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ABSTRACT The RIG-I-like receptors (RLRs) are double-stranded RNA-binding pro-
teins that play a role in initiating and modulating cell intrinsic immunity through the
recognition of RNA features typically absent from the host transcriptome. While they
are initially characterized in the context of RNA virus infection, evidence has now ac-
cumulated establishing the role of RLRs in DNA virus infection. Here, we review re-
cent advances in the RLR-mediated restriction of DNA virus infection with an em-
phasis on the RLR ligands sensed.
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The cell intrinsic innate immune system represents one of the first lines of defense from
pathogens. Through a collection of pattern-recognition receptors (PRRs), pathogens are

detected via conserved molecular structures, known as pathogen-associated molecular
patterns (PAMPs), which are essential for their life cycle (1). Nucleic acids, including both
DNA and RNA, are essential genetic information carriers for all living organisms, including
bacterial and eukaryotic pathogens, as well as viruses, and are, thus, major structures
detected by the innate immune PRRs (2). Activation of PRRs by PAMPS results in the
production of numerous host defense molecules, including type I and type III interferons
(IFNs), proinflammatory cytokines and chemokines, as well as the expression of genes that
promote an intracellular antimicrobial state (3).

The RIG-I-like receptors (RLRs), which include RIG-I (retinoic acid-inducible gene-I;
DDX58), MDA5 (melanoma-differentiation-associated gene 5), and LGP2 (laboratory of
genetics and physiology 2) (4, 5), are prominent intracellular PRRs that sense double-
stranded RNA (dsRNA) and discriminate self versus nonself RNA. All three RLRs are part
of the large and diverse superfamily 2 (SF2) of nucleic acid-dependent NTPases and
share similar domain structures (6). For example, a central DExD/H-box RNA helicase
core consisting of two RecA-like helicase domains promotes dsRNA recognition. The
helicase domain is attached via a pincer-shaped linker to the zinc-binding C-terminal
domain (CTD), which also contributes to dsRNA binding (7–13). In addition, within the
N terminus of RIG-I and MDA5 are tandem caspase activation and recruitment domains
(CARDs) that facilitate interactions with downstream adapter proteins and confer
signaling capabilities (5). While LGP2 retains the ability to bind dsRNA with high affinity,
it lacks the N-terminal CARDs and, thus, functions to regulate signaling by RIG-I and
MDA5 (14–18). Given the central role of RIG-I and MDA5 in discriminating self from
nonself, the remainder of this Gem will focus on these two sensors.

Despite their structural similarity, RIG-I and MDA5 recognize distinct chemical and
structural features of RNA and, thus, restrict distinct subsets of viruses. RIG-I preferen-
tially binds short (�300 bp) dsRNAs bearing a 5= triphosphate (5=-ppp) moiety (13,
19–22). In addition to 5=-ppp RNA, biochemical studies have demonstrated RIG-I
binding to dsRNA with 5 diphosphate (5=-pp) ends as well as circular RNA (23–25). The
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molecular feature of circular RNAs that are responsible for RIG-I sensing is not known,
as they lack the necessary phosphate moieties recognized by RIG-I (24). In contrast to
RIG-I, the molecular patterns that confer MDA5 discrimination are less well character-
ized. However, it is clear that MDA5 preferentially binds to long dsRNA (�1,000 bp) with
no end specificity (26–29).

Upon the recognition of ligand, RNA signaling through MDA5 and RIG-I is regulated
by a series of conformational changes as well as posttranslational modifications. For
example, RIG-I K63-linked ubiquitination by tripartite motif protein 25 (TRIM25) and
Riplet (RNF135) and MDA5 K63-linked ubiquitination by TRIM65 facilitate RLR oligomer-
ization (30–36). Oligomerization of RIG-I and MDA5 drive their association with their
common adapter mitochondrial antiviral signaling protein (MAVS), which initiates the
activation of nuclear factor �B (NF-�B), interferon regulatory factor 3 (IRF3), IRF7, and an
antimicrobial gene expression response (37, 38).

