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Urine cell-free DNA (cfDNA) is a valuable noninvasive biomarker for cancer mutation detection, infectious
disease diagnosis (eg, tuberculosis), organ transplantation monitoring, and prenatal screening. Con-
ventional silica DNA extraction does not efficiently capture urine cfDNA, which is dilute (ng/mL) and
highly fragmented [30 to 100 nucleotides (nt)]. The clinical sensitivity of urine cfDNA detection increases
with decreasing target length, motivating use of sample preparation methods designed for short frag-
ments. We compared the analytical performance of two published protocols (Wizard resin/guanidinium
thiocyanate and Q Sepharose), three commercial kits (Norgen, QIAamp, and MagMAX), and an in-house
sequence-specific hybridization capture technique. Dependence on fragment length (25 to 150 nt),
performance at low concentrations (10 copies/mL), tolerance to variable urine conditions, and suscep-
tibility to PCR inhibition were characterized. Hybridization capture and Q Sepharose performed best
overall (60% to 90% recovery), although Q Sepharose had reduced recovery (<10%) of the shortest 25-nt
fragment. Wizard resin/guanidinium thiocyanate recovery was dependent on pH and background DNA
concentration and was limited to <35%, even under optimal conditions. The Norgen kit led to consistent
PCR inhibition but had high recovery of short fragments. The QIAamp and MagMAX kits had minimal
recovery of fragments <150 and <80 nt, respectively. Urine cfDNA extraction methods differ widely in
ability to capture short, dilute cfDNA in urine; using suboptimal methods may profoundly impair clinical
results. (J Mol Diagn 2019, 21: 1067e1078; https://doi.org/10.1016/j.jmoldx.2019.07.002)
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Urine cell-free DNA (cfDNA) is an emerging noninvasive
biomarker for cancer mutation detection,1e4 infectious
disease diagnosis,5e7 organ transplantation monitoring,8,9

and prenatal screening.1,10,11 As cells die throughout the
body, cfDNA is released into the bloodstream. A fraction
of circulating cfDNA, composed largely of short frag-
ments, crosses the kidney barrier, is excreted in urine, and
can be analyzed by PCR or sequencing.1 This subset of
urine cfDNA, derived from circulating cfDNA, is
known as transrenal DNA, but cfDNA can also be
generated directly in urine from cells shed along the
urinary tract.
stigative Pathology and the Association for M
To maximize the clinical sensitivity and reproducibility of
urine cfDNA analysis, extraction methods capable of effi-
ciently capturing short, dilute DNA fragments are essential.
Although plasma cfDNA is primarily nucleosomal, with a
peak length of 160 to 167 nucleotides (nt),12e14 urine
olecular Pathology. Published by Elsevier Inc. All rights reserved.
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cfDNA is more fragmented. The upper length limit of the
transrenal fraction of urine cfDNA is defined by glomerular
filtration, and all urine cfDNA fragments are quickly
degraded further in urine.15 Determining the true length
distribution of urine cfDNA is challenging because both
extraction and library preparation methods may underesti-
mate the presence of shorter fragments, but most fragments
are expected to be <100 nt.11,14,16 Peak fragment length
varies across patients, but may be as low as 30 to 60
nt.11,14,16

Because of the extensive fragmentation of urine cfDNA,
the diagnostic clinical sensitivity of urine cfDNA detection
increases with decreasing target length. Maximizing sensi-
tivity by targeting shorter fragments is especially critical
because urine cfDNA is also dilute, with total concentra-
tions ranging from <1 to 200 ng/mL1,17,18 and copy
numbers of specific targets much lower. In a study detecting
fetal cfDNA in maternal urine, decreasing PCR amplicon
length from 65 to 39 nt increased clinical sensitivity from
25% to 75%. A further decrease to 25 nt was required before
achieving 100% detection.10 This effect may be even more
pronounced for bacterial, viral, and mitochondrial cfDNA,
which are not protected by histones and are, therefore, more
degraded than human genomic cfDNA.12,15,16 For tubercu-
losis urine cfDNA, a modest 10-nt decrease in amplicon
length (49 to 39 nt) led to 5- to 10-fold improvement in
detected concentration.19 Critically, the ability to target
shorter cfDNA fragments lies not only in decreasing
amplicon length, but also in design and selection of sample
preparation methods capable of capturing and concentrating
the short, dilute fragments that constitute the bulk of urine
cfDNA.

Unfortunately, conventional extraction methods for cell-
associated DNA or even plasma cfDNA are not suitable for
urine cfDNA because they are not designed for short frag-
ments. The Boom method, commonly used for both
research and clinical work, adsorbs DNA to silica under
chaotropic conditions.20 The key driving forces of silica
adsorption are hydrophobic interactions due to dehydration
of silica and DNA surfaces and hydrogen bonding between
silica and the DNA backbone, both of which depend on
DNA length.21 Consequently, silica adsorption is less
effective at purifying short fragments, with recovery
generally decreasing below 50 to 100 nt. Silica adsorption
also requires relatively high DNA concentrations for
optimal performance because a fraction of DNA may remain
irretrievably bound to the silica surface.22,23 This loss is
trivial in most samples, but for low-concentration samples,
like urine cfDNA, it may make up a significant portion of
the input.

