e.g., genotype affects drug response) and drug–drug–gene interactions (e.g., genotype affects drug response
and drug–drug interaction exists) is particularly important in pharmacogenetics since many common medications
used in primary care may inhibit or induce CYP enzymes that are also affected by genetic variability (Table 2) [52,53].

Step 4: patient education
As with other laboratory tests, the primary goal when educating patients about pharmacogenetics is to ensure
that they understand their test results and their significance for their treatment [40,54]. Patient understanding of
pharmacogenetic test results can positively impact confidence in their medications and boost adherence to drug
therapy regimens [55,56]. A key component to achieving this understanding is using effective communication strate-
gies based on clinical education standards, including an individualized, patient-centered, structured and interactive
approach [37,57–59]. When communicating pharmacogenetic information, providers should focus primarily on
clinically relevant information, including current or potential future drug therapy changes based on the patient’s
genetics [40,60]. It may be more productive to explain test results in terms of the clinical effects, such as having a slower
or faster ability to activate or breakdown a specific drug, rather than to focus on specific genotype results [7,38,54].

Whenever possible, clinicians should provide patients written or online summaries (e.g., via patient portal) of
pharmacogenetic test results that distill the most personally and clinically relevant information for patients [57–

59]. These can reinforce patient understanding and serve as long-term documentation of lifetime test results that
patients can maintain and share with other healthcare providers within or outside the ordering provider’s healthcare
system [38,54,60]. These results should be simple, to the point and written at the appropriate health literacy level.
Unfortunately, most currently available commercial lab reports for multigene panels do not meet this standard. An
analysis of sample pharmacogenetic test reports from eight commercial laboratories revealed reports up to 27 pages
in length, with an average of 14 pages for multigene panel reports, reinforcing patient education as an important
need and immediate challenge with clinical pharmacogenetic testing [13].

The PCPs should anticipate areas of patient concern with pharmacogenetic testing and address them through
education. Patients generally view pharmacogenetic testing positively and value its potential role in improving their
medication regimen [38,61–64], but they have expressed concerns about potential disease implications or possible
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genetic discrimination with pharmacogenetic testing [38,62]. Providers can inform patients that the vast majority of
clinical pharmacogenetic testing to assess variability in drug metabolizing enzymes has not been associated with
disease risk [31,63]. Providers should also be conscious of the language and terminology they use to explain test
results [54]. Terms such ‘mutant’, ‘defective’, or ‘abnormal’, may be stigmatizing; value-neutral, low health literacy
terms such as ‘working’ or ‘non-working’ genes, ‘faster’ or ‘slower’ drug metabolism will likely be better received
by patients [54,65]. Although the targeted nature of pharmacogenetic data mean, there are minimal disease-risk
associations if patients have questions about how their genetic information is protected, educational resources
about the Genetic Information Nondiscrimination Act of 2008 are available at www.GINAhelp.org.

Finally, as with other tests of genetic data, it is helpful for patients to understand the lifetime nature of
pharmacogenetic test results. Patients should keep their written record of test results and share them with future
providers as appropriate. Payers may not cover future repeat pharmacogenetic tests since results do not change
over the patient’s lifetime. Patients should also be aware of the emerging nature of pharmacogenetic evidence
for individual drug prescribing. As evidence develops or new data are published, patients may receive future
communication about potential implications for drug therapy based on their current test results [56,58].

Conclusion
There is currently an imbalance between the potential benefits and demand for pharmacogenetic testing in primary
care and its underuse to guide medication selection and dosing. Providers and patients value pharmacogenetic
testing, but PCPs consistently report feeling unprepared to use pharmacogenetic data and cite a lack of point-of-
care resources for applying test results in practice. Practice-based models and resources for pharmacogenetic testing
are essential to equip prescribers for pharmacogenetics. In this manuscript, we present a practice-based stepwise
approach to pharmacogenetic testing in primary care based on implementation experiences of the IGNITE Network
in this manuscript. Synergy of practice-based resources such as this stepwise approach with systems-level solutions
to technical, reimbursement, educational and other challenges will enable the healthcare system as a whole to
integrate pharmacogenetic testing into patient care in a scalable, efficient manner.
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