Given that RIG-I and MDA5 sense RNA, it is perhaps not surprising they were first
discovered as restriction factors for RNA viruses (4). Moreover, studies that have sought
to define the PAMPS recognized by RIG-I and MDA5 during RNA virus infection have
consistently identified RNA viral genomes and replicative intermediates. These studies
suggest that the RNA viral pathogens themselves are the predominant PAMPs recog-
nized. Interestingly, however, several DNA viruses have also been reported to activate
the RLR pathway as well as encode mechanisms to antagonize it (39–44). Given that the
genomes of DNA viruses do not contain the requisite features required for RLR
activation, this raises the intriguing question as to what are the PAMPs recognized
during DNA virus infection. While investigations into the mechanisms of DNA virus
restriction by the RLR pathway have lagged behind those of the RNA virus field, recent
studies have shed significant light on the mechanism of RLR activation during DNA
virus infection. Here, we discuss these recent advances and focus on findings that
elucidate the species and characteristics of RNA ligands sensed during viral infection.
Moreover, we emphasize the emerging concept that host-derived RNAs, rather than the
viral RNAs, are prominent PAMPs that activate the RLR pathway and contribute to
antiviral defense.

RLR RECOGNITION OF DNA VIRUS-ENCODED RNAS

The genomes of DNA viruses do not present the necessary biochemical features
required for RLR engagement and activation. However, they still produce coding and
noncoding RNAs that may adopt structures or contain the chemical moieties recog-
nized by the RLRs. The first demonstration that DNA virus-encoded RNAs are surveyed
by the RLR pathway came from studies on the ubiquitous herpesvirus Epstein-Barr
virus (EBV) (40). EBV, which is a human gammaherpesvirus, is the causative agent
of infectious mononucleosis and is associated with several malignancies, including
Burkitt’s lymphoma (BL). Interestingly, it was observed that the exogenous expression
of RIG-I in cells latently infected with EBV resulted in the expression of type I interferons
(IFNs), suggesting that perhaps latent viral transcripts are sensed. During latent infec-
tion, EBV gene expression is restricted to a subset of viral transcripts, with the most
abundant being the EBV�encoded small RNAs (EBERs). The EBERs, consisting of EBER1
and EBER2, are nonpolyadenylated, untranslated RNAs of 167 or 172 nucleotides in
length, respectively (45). Both RNAs are transcribed by cellular RNA polymerase III
(RNAPIII) and adopt secondary structures containing multiple intramolecular short
stem-loops (45, 46). Moreover, RNase fingerprinting experiments determined that the
5=-ends of the EBERs are triphosphorylated (46). In line with the EBERs possessing the
necessary structural and chemical moieties for RIG-I recognition, in vivo UV cross-linking
followed by immunoprecipitation and reverse-transcription PCR demonstrated that
RIG-I directly interacts with both EBERs (40). Furthermore, plasmid-borne EBER expres-
sion was sufficient to induce type I IFN and interferon-stimulated gene (ISG) expression
in RIG-I-expressing, EBV-negative BL cells (40).

Expression of the EBERs induces interleukin 10 (IL-10) expression which further
enhances the growth of BL cells (47). However, the molecular mechanisms responsible
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for EBER-induced IL-10 expression was unknown. A role for the RLR pathway in
EBER-induced IL-10 was discovered when it was demonstrated that knock down of RIG-I
or overexpression of a dominant-negative mutant of RIG-I downregulated IL-10 pro-
duction in EBER-positive cells (48). Moreover, the downstream IRF3 pathway, but not
the NF-�B pathway, mediated IL-10 production (48). Thus, the recognition of EBERs by
RIG-I provides an exquisite model of viral co-option of cell intrinsic defense mecha-
nisms.