With these limitations in mind, an ideal urine cfDNA
extraction method would enable high recovery of short
DNA from dilute solutions. Despite the great clinical
promise of urine cfDNA as an easy-to-access sample, there
has been little quantitative comparison of approaches taken
to improve recovery of urine cfDNA. A recent review
1068
emphasized the lack of standardization in sample prepara-
tion methods, including DNA extraction, as a key limitation
in the development of urine cfDNA assays.24 Previous
studies have compared clinical detection rates10,19 and total
cfDNA recovery18,25 of a limited set of extraction methods,
but no studies have investigated analytical performance
using spiked samples.
Herein, two published urine cfDNA extraction protocols

[Wizard resin/guanidinium thiocyanate (Wizard/GuSCN)
and Q Sepharose], three commercial kits (Norgen, QIAamp,
and MagMAX), and a sequence-specific hybridization
capture technique, developed in our laboratory, were
analytically compared. The Wizard/GuSCN method uses
high concentrations (>3 mol/L) of chaotropic GuSCN to
adsorb DNA to Wizard silica resin. This approach was used
to originally demonstrate the presence of cfDNA in urine1

and has since been widely applied, most frequently for
detecting tuberculosis26 and fetal11 cfDNA. The Q Sephar-
ose method uses a quaternary ammonium anion exchange
resin to preconcentrate DNA before desalting on a silica
spin column. It improves recovery of short urine cfDNA
fragments compared with Wizard/GuSCN10 and has often
been used to detect tumor cfDNA mutations for cancer
diagnosis, monitoring, and prognosis.2,3 The Norgen Biotek
(Thorold, ON, Canada) Urine Cell-Free Circulating DNA
Purification Kit uses a hybrid silica/silicon carbide spin
column, where addition of silicon carbide reportedly im-
proves yield of short DNA compared with silica alone (US
patent 9,422,596). The Qiagen (Hilden, Germany) QIAamp
Circulating Nucleic Acid Kit uses a silica vacuum column
and reportedly improves recovery of fragmented DNA
compared with other Qiagen kits. It is one of the most
widely used commercial kits for plasma cfDNA extraction27

but is not commonly used for urine cfDNA. The Thermo
Fisher Scientific (Waltham, MA) MagMAX Cell-Free DNA
Isolation Kit uses Dynabeads MyOne Silane to maximize
binding kinetics and capacity but is intended primarily for
plasma cfDNA. It was included as a reference method to
represent best-case silica adsorption without modifications
specifically for urine cfDNA, although it has been used
previously in urine.28

To enable high-efficiency purification of short fragments,
our laboratory has developed a hybridization capture
method for urine cfDNA using a biotinylated sequence-
specific probe and streptavidin-coated magnetic beads.
Hybridization is commonly used for targeted enrichment of
sequencing libraries but has been less frequently used as a
sample preparation method for capturing target sequences
directly from raw samples. Hybridization capture with
magnetic beads has been used previously to enrich pathogen
DNA and mRNA directly from sputum,29,30 blood,31

feces,31,32 vaginal/anal swabs,33 and cell lysates,34,35 with
detection down to 5 to 10 copies/mL30 and recovery up to
60% to 80%.36 Hybridization has also been used in micro-
fluidic37 and lateral flow38 formats. In previous imple-
mentations, hybridization capture was used primarily to
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Comparing Urine cfDNA Extraction Methods
remove excess nontarget DNA, which can inhibit amplifi-
cation.30,38 In the case of urine cfDNA, hybridization’s
ability to sensitively capture short fragments, regardless of
length and concentration, was instead leveraged. To our
knowledge, hybridization capture has not been used previ-
ously to target urine cfDNA.

For each extraction method, the dependence on DNA
fragment length, performance at low DNA concentrations,
tolerance to variable urine conditions, and susceptibility to
PCR inhibition were characterized. The results of this work
will help guide selection and optimization of DNA extrac-
tion methods for urine cfDNA analysis. Careful design of
sample preparation methods should lead to increased clin-
ical sensitivity and reproducibility of urine cfDNA
diagnostics.
Materials and Methods

Synthetic DNA Target Design

To study the analytical performance of the urine cfDNA
extraction methods, synthetic single-stranded DNA
(ssDNA) targets were spiked into pooled urine before
extraction and analysis by real-time quantitative PCR
(qPCR). The targets were selected from a conserved and
specific region of the insertion sequence IS6110 of the
Mycobacterium tuberculosis complex (GenBank, https://
www.ncbi.nlm.nih.gov/genbank; accession number
X17348).39 The targets were 25, 40, 80, and 150 nt in
length, as listed in Table 1. The 40-, 80-, and 150-nt targets
were designed to be amplified by a shared primer set, with
additional bases outside of the primer amplification region
added to the 30 end of the 40-nt target to generate the 80-
and 150-nt targets. The 25-nt target was designed to be
amplified by a separate set of primers in a two-stage, single-
tube PCR for ultrashort targets.10
DNA Extraction from Pooled Human Urine

Urine from five healthy volunteers was pooled into a
representative sample, supplemented with 10 mmol/L
EDTA, and stored at �80�C until analysis.

