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circLMTK2 acts as a sponge of miR-150-5p ")
and promotes proliferation and metastasis
in gastric cancer

Sen Wang'~, Dong Tang'~, Wei Wang', Yining Yang®, Xiaoging Wu', Liuhua Wang' and Daorong Wang'**"

Abstract

Background: As a novel class of non-coding RNAs, circular RNAs (circRNAs) are key regulators of the development
and progression of different cancers. However, little is known about the function and biological mechanism of
circLMTK?2, also named hsa_circ_0001725, in gastric cancer (GC) tumourigenesis.

Methods: circLMTK2 was identified in ten paired cancer specimens and adjacent normal tissues by RNA
sequencing and genome-wide bioinformatic analysis and verified by quantitative real-time PCR (gRT-PCR).
Knockdown or exogenous expression of circLMTK2 combined with in vitro and in vivo assays were performed to
prove the functional significance of circLMTK2. The molecular mechanism of circLMTK2 was demonstrated by
searching the CircNet database and confirmed by RNA in vivo precipitation assays, western blotting, luciferase
assays and rescue experiments.

Results: circLMTK2 was frequently upregulated in GC tissues, and high circLMTK2 expression was associated with

poor prognosis, lymph node metastasis and poor TNM stage in GC patients. Functionally, circLMTK2 overexpression
promoted GC cell proliferation and tumourigenicity in vitro and in vivo. Furthermore, ectopic circLMTK2 expression
enhanced GC cell migration and invasion in vitro and tumour metastasis in vivo. In addition, we demonstrated that

tumourigenesis.
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circLMTK2 could sponge miR-150-5p, thus indirectly regulating the c-Myc expression and contributing to GC

Conclusion: Our findings demonstrate that circLMTK2 functions as a tumour promoter in GC through the miR-150-
5p/c-Myc axis and could thus be a prognostic predictor and therapeutic target for GC.

Introduction

Gastric cancer (GC) remains one of the most common
and lethal malignancies worldwide, with a particularly
high disease incidence rate in East Asia [1]. Although
the incidences and mortality trends for GC have de-
clined in recent years [2], the outcomes of this disease
are still among the poorest of all solid-organ tumours,
predominantly due to the frequent presence of advanced
stage disease with lymphatic or distant metastasis [3].
Because there are limited therapeutic approaches for
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treating advanced GC, it is urgent that we search for
novel biomarkers and prognostic indicators to reflect the
disease status and develop more therapeutic targets for
this lethal disease.

A poorly characterized component of the GC tran-
scriptome is circular transcripts (circRNAs), which have
been implicated in other diseases [4—6]. circRNAs are a
type of RNA formed by back-splicing [7], and compared
to their linear counterparts, they are highly stable due to
their covalently closed loop [8]. Advances in high-
throughput sequencing technology and novel bioinfor-
matics algorithms have facilitated the systematic detec-
tion of circRNAs [9, 10]. circRNAs have been posited to
function as sponges of microRNAs (miRNAs) and de-
coys of RNA-binding proteins (RBPs), which affect
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biological processes such as proliferation, metastasis,
and apoptosis in tumour cells [11]. Therefore, circRNAs
may be potential biomarkers or therapeutic targets [12].

In this study, we generated de-ribosome RNA sequen-
cing data from GC tissues from ten patients, and identi-
fied approximately 35,350 circRNA candidates (at least
two unique back-splicing reads). We characterized one
circRNA derived from the LMTK2 gene locus, termed
circLMTK2 (hsa_circ_0001725), that was upregulated in
GC patients. In vitro and in vivo experiments showed
that circLMTK2 can promote cell growth and metasta-
sis. Moreover, a clinical analysis showed a significant
negative correlation between circLMTK2 and the pa-
tient’s prognosis. Our study provides a new insight into
the pathogenesis of GC.