EBER1 is also detected in culture supernatants of EBV-infected cells and sera from
patients with active EBV infection, and the transfer of extracellular EBER1 to uninfected
cells induces an innate immune response (49, 50). Depending on the mechanism from
which the extracellular EBER1 is derived, Toll-like receptor 3 (TLR3) or RIG-I are capable
of recognizing the RNA. EBER1 that is released by the active secretion of lupus
erythematosus-associated antigen (La)-bound RNAs is detected by TLR3 (49). In con-
trast, EBER1 is present within exosomes, and the uptake of EBER1-containing exosomes
results in a robust IFN response that is mediated by RIG-I in a 5=-ppp-dependent
manner (50).

The RLR pathway has also been implicated in the sensing of adenoviruses (Ads),
which are nonenveloped, double-stranded DNA (dsDNA) viruses of the Adenoviridae
family (42). Interestingly, Ads encode small noncoding RNAs that are highly similar to
the EBV-encoded EBERs (45). These RNAs, termed virus-associated RNA I and II (VAI and
VAII, VA-RNAs), are also highly expressed RNAPIII-derived transcripts that form dsRNA
structures (51). Moreover, the VA-RNAs are also immunostimulatory. For example,
transfection of in vitro-transcribed VA-RNAs or stable expression of VA-RNAs in human
gastric carcinoma-derived NU-GC-3 cells induces IFN-� and ISG expression in a RIG-I-
IRF3-dependent manner (42). Moreover, Ad infection triggers a biphasic induction of
IFN-� and ISGs at both 12 to 24 hours postinfection (hpi) and 48 to 60 hpi, and the later
induction coincides with VA-RNA expression. Importantly, RIG-I silencing or UV inacti-
vation inhibits IFN-� and ISG expression at the later time points (42).

The sensing of VA-RNA by the RLR pathway appears to be cell type specific. Infection
of mouse embryonic fibroblasts (MEFs) and granulocyte-macrophage colony stimulat-
ing factor-generated bone marrow-derived dendritic cells (GM-DCs) with VA-RNA-
deleted Ad results in significantly less IFN-� expression than wild type (WT) Ad (52).
Interestingly, however, while the IFN-� expression was MAVS-dependent, it was neither
RIG-I- nor MDA5-dependent (52). To date, the receptor that senses VA-RNAs in MEFs
and GM-DCs has not been identified.

Ads have gained significant appreciation because of their utility in gene therapy. In
fact, replication-incompetent recombinant Ad vectors are the most widely used gene
therapy system due to their high efficiency of gene delivery into both dividing and
nondividing cells (53). However, administration of Ad vectors can induce a robust
anti-Ad immune response, which has limited the application of Ad vector-mediated
gene therapy (52). Given the immunostimulatory nature of the VA-RNAs, the develop-
ment of Ad vectors lacking VA-RNAs may decrease the stimulation of innate immune
response and yield better vectors for gene therapy (54, 55).

RNAPIII DETECTION OF CYTOPLASMIC DNA DRIVES RIG-I LIGAND SYNTHESIS

Similar to RNA, the accumulation of foreign or self-DNA in the cytosol also triggers
a potent innate immune response. While much of this response is now known to be
dependent on the DNA sensor cyclic GMP-AMP synthase (cGAS) (56, 57), interestingly,
in some cases this response is dependent on functional RIG-I/MAVS signaling (58, 59).
In 2009, the Chen and Hornung groups resolved this mystery when they discovered
that cytoplasmic localized RNAPIII is able to recognize and bind AT-rich DNA and
initiate promoter-independent transcription to generate 5=-ppp RNA species, which
activates the RIG-I/MAVS/IFN pathway (60, 61).