Wizard Resin/Guanidinium Thiocyanate
Urine (5 mL) was mixed with 7.5 mL 6 mol/L GuSCN and
1 mL Wizard Minipreps DNA Purification Resin (Promega,
Madison, WI), rotated at room temperature for 2 hours, and
vacuum filtered through a syringe fitted with a Wizard
minicolumn. The resin was washed twice with 5 mL wash
buffer (80 mmol/L KOAc, 8.3 mmol/L Tris-HCl, pH 7.5,
40 mmol/L EDTA, and 55% ethanol). The minicolumn was
removed and dried (10,000 � g, 2 minutes). DNA was
eluted with 100 mL 60�C nuclease-free water (1-minute
incubation, 1 minute at 16,000 � g).
The Journal of Molecular Diagnostics - jmd.amjpathol.org
Q Sepharose Anion Exchange Resin
Urine (10 mL) was mixed with 300 mL Q Sepharose Fast
Flow (GE Healthcare, Waukesha, WI) and rotated at room
temperature for 30 minutes. The resin was pelleted (1800 �
g, 5 minutes), resuspended in 1 mL low-salt buffer (0.3 mol/
L LiCl and 10 mmol/L NaOAc, pH 5.5), transferred to a
Mini Bio-Spin Column (Bio-Rad Laboratories, Hercules,
CA), and filtered (800 � g, 1 minute). The resin was washed
with 4 � 0.5 mL low-salt buffer (800 � g, 30 seconds).
DNA was eluted (800 � g, 3 minutes) using 670 mL high-
salt buffer (2 mol/L LiCl and 10 mmol/L NaOAc, pH 5.5).
The eluate was mixed with 2 mL 95% ethanol and applied
incrementally to a QIAquick column (Qiagen; 800 � g,
30 seconds). The column was washed twice with 0.5 mL 2
mol/L LiCl in 70% ethanol and twice with 0.5 mL 75 mmol/
L KOAc, pH 5.5, in 80% ethanol (800 � g, 30 seconds).
The column was dried (20,000 � g, 3 minutes) and DNA
was eluted (20,000 � g, 2 minutes) in 106 mL elution buffer
(Qiagen).

Norgen Urine Cell-Free Circulating DNA Purification Mini Kit
DNA was extracted from 2 mL urine using the manufac-
turer’s protocol and eluted into 50 mL.

Qiagen QIAamp Circulating Nucleic Acid Kit
DNA was extracted from 4 mL urine using the manufac-
turer’s protocol for purification of circulating nucleic acids
from urine and eluted into 50 mL. The QIAamp experiments
were performed later than those for other methods, so a
different urine sample was used.

Thermo Fisher Scientific MagMAX Cell-Free DNA Isolation Kit
DNA was extracted from 1 mL urine using the manufac-
turer’s protocol for manual isolation of cfDNA from urine
and eluted into 20 mL.

Hybridization Capture
Urine (1 mL) was mixed with 15 nmol/L biotinylated
capture probe (Table 1), 1 mol/L NaCl, and 10 mmol/L
Tris-HCl, pH 7.5; denatured (95�C, 10 minutes); and hy-
bridized (45�C, 15 minutes). Hybridized complexes were
immobilized on 83.2 mL Dynabeads MyOne Streptavidin
C1 (Thermo Fisher Scientific) by 15-minute rotation at
room temperature. Beads were washed twice with 1 mL
high-salt wash (1 mol/L NaCl and 10 mmol/L Tris-HCl, pH
7.5) and once with 1 mL low-salt wash (15 mmol/L NaCl
and 10 mmol/L Tris-HCl, pH 7.5). DNA was eluted (20 mL
20 mmol/L NaOH) and partially neutralized (3.5 mL 100
mmol/L HCl).
Real-Time Quantitative PCR

qPCR of the 40-, 80-, and 150-nt targets was performed in a
CFX96 Touch Real-Time PCR Detection System (Bio-Rad
Laboratories) with an initial incubation of 94�C for 5 mi-
nutes, followed by 45 amplification cycles (94�C for
1069
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Table 1 Target, Primer, and Probe Sequences

Assay Oligonucleotide Sequence

PCR of 40-, 80-, and
150-nt targets

Forward primer 50-CGAACCCTGCCCAGGTCGA-30

Reverse primer 50-GTAGCAGACCTCACCTATGTGT-30

40-nt Target 50-CGAACCCTGCCCAGGTCGACACATAGGTGAGGTCTGCTAC-30

80-nt Target 50-CGAACCCTGCCCAGGTCGACACATAGGTGAGGTCTGCTACACACCAT-
TCAATTTCATCACTGCCAATACTCCACTCTCAT-30

150-nt Target 50-CGAACCCTGCCCAGGTCGACACATAGGTGAGGTCTGCTACACACCAT-
TCAATTTCATCACTGCCAATACTCCACTCTCATCTACACAACCCATTA-
GTACCTTACCTCGCTTCCTATCCCAATTCACTTAATCTTAAACCGGTC-
AGGGAAG-30

PCR of 25-nt target 25-nt Target 50-CCGGCTGTGGGTAGCAGACCTCACC-30

First-stage hairpin
forward primer

50-GCGTAAGAAT/iMe-isodC/AAACGTCGCTCAACTTCCAT-
TCTTACGCCCGGCTGTGG-30

Second-stage universal
forward primer

50-AACGTCGCTCAACTTCCATT-30

Reverse primer 50-TTAGAGAAGGTGAGGTCTGC-30

MGB TaqMan probe 50-6FAM/CCGGCTGTGGGTA/MGBNFQ-30

Hybridization capture Biotinylated capture probe
for 40-, 80-, and
150-nt targets