Materials and methods

Human samples

We retrospectively collected ten paired cancer speci-
mens and adjacent normal tissues from patients with
gastric cancer who had surgically proven primary GC
and received a D2 radical gastrectomy (RO resection) at
the Department of General Surgery of Northern Jiangsu
People’s Hospital between November 2008 and Decem-
ber 2011. None of these patients received preoperative
chemotherapy or radiotherapy. Clinicopathological fea-
tures, which included age, sex, tumour site, tumour size,
differentiation grade, TNM stage (American Joint Com-
mittee on Cancer classification, AJCC), lymphatic inva-
sion and neural invasion, are shown in Table 1. The
median follow-up time was 25.0 months (range: 1-85
months). The follow-up interval began on the date of
surgery and ended on the date of disease progression,
death or the last clinical investigation. This study was
approved by the Medical Ethics Committee of Northern
Jiangsu People’s Hospital. Written informed consent was
obtained from all participants.

RNA-seq analysis

Total RNA was isolated using TRIzol reagent (Life Tech-
nologies, Carlsbad, CA, USA). Approximately 3 pg of
total RNA from each sample was subjected to the Ribo-
Minus Eukaryote Kit (Qiagen, Valencia, CA) to remove
ribosomal RNA prior to RNA-seq library construction.
Strand-specific RNA-seq libraries were prepared using a
NEBNext Ultra Directional RNA Library Prep Kit for
[lumina (NEB, Beverly, MA, USA). Briefly, approxi-
mately 50 ng of ribosome-depleted RNA samples was
fragmented and then used for first- and second-strand
c¢DNA synthesis with random hexamer primers. A dUTP
mix was used for second-strand cDNA synthesis. An
End-It DNA End Repair Kit was used to repair the ends
of the double-stranded ¢cDNA fragments, which were
then modified by the Klenow fragment so that an A was
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added to the 3" end of the DNA fragments and were fi-
nally ligated to adapters. The ligated products were puri-
fied and treated with uracil DNA glycosylase (UDG) to
remove the second-strand c¢DNA. Purified first-strand
c¢DNA was subjected to 13-15 cycles of PCR amplifica-
tion, followed by library analysis with a Bioanalyzer 2100
(Agilent, Santa Clara, CA, USA); the cDNA was then se-
quenced using a HiSeq 2000 system (Illumina, San
Diego, CA, USA) and a 100-bp paired-end run.

Identification and quantification of circRNAs

The RNA-seq fastq reads were first mapped to the hu-
man reference genome (GRCh38/hg38) obtained from
the UCSC genome database (http://genome.ucsc.edu/)
using TopHat2. The unmapped reads were then used to
identify circRNAs as previously described [5]. Briefly, the
unmapped reads were processed to 20-nucleotide an-
chors from both ends of the sequencing read. Anchors
that aligned in the reverse orientation (head-to-tail) rep-
resent a back-spliced junction. Anchor alignment was
extended such that the complete read alignment and the
breakpoint were flanked by a GT/AG splice site. The
total number of reads that spanned back-spliced junc-
tions was used as an absolute measure of circRNA abun-
dance. The genomic regions that mapped to inferred
circRNAs were annotated according to RefSeq. Gene co-
ordinates were downloaded from the RefGene tables in
the UCSC Genome Browser. The host genes of cir-
cRNAs were determined using a custom script. For each
circRNA, we searched for the longest transcript frag-
ment whose boundaries (5° end or 3’ end) exactly
matched both ends of the circRNA in the same strand
and then defined the corresponding gene of the tran-
script fragment as the host gene of the circRNA.

Cell culture and treatments

BGC-823 and AGS cells were cultured in RPMI 1640
supplemented with 10% foetal bovine serum (FBS) and
1% penicillin-streptomycin at 37°C and 5% CO,. HEK
293 T and MGC-803 cells were cultured in Dulbecco’s
modified Eagle’s medium (DMEM) supplemented with
10% FBS and antibiotics. Transcription was blocked by
the addition of 2ug/ml actinomycin D or DMSO
(Sigma-Aldrich, St. Louis, MO, USA), which served as a
control for the cell culture medium.