Investigations into the role of RNAPIII in pathogen restriction are still limited.
However, cell culture studies coupled with the identification of pediatric patients with
mutations in the RNAPIII machinery that present with severe varicella zoster virus (VZV)
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infection support the role of RNAPIII in detecting DNA virus infection (62). Along this
line, the Chen group observed that IFN-� expression induced by Ad and herpes simplex
virus 1 (HSV-1; a DNA alphaherpesvirus) infection of Raw264.7 cells was attenuated by
pretreatment with the RNAPIII inhibitor ML-60218 (60). Although it is possible that the
effect of RNAPIII inhibition on IFN-� expression induced by Ad infection is a result of
reduced VA-RNA expression (42), HSV-1 is not known to express RNAPIII-dependent
transcripts. The RIG-I-RNAPIII axis in sensing HSV-1 infection was further confirmed in
primary astrocytes and microglia where RIG-I and RNAPIII contribute to the restriction
of HSV-1 infection (63).

In recent years, additional evidence supporting a role for RNAPIII-mediated DNA
sensing has come from investigations into single-gene inborn errors of innate or
cell-intrinsic immunity. In particular, the Mogenson group identified and characterized
loss-of-function mutations within genes encoding subunits of RNAPIII in four children
with severe VZV infection (62). VZV is a neurotropic human alphaherpesvirus that
causes varicella (chicken pox) upon primary infection and herpes zoster (shingles)
following reactivation. However, these children suffered from severe VZV infection in
the central nervous system (CNS) or lungs and experienced VZV encephalitis, cerebel-
litis, or pneumonia with acute respiratory distress syndrome. Through a whole-exome
sequencing approach, rare mutations in the POLR3A and/or POLR3C genes were iden-
tified. Importantly, while patient peripheral blood mononuclear cells (PBMCs) had
reduced type I and III IFN in response to the RNAPIII ligand poly(dA:dT) as well as VZV
infection, the IFN responses were restored when WT POLR3A and/or POLR3C genes were
introduced into patient PBMCs. In addition to the initial pediatric patients, subsequent
work has identified adult patients with mutations in additional RNAPIII subunits that are
unable to properly control VZV infection (64, 65).

Patients with RNAPIII mutations mounted proper IFN responses to HSV-1 (62, 64).
Thus, an interesting question that emerges is why RNAPIII mutations appear to selec-
tively reduce VZV intrinsic sensing. One possible explanation has to do with the fact
that the VZV genome is unique among several human herpesviruses (i.e., HSV-1, HSV-2,
and EBV) in having islands of genomic sequence that are 70% to 80% AT rich (62). Given
that the current model of RNAPIII-based immunity is mediated through promoter-
independent transcription of AT-rich DNA, the other viruses may just lack the required
sequences to initiate transcription. Along this line, it is interesting to note that the
cytomegalovirus (CMV) genome also contains regions of high AT content, and more-
over, a father of one of the pediatric patients was heterozygous for RNAPIII mutations
and suffered from CMV encephalitis in his youth (62).

RNAPIII plays a central role in the expression of many housekeeping noncoding
RNAs, including 5S rRNA, tRNA, and several small nuclear noncoding RNAs (snRNAs)
(e.g., 7SK snRNA and U6 snRNA). Interestingly, host 5S rRNA expression was not affected
in any of the patients with RNAPIII mutations (62, 64). Future studies are needed to
determine whether other RNAPIII transcripts are expressed properly. In addition, more
biochemical and structural studies are likely required to determine the molecular basis
by which RNAPIII mutations disrupt promoter-independent transcription from AT-rich
DNA but do not affect promoter-dependent transcription within the nucleus. We
anticipate that these studies will shed additional light on the mechanisms of DNA
sensing by RLRs but also provide insight into RNAPIII transcriptional control mecha-
nisms.