50-/5BiosG/AGACCTCACCTATGTGTC/3SpC3/-30

Biotinylated capture
probe for 25-nt target

50-/5BiotinTEG/GAGGTCTGCTACCCA/3SpC3/-30

Single-stranded synthetic oligonucleotides were used as spike-in targets to study the analytical performance of urine cfDNA extraction methods. The 40-,
80-, and 150-nt targets were designed to be amplified by the same primer set, with the shared primer amplification region boldfaced. The 25-nt target was
designed to be amplified by a separate set of primers in a two-stage, single-tube PCR for ultrashort targets. Binding regions for the biotinylated capture probes
are underlined. All oligonucleotides were ordered from Integrated DNA Technologies (Coralville, IA), except for the MGB TaqMan probe, which was from Thermo
Fisher Scientific (Waltham, MA).
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30 seconds, 58�C for 30 seconds, and 68�C for 1 minute).
Each reaction contained 1.25 U OneTaq Hot Start DNA
Polymerase [New England Biolabs (NEB), Ipswich, MA],
1� OneTaq GC Reaction Buffer [NEB; 80 mmol/L Tris-
SO4, 20 mmol/L (NH4)2SO4, 2 mmol/L MgSO4, 5% glyc-
erol, 5% dimethyl sulfoxide, 0.06% IGEPAL CA-630, and
0.05% Tween 20, pH 9.2], 0.8 mmol/L dNTPs (NEB), 0.4�
EvaGreen (Biotium, Fremont, CA), 200 nmol/L forward
primer, and 200 nmol/L reverse primer (Table 1). Quanti-
fication cycle values were determined using the CFX
Manager software version 3.1 (Bio-Rad Laboratories) at a
threshold of 500 relative fluorescence units (RFUs), and
recovered copies were calculated by a standard curve.
Validation of the 40-, 80-, and 150-nt PCR is given in
Supplemental Figure S1.

Ultrashort qPCR of the 25-nt target was performed in a
CFX96 Touch Real-Time PCR Detection System (Bio-Rad
Laboratories) with an initial denaturation phase (94�C for 5
minutes), 10 preamplification cycles to extend the first-stage
loop primer (94�C for 30 seconds and 45�C for 1 minute),
and 40 amplification cycles (94�C for 30 seconds and 59�C
for 1 minute). Each reaction contained 1.25 U Hot Start Taq
DNA Polymerase (NEB) and 1� Standard Taq Buffer
(NEB; 10 mmol/L Tris-HCl, 50 mmol/L KCl, and 1.5
mmol/L MgCl2, pH 8.3) supplemented with an additional
0.5 mmol/L MgCl2 and 70 mmol/L Tris-HCl, 0.8 mmol/L
dNTPs (NEB), 50 nmol/L first-stage hairpin forward primer,
700 nmol/L second-stage universal forward primer, 700
1070
nmol/L reverse primer, and 100 nmol/L MGB TaqMan
probe (Table 1). Quantification cycle values were deter-
mined using the CFX Manager Software version 3.1 at a
threshold of 100 RFUs, and recovered copies were calcu-
lated by a standard curve. Validation of the 25-nt PCR is
given in Supplemental Figure S2.
qPCR of experimental samples was performed in triplicate

in a 50 mL volume containing 5 mL of DNA output, except
for hybridization capture experiments, where the entire
output (approximately 23 mL) was analyzed in a single PCR
well. To control for contamination, no template controls
were run not only for PCR (n Z 3) but also through the
entire DNA extraction procedure for all experiments (n� 3).
Results

Table 2 summarizes the urine cfDNA extraction methods,
including processing time, cost, and volume of urine analyzed.
Effect of DNA Fragment Length on Recovery

To evaluate the dependence of urine cfDNA extraction
methods on fragment length, DNA was extracted from urine
spiked with 104 copies/mL of synthetic DNA target of
length 25, 40, 80, or 150 nt (Figure 1A). Figure 1B shows
the percentage recovery of each extraction method across
fragment lengths. Hybridization capture was the only
jmd.amjpathol.org - The Journal of Molecular Diagnostics
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Table 2 Overview of Urine cfDNA Extraction Methods

Urine cfDNA
extraction method Key purification chemistry Rationale for selection

Processing time
(hands-on time),
hours*

Cost per
sample, $y

Effective urine
volume analyzed
per PCR well, mL

Hybridization
capture

Hybridization to biotinylated
probe and capture on
streptavidin magnetic
beads

Developed in our
laboratory specifically
for urine cfDNA

1.75 (1) 15z 1000x

Wizard/GuSCN Adsorption to silica resin in
presence of high-
concentration chaotrope

(3e6 mol/L)

Originally used to isolate
cfDNA from urine;
widely used in the
literature

3 (2.5) 5 472

Q Sepharose Preconcentration by anion
exchange resin, followed by
adsorption to silica spin
column

Shown to improve
recovery of short
fragments compared
with Wizard/GuSCN
method

3 (1) 5 250

Norgen Urine
Cell-Free
Circulating
DNA
Purification Kit

Adsorption to silica/silicon
carbide hybrid spin column
in presence of chaotrope

Commercial kit designed
specifically for urine
cfDNA

1.5 (1.25) 5 200

Qiagen QIAamp
Circulating
Nucleic Acid Kit

Adsorption to silica vacuum
column in presence of
chaotrope

Commercial kit commonly
used for plasma cfDNA

2 (1.25) 25 400

Thermo Fisher
Scientific MagMAX
Cell-Free DNA
Isolation Kit

Adsorption to Dynabeads
MyOne Silane in presence
of chaotrope

Representative
commercial silica kit;
best-case scenario
without specific designs
for urine cfDNA

2.5 (2) 18 250

*For 12 samples; sample preparation time only, not including qPCR.
ySample preparation cost only, not including qPCR.
zCost listed for capture of a single target. Cost is due almost exclusively to the magnetic beads and is, thus, not expected to scale up significantly for

multiplexed capture (estimated $0.10 to $0.15 per capture probe per sample).
xAll real-time quantitative PCRs were performed using 5 mL of sample per well, except for hybridization, where the entire approximately 23 mL output was

analyzed in a single PCR well.
Wizard/GuSCN, Wizard resin/guanidinium thiocyanate.