RNA fluorescence in situ hybridization (FISH)

In situ hybridization was performed using specific
probes to the circLMTK2 sequence. PCR fragments with
the T7 promoter were amplified with specific primers
for the back-splice region of circLMTK2. Primers are
listed in Additional file 1: Table S3. Digoxin or biotin-
labelled RNA probes were transcribed from PCR frag-
ments using the DIG or biotin RNA labelling mix and
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Parameter No. of patients circLMTK2 (high) circLMTK2 (low) P -value
Sex 0.871
male 67 35 32
female 53 26 27
Age (year) 0.965
<60 46 24 22
260 74 37 37
Tumor site 0.681
Upper 26 12 14
Middle 35 17 18
Lower 47 24 23
Diffuse 12 8 4
Tumor size (cm) 0.279
<5 54 24 30
25 66 37 29
Differentiation grade 0.734
Well-moderate 50 24 26
Poor-undifferentiation 70 37 33
Lauren classification 0812
Intestinal 58 29 29
Diffuse 37 20 17
Mixed 20 9 11
Uncertain 5 3 2
T stage 0.017*
T1-T3 65 26 39
T4 55 35 20
Lymph node status 0.029%
Negative 56 22 34
Positive 64 39 25
Distant metastasis 0.227
MO 109 53 56
M1 1 8 3
TNM stage 0.004*
I-Il 56 20 36
-V 64 41 23
Lymphatic invasion 0446
Negative 51 29 22
Positive 69 32 37
Nervous invasion 0.694
Negative 52 28 24
Positive 68 33 35

The TNM Staging System is based on the tumor (T), the extent of spread to the lymph nodes (N), and the presence of metastasis (M)

* P<0.05
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T7 RNA polymerase (Roche) according to the manufac-
turers’ instructions. AGS cells were grown to the expo-
nential phase and were 80-95% confluent at the time of
fixation. After pre-hybridization (1 x PBS/0.5% Triton X-
100), the cells were hybridized in hybridization buffer
(40% formamide, 10% dextran sulfate, 1 x Denhardt’s so-
lution, 4x SSC, 10mM DDT, 1 mgml™ ' yeast transfer
RNA, 1 mg ml sheared salmon sperm DNA) with DIG-
labelled probes specific to circLMTK2 at 60°C over-
night. Signals were detected using a tyramide-conjugated
Alexa 488 fluorochrome TSA kit (Life Technologies).
Nuclei were counterstained with 4,6-diamidino-2-pheny-
lindole. Images were acquired on a Leica SP5 confocal
microscope (Leica Micosystems, Mannheim, Germany).

circRNA in vivo precipitation (circRIP)

A biotin-labelled circLMTK2 probe (5'-CTACCTGTTT
GACCAGGGTCTCTGGGTGT-3 -biotin) was designed
and synthesized by RiboBio (Guangzhou, China), and a
circRIP assay was performed as described. circLMTK2-
overexpressing BGC-823 cells were seeded in a 10-cm
dish. After reaching sufficient confluency, the cells were
transfected with the specific biotin-tagged probe or con-
trol probe at a final concentration of 200 nmol/L. Then,
the cells were fixed with 1% formaldehyde for 10 min,
lysed and sonicated. After centrifugation, 50 pl of the
supernatant was retained as input, and the remaining
cell lysis solution was incubated with a circLMTK2-
specific probe-streptavidin-dynabead (M-280, Invitro-
gen) mixture overnight at 30 °C. The next day, the M-
280 dynabead-probe-circRNA mixture was washed and
incubated with 200 pl lysis buffer and proteinase K to re-
verse the formaldehyde crosslinking. Finally, total RNA
was extracted from the mixture using an miRNeasy Mini
Kit according to the manufacturer’s instructions

(Qiagen).