RLR-SENSING OF HOST RNAS

Until recently, most studies on the RLR-dependent recognition of viruses has
focused on viral-encoded RNAs or, in the case for RNAPIII sensing, the transcription of
immunostimulatory noncoding RNAs from AT-rich DNA in a promoter-independent
manner. However, a new paradigm is emerging in which the RLRs are activated by host
RNAs during virus infection. The first implication of host RNAs activating the RLR
pathway during DNA virus infection came from studies investigating retrotransposon
expression during murine gammaherpesvirus 68 (MHV68) infection (66). During MHV68
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de novo infection, the expression of multiple families of short interspersed elements
(SINEs), including B1 and B2 SINEs, is induced. SINEs are small nonautonomous non-
coding retrotransposons evolutionarily derived from RNAPIII transcripts. It was discov-
ered that MHV68-induced B2 SINEs are robust activators of the NF-�� pathway and that
this occurs in a MAVS-dependent manner. Although the precise receptor was not
identified, B2 RNA activation of NF-�� via MAVS suggests that either RIG-I or MDA5 is
involved.

RNAPIII is responsible for the expression of B2 RNAs, and thus, given the
precedence for RIG-I to detect other RNAPIII transcripts via their 5=-ppp moieties, it
is perhaps reasonable to hypothesize that RIG-I senses B2 RNAs. However, ex-
pressed B2 RNAs can also form intermolecular interactions with RNAs, generating
regions of long dsRNA which may favor recognition via MDA5 (67). Regardless of
their mechanism of sensing, expressed retrotransposons are emerging as promi-
nent drivers of cell intrinsic immune responses. Moreover, remarkably, in some
cases, such as MHV68 infection, the retrotransposon-induced responses are co-
opted to serve proviral functions (66).

In addition to retrotransposon-derived RNAs, expressed pseudogenes have also
been identified as potent RIG-I ligands. Pseudogenes are sequences that resemble in
sequence a functional intact gene and can arise through either retrotransposition-
based mechanisms or gene duplication events. The ability of pseudogene RNA to be
recognized by an RLR was first described in studies focused on HSV-1 (68). Immuno-
precipitation of RIG-I from HSV-1-infected HEK293T cells and sequencing of the bound
RNAs identified many host RNAs as RIG-I ligands. Notably, the top-enriched RNAs were
a group of 5S rRNA pseudogenes transcripts, with RNA5SP141 being the most enriched.
5S rRNA adopts a highly compact secondary structure consisting of multiple short
stem-loop structures, and RNA secondary structure prediction analyses of the
RNA5SP141 sequence suggests a similar structure. Moreover, 5S rRNA is predicted to
possess a 5=-ppp moiety. Consistent with RNA5SP141 being a RIG-I ligand, transfection
of in vitro-transcribed as well as plasmid-expressed RNA5SP141 stimulated IFN-� ex-
pression as well as IRF3 dimerization in a RIG-I-dependent manner. Moreover, an in vitro
ATP hydrolysis assay demonstrated that RNA5SP141 activates the ATPase activity of
RIG-I, indicating RNA5SP141 is a direct agonist of RIG-I. Further supporting the func-
tional significance of the RIG-I dependent sensing of RNA5SP141, depletion of the RNA
via siRNA or locked nucleic acid gapmers dampens IFN expression in response to HSV-1.
Remarkably, the RIG-I dependent sensing of RNA5SP141 was found to be important
during EBV as well as the RNA virus influenza A virus (IAV) infection.

RNA5SP141 RNA is primarily localized within the nucleus in uninfected cells. Similar
to canonical 5S rRNA, in vitro-transcribed RNA5SP141 can interact with ribosomal
protein L5 (RPL5), mitochondrial ribosomal protein L18 (MRPL18), and thiosulfate
sulfurtransferase (TST) (69–71). Interestingly, upon HSV-1 infection, RNA5SP141 relocal-
izes to the cytoplasm in HSV-1-infected cells where it is engaged by RIG-I. While the
mechanism driving RNA5SP141 relocalization is unknown, it was hypothesized that
HSV-1 reduces the expression of RNA5SP141-binding proteins, resulting in its unmask-
ing in the cytoplasm. In support of this hypothesis, infection with HSV-1 defective for
the viral mRNA endonuclease VHS does not result in reduced MRPL18 and TST protein
levels, and RNA5SP141 is no longer efficiently immunoprecipitated by RIG-I. However,
regardless of the mechanism driving RNA5SP141 relocalization, this is an elegant study
describing expressed pseudogenes as RLR ligands and prompts several interesting
questions. For example, why is that only 5S rRNA pseudogenes, and not also the
functional 5S rRNAs, are recognized by RIG-I? In addition, what are the mechanisms
driving selective retention of 5S rRNA pseudogene transcripts in the nucleus? While the
answers to these questions are unknown, we hypothesize that they are, in fact, linked
and are dependent on additional protein components associated with the functional 5S
and/or 5S pseudogene RNAs.