Comparing Urine cfDNA Extraction Methods
method that maintained high recovery (73% to 84%) across
all fragment lengths from 25 to 150 nt. Q Sepharose had
similar, high recovery (63% to 75%) of 40- to 150-nt
fragments, but reduced recovery (9%) of the shortest 25-nt
fragment. Wizard/GuSCN recovery was initially low
(<5%) across all fragments. Later experiments showed that
Wizard/GuSCN was dependent on urine composition,
particularly pH and background DNA. Even after adjusting
urine to optimal conditions (pH 6; 1000 ng/mL sheared
salmon sperm DNA; Thermo Fisher Scientific), Wizard/
GuSCN recovery was still low (9% to 17%) across 40- to
150-nt fragments and further reduced (2%) for the 25-nt
fragment. The Norgen kit had moderate recovery (30% to
41%) across 40- to 150-nt fragments and improved recovery
(72%) of the 25-nt fragment. Recovery using the QIAamp
kit was limited (18%) for the longest 150-nt fragment and
was low (1% and 0.2%) for the shorter 80- and 40-nt
fragments, respectively. The MagMAX kit recovery was
high (66%) for the 150-nt fragment, but quickly diminished
The Journal of Molecular Diagnostics - jmd.amjpathol.org
with decreasing fragment length and was practically
nonexistent (0.2%) for the 40-nt fragment. No template
controls were run through the entire DNA extraction pro-
cedure for each method (Supplemental Table S1).
Ability to Detect Low Concentrations of Short DNA
Fragments

To determine each method’s potential for sensitive capture
of short, dilute urine cfDNA, 10 copies/mL of 40-nt target
were spiked into urine before extraction (Figure 2). Hy-
bridization capture and Q Sepharose reliably yielded
detectable DNA from all low concentration spiked samples
(Table 3). The Norgen kit also detected all samples, but only
weakly. Wizard/GuSCN weakly detected 83% of samples
but was inconsistent, with only 44% positive PCR wells.
The QIAamp and MagMAX kits did not allow confident
detection of any positive samples. Full results of the low-
1071
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Figure 1 DNA recovery from urine is dependent on both extraction method and target fragment length. A: To evaluate the length dependence of urine
cfDNA extraction methods, synthetic targets of various lengths (25, 40, 80, and 150 nt) were spiked into urine at 104 copies/mL before extraction. The dashed
line indicates an example relative fluorescence unit (RFU) threshold for determination of the PCR quantification cycle. B: Percentage recoveries are given.
Results of extraction no template controls are given in Supplemental Table S1. *Wizard resin/guanidinium thiocyanate (Wizard/GuSCN) samples were adjusted
to pH 6 and spiked with 1000 ng/mL background DNA. Data are expressed as means � SD (B). nZ 3 (B). n/a, indicates 25-nt fragment not tested for QIAamp
and MagMAX; qPCR, real-time quantitative PCR.

Oreskovic et al
concentration extraction experiments, including no template
controls, are given in Supplemental Table S2.

Tolerance to Varied Urine Conditions

To test the methods’ tolerance to varied conditions expected
in urine, 104 copies/mL of 150-nt target were extracted
from buffer (phosphate-buffered saline or tris-buffered sa-
line) with a range of pH (pH 5, 6, 7, and 8), background
DNA (0, 100, and 1000 ng/mL sheared salmon sperm
DNA; Thermo Fisher Scientific), and salt (13.7, 137, and
500 mmol/L NaCl) conditions. The Wizard/GuSCN method
was highly dependent on urine composition, specifically pH
and background DNA. Recovery decreased as pH increased
above pH 6 (Figure 3A). Spiking in background DNA (1
mg/mL) improved recovery, but maximum recovery was
still well below that of the other methods (Figure 3B).
Variation in salt from 13.7 to 500 mmol/L NaCl had no
effect on recovery (Supplemental Table S3). The remaining
methods were all relatively tolerant to variations in pH,
background DNA, and salt (Supplemental Table S3).
Figure 2 Design of experiment to test extraction methods’ abilities to detect l
of 40-nt target were spiked into urine, extracted, and detected by real-time quant
the entire output was analyzed in a single PCR well. PCR was considered positive i
dashed line indicates an example RFU threshold for determination of the PCR qu
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Recovery by the Q Sepharose method was moderately
reduced with especially low background DNA (�10 ng/
mL) but was consistent across biological urine replicates
(Supplemental Figure S3).