Nucleic acid preparation and quantitative real-time
polymerase chain reaction (qRT-PCR)

Genomic DNA was isolated with a QIAamp DNA Mini
Kit (Qiagen, Valencia, CA, USA), and total RNA was iso-
lated using TRIzol reagent (Life Technologies, Carlsbad,
CA, USA).The nuclear and cytoplasmic fractions were
isolated using NE-PER Nuclear and Cytoplasmic Extrac-
tion Reagents (Thermo Scientific). Total RNA from the
nuclear and cytoplasmic fractions was isolated with TRI-
zol. Complementary DNA was synthesized using a Pri-
meScript RT reagent kit (Takara Bio Inc., Dalian,
China), and RT-PCR was performed using SYBR Premix
Ex Taq (Takara Bio Inc.). For miRNA measurements,
mature miR-150-5p was reverse-transcribed and quanti-
fied with TagMan® RT primers and probes, and the data
were normalized to U6 small nuclear RNA expression
using predesigned TagMan assays (Applied Biosystems,
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Foster City, USA). The primers are listed in Additional
file 1: Table S3.

Vector construction

The circLMTK2 genomic region and its wild-type flank-
ing introns were amplified from the ¢cDNA using Pri-
merSTAR Max DNA Polymerase Mix (Takara) and were
subcloned into a pcDNA3.0 vector. In the luciferase re-
porter assay, circLMTK2 was amplified from the cDNA
and was inserted into the region directly downstream of
a cytomegalovirus (CMV) promoter-driven firefly lucif-
erase cassette in the pCDNA3.0 vector. The 3'-UTR se-
quence of c-Myc was amplified and inserted into the
psiCHECK-2 vector (Promega, Madison, USA). Muta-
tions in the miRNA binding sites in the c-Myc 3'-UTR
sequence were generated using a Mut Express II Fast
Mutagenesis Kit (Vazyme, NanJing, China). The con-
structs were verified by sequencing. The primers are
listed in Additional file 1: Table S3.

Oligonucleotide transfection

SiRNA and miRNA mimics and inhibitors were synthe-
sized by RiboBio (Guangzhou, China). The sequences
that were used are shown in Additional file 1: Table S3.
The cells were transfected using Lipofectamine RNAi-
Max (Life Technologies).

Luciferase reporter assay

HEK 293 T cells (5x10% were seeded into 96-well
plates and were cotransfected with a mixture of 50 ng of
psiCHECK-2 vector, and miRNA mimics. After 48 h of
incubation, the firefly and Renilla luciferase activities
were quantified with a dual-luciferase reporter assay
(Promega, Madison, W1, USA).

Transwell assay

A Matrigel Cell Migration Assay and Invasion System
was used to measure cell migration and invasion in vitro
as described previously. For cell migration assays, AGS,
MGC-803 and BGC-823 cells (5 x 10* cells/well) were
suspended in 50pL serum-free RPMI 1640 and
DMEM and placed in the upper collagen-coated cham-
bers (8-mm pore size; Millipore, Temecula, CA, USA) of
each transwell insert (Matrigel: serum-free medium 1:
5) respectively. Next, 800 puL of media with 10% FBS was
placed in the lower chamber and incubated for 24 and
48 h. After incubation, cells adhering to the upper sur-
face of the membrane were removed with a cotton swab.
The migrated cells that adhered to the lower surface
were fixed with 4% formaldehyde in PBS, followed by
staining with a 1% crystal violet solution. All samples
were then examined and photographed under light mi-
croscopy at x 200. The total cells were counted, and the
total percentage of inhibition based on the cells in each
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image was measured as described previously. For the in-
vasion assays, which were performed almost the same as
the cell migration assays, Matrigel was used instead of
collagen on the filter membrane as described previously.