Recent studies investigating the RLR-dependent restriction of the oncogenic her-
pesvirus Kaposi’s sarcoma-associated herpesvirus (KSHV) have also revealed new in-
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sights into RLR ligands. Several groups, including our own, have described a role for the
RLRs in restricting KSHV de novo infection as well as lytic reactivation (72–74). However,
the RNAs that were sensed have remained largely unexplored. To identify the RNAs
responsible for RLR activation, we performed RIG-I and MDA5 formaldehyde cross-
linking RNA immunoprecipitation and deep sequencing (fRIP-seq) on primary effusion
lymphoma (PEL) cells infected with KSHV (72). Similar to HSV-1, host RNAs were the
most significantly enriched. While no obvious similarities emerged regarding what
drives MDA5 ligand biogenesis, the top-enriched RIG-I-bound RNAs were all RNAPIII-
transcribed small cytosolic noncoding RNAs that adopt highly compact dsRNA struc-
tures, including the vault RNAs (vtRNAs), Y RNAs, and retrotransposon Alu RNAs.
Interestingly, all of these RNAs were previously described to be substrates for the
cellular RNA triphosphatase dual specificity phosphatase 11 (DUSP11) (75), and thus, it
was hypothesized that DUSP11 activity was significantly reduced during KSHV lytic
infection. Indeed, RNAPII chromatin immunoprecipitation, Western blots, and reverse
transcriptase quantitative PCR (RT-qPCR) analyses confirmed the downregulation of
DUSP11 expression. Moreover, using a splint-ligation based assay, vtRNAs were found
to accumulate as 5=-ppp or 5=-pp species specifically in the lytic cycle. Although
experiments testing the contribution of the individual RNAs to the IFN response were
not performed, this study highlights how defective or altered RNA processing can
generate ligands for RLRs during DNA virus infection. Moreover, given the high
abundance of the multiple RIG-I ligands, as well as the fact that MDA5 contributes to
KSHV restriction, it is unlikely that depleting a single RNA species would significantly
impact the IFN response to lytically replicating KSHV.

It should also be noted that a recent study by the Damania group also identified
RIG-I ligands during KSHV infection, with the exception that the RNAs sequenced were
isolated from RIG-I immunoprecipitated from the epithelial cell line iSLK.219 (73). While
the Damania group also identified host RNAs associated with RIG-I, they identified
multiple KSHV genomic regions that give rise to RNA fragments recognized by RIG-I.
While the mechanisms responsible for the biogenesis of the immunostimulatory RNAs
was not defined, together with our study, a picture emerges in which KSHV is sensed
by the RLRs via the detection of both viral and host RNA.

5S rRNA pseudogene RNAs were not bound by RIG-I during KSHV lytic reactivation
in PEL cells. Interestingly, however, U6 spliceosomal snRNA pseudogene RNA was
identified as a RIG-I ligand. Thus, expressed pseudogene RNAs are also recognized by
RIG-I during KSHV infection. Interestingly, U6 snRNA is unique among the spliceosomal
snRNAs in that it does not have a cytoplasmic stage involved in its maturation (76).
Given that RNA5SP141 is also nuclear localized and relocalizes upon HSV-1 infection, it
will be interesting to determine whether U6 snRNA pseudogene RNA exhibits a similar
infection-dependent relocalization. Thus, we anticipate that future studies investigating
RLR activation by HSV-1 or KSHV will yield fundamental discoveries in both RLR sensing
and RNA biology.