Susceptibility to PCR Inhibition

To test for PCR inhibition resulting from each method,
cfDNA was extracted from negative control urine, without
added target, and the resulting eluate (0, 1, 5, 10, or 20 mL)
was spiked into 50 mL PCR containing 1000 copies of 40-nt
target (Figure 4A). PCR inhibition was indicated by an in-
crease in quantification cycle. Hybridization capture,
Wizard/GuSCN, Q Sepharose, and QIAamp were resistant
to inhibition for up to 40% eluate (Figure 4B). Although not
accompanied by an increase in quantification cycle,
increasing the fraction of Wizard/GuSCN and Q Sepharose
eluate reduced plateau RFU (Figure 4C). MagMAX led to
slight inhibition at 20% eluate and severe inhibition at 40%
eluate. Norgen led to inhibition at all conditions tested and
no amplification at 40% eluate.
ow concentrations of short DNA fragments in urine. Ten copies per milliliter
itative PCR. PCR was performed in triplicate, except for hybridization, where
f >500 relative fluorescence units (RFUs) after 45 amplification cycles. The
antification cycle. n Z 6.
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Table 3 Ability to Detect Low Concentrations of Short DNA

Urine cfDNA extraction method

Samples with �1
positive PCR well, %
(number/total)

Positive PCR wells, %
(number/total)

Detected copies/well,
mean � SD

Expected copies/
well if theoretical
100% recovery*

Hybridization capture 100 (6/6) 100 (6/6) 7.8 � 5.1 10
Wizard/GuSCN 83 (5/6) 44 (8/18) 1.6 � 0.87 2.5
Q Sepharose 100 (6/6) 89 (16/18) 5.0 � 1.5 4.7
Norgen Urine Cell-Free
Circulating DNA Purification Kit

100 (6/6) 89 (16/18) 1.42 � 0.67 2

Qiagen QIAamp Circulating
Nucleic Acid Kit

17 (1/6) 6 (1/18) 0.05 � 0.12 4

Thermo Fisher Scientific MagMAX
Cell-Free DNA Isolation Kit

33 (2/6) 11 (2/18) 0.77 � 0.31 2.5

Hybridization, Q Sepharose, and Norgen methods can detect low concentrations of short cfDNA fragments; Wizard/GuSCN, QIAamp, and MagMAX methods
are not expected to perform well under these conditions. The ability of each urine cfDNA extraction method to detect low-concentration samples was tested
using the experiment design shown in Figure 2. Full results, including no template controls (n Z 6), are given in Supplemental Table S2.
*Calculated on the basis of the initial 10 copies/mL target concentration and adjusted for the urine input and elution volume of each method.
Wizard/GuSCN, Wizard resin/guanidinium thiocyanate.

Comparing Urine cfDNA Extraction Methods
Discussion

The highly fragmented and dilute nature of urine cfDNA
(�30 to 100 nt, <1 to 200 ng/mL)1,11,14,16e18 motivates the
use of sample preparation methods capable of recovering
short DNA with high efficiency. Our goal was to generate a
representative data set to aid in selection and optimization of
extraction methods to ensure high-quality results from urine
cfDNA studies. The analytical dependence of six methods
on a key set of variables was characterized to gain insight
into how the methods may perform in clinical samples and
to identify any critical pitfalls. In the subsections below, the
strengths and limitations of each method are discussed, and
Figure 3 The Wizard resin/guanidinium thiocyanate (Wizard/GuSCN)
method is dependent on urine pH and background DNA concentration. A:
Recovery decreases with increasing pH. Before extraction by the Wizard/
GuSCN method, 104 copies/mL of 150-nt target were spiked into phosphate-
buffered saline (PBS) with 1000 ng/mL background DNA. B: Recovery in-
creases with the addition of background DNA. Before extraction by the
Wizard/GuSCN method, 104 copies/mL of 150-nt target were spiked into PBS,
pH 6. Data are expressed as means � SD (A and B). nZ 3 (A and B).

The Journal of Molecular Diagnostics - jmd.amjpathol.org
the final conclusions regarding choice of urine cfDNA
extraction method are stated. Apart from hybridization
capture, which was developed in house, published protocols
were followed as closely as possible. Further optimizations,
including adjusting urine pH, spiking in background DNA,
improving elution efficiency, and tailoring sample, elution,
and PCR volumes, may improve outcomes.
Wizard Resin/Guanidinium Thiocyanate

Despite its use in the first study isolating urine cfDNA,1 the
Wizard/GuSCN method has low and variable recovery.
After observing low recovery (<5%) and significant varia-
tion across urine samples in preliminary work, the recovery
was found to be highly dependent on pH and background
DNA concentration, both of which fluctuate widely across
clinical urine samples. Urine pH ranges from 5 to 8 (mean,
5.99 to 6.43),40 but Wizard/GuSCN had reduced recovery as
pH increased above 6. As silanol groups become deproto-
nated at higher pH, increased electrostatic repulsion between
DNA and silica diminishes adsorption.21e23 Recovery by
Wizard/GuSCN also improved as background DNA
increased up to 1 mg/mL. Concentrations >1 mg/mL,
already well above the expected biological range of <1 to
200 ng/mL, were not tested.1,17,18 Again, this limitation is
not surprising for silica. Supplementation with carrier
nucleic acids improves silica extraction yields, particularly
for dilute samples, and is often implemented in commercial
purification kits.41 Limited recovery of dilute DNA may be
due to ineffective elution rather than inefficient adsorption.
After adsorption in the presence of high-concentration
chaotrope, like in the Wizard/GuSCN method, a fraction
of DNA may remain irretrievably bound because of strong
hydrophobic interactions with silica.22,23 The resulting
DNA loss is particularly detrimental for dilute samples, in
1073
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Figure 4 Urine cfDNA extraction methods have varying susceptibility to cause PCR inhibition. A: Eluate extracted from negative control urine (no added
target) was spiked into PCR containing a constant target concentration (0-, 1-, 5-, 10-, or 20-mL eluate in 50 mL PCR, for final 0%, 2%, 10%, 20%, or 40%
eluate, respectively). The dashed line indicates an example relative fluorescence unit (RFU) threshold for determination of the PCR quantification cycle. B: An
increase in quantification cycle (Cq) indicates PCR inhibition. C: Representative PCR curves are shown. Data are expressed as means � SD (B). n Z 3 (B).
Wizard/GuSCN, Wizard resin/guanidinium thiocyanate.
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which the irretrievable fraction represents a significant
portion of the input.22

The dependence of Wizard/GuSCN on urine composition
and, thus, its likely failure in a portion of patient samples
may partially explain the low, variable clinical sensitivities
previously reported when using it as a sample preparation
method for urine cfDNA.6,7,26 Even under ideal conditions,
maximum recovery was limited to <20% from urine and
30% to 35% from buffer. Although Wizard/GuSCN showed
improved recovery of moderately short targets (40 nt)
compared with conventional silica adsorption (ie, Mag-
MAX), it was still unable to recover the shortest 25-nt
fragment. On the basis of this analytical characterization,
Wizard/GuSCN is not recommended for use in clinical
samples (particularly for low-concentration targets) without
further optimization. If used, adjusting urine samples to pH
5 to 6, spiking in �1 mg/mL carrier nucleic acid, and using
elevated temperature and incubation time to increase elution
yield are suggested.23
1074
Q Sepharose Anion Exchange Resin

The Q Sepharose method improves on Wizard/GuSCN in
both recovery of short DNA fragments and overall yield. Q
Sepharose had high recovery (63% to 75%) of fragments
down to 40 nt. Previous comparison showed that Q
Sepharose increased clinical detection of fetal cfDNA in
maternal urine compared with Wizard/GuSCN.10 The re-
sults of this study support this conclusion and suggest that
preconcentration of urine cfDNA using anion exchange
resin helps compensate for the length and concentration
dependence of silica adsorption. Q Sepharose did not,
however, completely overcome fragment length depen-
dence, with <10% recovery of the shortest 25-nt fragment.
In addition to concentrating cfDNA, Q Sepharose eliminates
urine variabilities, like pH, that might otherwise affect silica
adsorption. Q Sepharose is expected to perform well in
clinical samples, as supported by its successful previous
implementation for liquid biopsies.2,3
jmd.amjpathol.org - The Journal of Molecular Diagnostics
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Table 4 Summary of Analytical Performance of Urine cfDNA Extraction Methods

Urine cfDNA
extraction method Recovery, %

Minimum target
length efficiently
recovered, nt*

Ability to recover
low concentrations
of short target

Tolerance to
varied urine
conditions

Resistance to
PCR inhibition

Hybridization capture 73e84 25 Good Good Good
Wizard/GuSCN 1.6e17 40 Poor Poor Good
Q Sepharose 8.6e75 40 Good Good Good
Norgen Urine Cell-Free Circulating
DNA Purification Kit

30e72 25 Moderate Good Poor

Qiagen QIAamp Circulating
Nucleic Acid Kit

0.20e18y 150 Poor Good Good

Thermo Fisher Scientific MagMAX
Cell-Free DNA Isolation Kit

0.20e66y 80 Poor Good Moderate

*Efficient recovery defined as >50% of the maximum recovery observed across all lengths for that method.
yThe 25-nt fragment was not tested for QIAamp and MagMAX kits.
Wizard/GuSCN, Wizard resin/guanidinium thiocyanate.
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QSepharose is recommended as an established, ready-to-go
protocol that would be sufficient for most applications. It
would be well suited for next-generation sequencing, where
bulk, not sequence-specific, purification of cfDNA is neces-
sary. It should ideally be paired with single-stranded library
preparation, which has been shown to improve sequencing
yield of <100-nt cfDNA fragments.12 For amplification ap-
plications, its resistance to PCR inhibition suggests that larger
effective volumes could be amplified per reaction to increase
analytical sensitivity. When extreme sensitivity and retention
of the shortest fragments are required, using hybridization
capture is recommended instead.
Norgen Urine Cell-Free Circulating DNA Purification Kit

The Norgen kit had moderate recovery (30% to 41%) of
fragments 40 to 150 nt, but higher recovery (72%) of the 25-
nt fragment. It was the only silica-based method to effi-
ciently capture the shortest fragment, demonstrating that
hybrid silica/silicon carbide spin columns improve capture
of ultrashort fragments relative to silica alone, as claimed by
the manufacturer. Unfortunately, the Norgen kit also led to
consistent PCR inhibition, even when using only a small
volume of eluate in PCR. Consequently, quantification
using the Norgen kit is unreliable because each individual
PCR assay will be uniquely affected by inhibition.42 As an
example, the differential inhibition of the 40- and 25-nt
qPCR assays is given in Supplemental Figure S4. The
Norgen kit was weakly capable of detecting low concen-
trations of DNA, but its analytical sensitivity is limited by a
relatively small urine input (2 mL) combined with
inhibition-restricted PCR volume. Although not ideal for
precise quantification or sensitive detection of dilute targets,
the Norgen kit is a commercially available, user-friendly
option. It could be used for quick, preliminary urine
cfDNA analyses in which qualitative or semiquantitative
detection is adequate.
The Journal of Molecular Diagnostics - jmd.amjpathol.org
Qiagen QIAamp Circulating Nucleic Acid Kit

The QIAamp kit had limited recovery (18%), even for the
longest 150-nt fragment. It also showed a clear depen-
dence on fragment length, with significantly reduced re-
covery of the 80- and 40-nt fragments (1% and 0.2%,
respectively). To confirm that the low observed recovery
was not due to the urine sample used or errors in the
extraction procedure, a long 400-bp double-stranded
DNA (dsDNA) target was also tested. It had higher re-
covery (83% � 4%) (Supplemental Figure S5), indicating
that the low recovery using the QIAamp kit was due to
the short length and/or single-stranded nature of the
spiked target.