CONCLUDING REMARKS

The RLR-dependent restriction of DNA viruses is a rapidly emerging field, and recent
literature suggests both viral and host RNAs can serve as RLR ligands (Fig. 1). Here, we
have focused on describing the mechanisms of RLR activation during DNA virus
infection, with an emphasis on the RNA ligands sensed, including viral RNAs, cytosolic
RNAPIII-transcribed RNAs from AT-rich templates, and host RNAs. RLR activation and
restriction during a specific DNA virus infection is likely mediated by multiple RNA
ligands that are generated through the multiple mechanisms described here. For
example, both the EBERs and RNA5SP141 are reported to have roles on the EBV life
cycle (40, 48–50, 68). A similar scenario is also apparent when considering the RLR
ligands that have been identified during KSHV infection, as both viral and unprocessed
host noncoding RNAs are recognized by RIG-I (72, 73). Moreover, although our review
has focused on DNA virus infection, the RLR-sensing and restriction of RNA viruses is
also mediated through a diverse set of viral and host RNAs. In fact, during IAV infection,
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the RIG-I sensing of IAV genomes (77), RNAs derived from defective interfering particles
(78), RNA5SP141 (68), and endogenous retroviral (ERV) elements (79) have all been
reported to be key to RLR-mediated restriction.

Despite significant progress over the recent years, there remain many important
unknowns. For example, although the RIG-I ligand has been biochemically and struc-
turally defined, there is still limited information regarding the requirements of a MDA5
ligand. Along a similar line, to date only one study has identified MDA5 ligands during
DNA virus infection, and thus, the full range of RNA species recognized by MDA5
remains to be determined. Additionally, evidence supporting a role for RNAPIII sensing
is still limited, and if its contribution to virus restriction and disease pathogenesis is to
be further understood, more molecular and biochemical analyses are required. Given
the relatively recent identification of patients with mutations in RNAPIIII subunits that
present with serious DNA virus-mediated disease, we anticipate that investigations into
RNAPIII sensing will increase. Last, intact RLR-sensing has, in some cases, been found to
contribute to effective chemotherapeutic approaches, and mutations in the RLRs are
associated with various autoimmune diseases. Thus, given the roles of the RLRs outside
the context of virus restriction, a better understanding of the mechanisms of RLR
activation, including the ligands recognized, is likely to have a broad impact.
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FIG 1 Schematic of RIG-I-like receptor (RLR) activation by various RNAs during DNA virus infection. Both viral and host RNAs are recognized by RLRs and are
capable of activating downstream signaling through interactions with MAVS. Activation of MAVS via the RLRs results in the production of type I IFNs and
proinflammatory cytokines. Solid lines indicate direct effects or pathway connections. Dashed lines indicate indirect signaling events and are omitted here
because of space. Red lines indicate inhibitory effects. DUSP11, dual specificity phosphatase 11; EBER, Epstein-Barr virus-encoded small RNA; EBV, Epstein-Barr
virus; HSV-1, herpes simplex virus type 1; IAV, influenza A virus; IKK�, I�B kinase-�; IFN, interferon; IRF, IFN regulatory factor; KSHV, Kaposi’s sarcoma-associated
herpesvirus; MAVS, mitochondrial antiviral signaling protein; MDA5, melanoma differentiation-associated protein 5; MRPL18, mitochondrial ribosomal protein
L18; NF-�B, nuclear factor-�B; NOP14, nucleolar protein 14; P, phosphate; RIG-I, retinoic acid-inducible gene-I; RNA5SP141, 5S ribosomal pseudogene 141 RNA;
RNAPIII, RNA polymerase III; TBK-1, TANK-binding kinase 1; TST, thiosulfate sulfurtransferase; VA, viral associated RNA of adenovirus; vtRNA, vault RNA; VZV,
varicella-zoster virus.
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