The poor performance of the QIAamp kit for short frag-
ments in urine is surprising given its widespread successful
use in plasma. Several comparative studies have identified
the QIAamp kit as one of the best-performing commercial
options for plasma cfDNA.43e46 Although the kit has high
overall yields from plasma, its recovery has been previously
shown to decrease as fragment length decreases.44,46 For
spiked dsDNA >100 bp, the QIAamp kit had >80% re-
covery from plasma,44,46 but for dsDNA �100 bp, the re-
covery was reduced, with no recovery of a 25-bp
fragment.46 This trend is in line with the manufacturer’s
product information, which claims efficient recovery of
fragments down to 75 bp only. Regardless of sample type,
both our results and others suggest that the QIAamp kit is
inadequate for capturing short DNA fragments. It is unclear
what caused the overall recovery from urine seen herein to
be lower than that of previous reports from plasma, but it
may be at least partly due to the strandedness of the spiked
target. Previous plasma studies used dsDNA,44,46 whereas
this study used ssDNA, which interacts differently with
silica surfaces on a molecular level.47 Although ssDNA has
been reported to bind more strongly to silica at low pH than
dsDNA,47 the relative recovery of ssDNA and dsDNA can
be tuned by using chaotropic binding buffers of different
1075
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compositions (ie, higher pH).48 The specific buffer condi-
tions of the QIAamp kit may be better suited for dsDNA
than for ssDNA, exacerbating the existing length depen-
dence when using an ssDNA target.

Because of the QIAamp kit’s inefficient recovery of short
fragments, and particularly those that are single stranded, its
use is not recommended for urine, where cfDNA is more
fragmented than in plasma. Although the kit’s performance
may improve for dsDNA, an ideal urine cfDNA kit would
be able to efficiently capture the full diversity of degraded
urine cfDNA, which is likely to be a heterogeneous mixture
of short ssDNA, dsDNA, and nicked DNA.

Thermo Fisher Scientific MagMAX Cell-Free DNA
Isolation Kit

The MagMAX kit was extremely dependent on fragment
length, as expected for a silica-based method. It had high
recovery of longer fragments but no detectable recovery of
the 40-nt fragment. Its use in urine samples, where most
cfDNA fragments are too short to be recovered efficiently, is
not recommended. Other silica-based plasma cfDNA
extraction kits may also experience length-based limitations,
like the QIAamp and MagMAX kits. Plasma cfDNA kits
should not be used for urine cfDNA extraction without
experimentally verifying their ability to capture short DNA
fragments.

Hybridization Capture

Our laboratory identified hybridization capture as a sample
preparation method likely to perform well for short, dilute
urine cfDNA. Unlike silica adsorption, hybridization should
be agnostic to both fragment length and concentration and
robust against variations in clinical urine samples. Our re-
sults confirmed that hybridization capture was the only
method to maintain high recovery (73% to 84%) across all
fragment lengths tested, even down to the shortest 25-nt
fragment. Hybridization capture was capable of reliably
detecting low DNA concentrations (down to 10 copies/mL)
and was tolerant to changes in urine pH, salt, and back-
ground DNA, suggesting that it will be effective in clinical
samples. The small elution volume (20 mL) and complete
removal of PCR inhibition enable the entire output from
1 mL urine to be analyzed in a single PCR well.

Hybridization capture is recommended for urine cfDNA
applications where maximum sensitivity is required. Its
improvement over alternate methods will be most apparent
when paired with an ultrashort PCR target (eg, 25 nt). Hy-
bridization capture may be particularly beneficial for highly
fragmented cfDNA, such as bacterial, viral, or mitochon-
drial cfDNA. It may also offer the advantage of increased
specificity by removing nontarget background DNA,
although this was not directly tested in this study.

A key limitation of hybridization capture is that, unlike
silica-based methods, it will only isolate specific targeted
1076
sequences. Although it is ideal for extraction of a specific
diagnostic target, and can be multiplexed to extract multiple
targets, it is not suitable for sequencing or other applications
requiring broader pull-down of all cfDNA regardless of
sequence. Development of capture probes for new targets is
straightforward, in our case simply using a truncated version
of one of the PCR primers. Cost is currently also a limitation
for hybridization capture and is due primarily to the mag-
netic beads. We are now transitioning to a direct capture
approach (probes preimmobilized on beads), which puts the
cost of hybridization capture on par with existing published
protocols while scaling up the analysis volume to 10 mL.
Summary of the Analytical Performance of Urine cfDNA
Extraction Methods

Table 4 summarizes the analytical performance of the urine
cfDNA extraction methods. Our results reveal that extrac-
tion methods vary widely in their ability to capture the short,
dilute cfDNA present in urine. Using suboptimal methods
may profoundly compromise clinical results because of low
recovery, dependence on urine composition, or PCR inhi-
bition. Overall, hybridization capture and Q Sepharose
performed best, with high recovery of short fragments
(down to 25 and 40 nt, respectively), sensitive detection of
dilute fragments, tolerance to varied urine conditions, and
resistance to PCR inhibition. As such, these are the two
methods we expect to perform well in clinical samples and,
thus, recommend for extraction of urine cfDNA. The results
of this work will help inform selection of optimal urine
cfDNA extraction methods, which, paired with short PCR
amplicons, should lead to improved clinical sensitivity and
reproducibility of urine cfDNA diagnostics.
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