5-Ethynyl-2"-deoxyuridine (EdU) incorporation assay

EdU assays were performed with a Cell-Light EdU DNA
Cell Proliferation Kit (RiboBio, Shanghai, China). Cells
(1x10% were seeded in each well of 96-well plates.
After incubation with 50 uM EdU for 2 h, the cells were
fixed in 4% paraformaldehyde and stained with Apollo
Dye Solution. Hoechst 33342 was used to stain the nu-
cleic acids within the cells. Images were obtained with
an Olympus FSX100 microscope (Olympus, Tokyo,
Japan), and the number of EdU-positive cells was
counted.

CCK8 assay

Cell proliferation was assessed by Cell Counting Kit-8
assays (Dojindo Laboratories, Kumamoto, Japan). Cells
(1 x 10%) were seeded into 96-well plates. Then, 10 pl of
CCK-8 solution was added to each well on days 1, 2, 3, 4
and 5. After 2 h of incubation at 37 °C, the absorbance at
450 nM was measured using an automatic microplate
reader (Synergy4; BioTek, Winooski, VT, USA). The ex-
periment was repeated three times.

Colony formation assay

For the colony formation assays, cells were trypsinized,
and 1 x 10® cells were plated in 6-well plates and incu-
bated at 37°C for 14 days. Colonies were dyed with a
0.1% crystal violet and 20% methanol solution. Cell col-
onies were then counted and analysed.

Animal experiments

BGC-823 cells that stably expressed circLMTK2 and
control cells were harvested and suspended in DMEM
without FBS. Sixteen mice (male BALB/c-nu/nu, 6 weeks
old) were divided randomly into two groups, and each
mouse was injected subcutaneously in the lower back with
2 x10° cells in 200 ul of DMEM without FBS. The mice
were monitored weekly for tumour weight and tumour
volume (volume = length xwidth?/2). At approximately 4
weeks after injection, the mice were sacrificed, and the tu-
mours were dissected and weighed. For the in vivo tumour
metastasis studies, eighteen mice (male BALB/c-nu/nu, 6
weeks old) were divided randomly into two groups. BGC-
823 cells stably transfected with circLMTK2 lentiviruses
or control vector were injected into the lateral tail veins of
the nude mice (2 x 10° cells per mouse). Fifty days later,
the mice were sacrificed and examined for the numbers of
lung metastatic colonies. Paraffin sections were imaged
with a Leica Microsystems Microscope (Leica Biosystems,
Wetzlar, Germany). The mouse experiments were
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conducted according to the Guide for the Care and
Use of Laboratory Animals of Yangzhou University.
The protocol was approved by the Committee on the
Ethics and Welfare of Laboratory Animal Science of
Yangzhou University.

Statistical analysis

Statistical analyses were performed using SPSS 20.0
(IBM, SPSS, Chicago, IL, USA) and GraphPad Prism for
Windows, version 6.00 (GraphPad Software, La Jolla,
USA). Unless otherwise stated, Student’s t-test and one-
way ANOVA were used to determine the statistical sig-
nificance for comparisons of 2 or more groups. The
Pearson correlation coefficient was used to analyse the
correlations. Overall survival (OS) was measured from
the date of surgery. For OS, patients known to be alive
at the time of the last follow-up were censored on the
last date of contact. OS curves were calculated with the
Kaplan-Meier method and were analysed with the log-
rank test. Univariate analysis and multivariate models
were constructed using a Cox proportional hazards re-
gression model. P values < 0.05 were considered statisti-
cally significant.

Results

Identification of circular RNAs by RNA-seq in GC

We first characterized circular RNA transcripts using an
RNA-seq analysis of de-ribosome RNA-seq from ten
paired GC/adjacent tissues (Fig. 1a). Each sample was se-
quenced on an Illumina HiSeq and yielded ~ 60 million
reads, which were mapped to the human reference gen-
ome (GRCh38/hg38) by TopHat2 [13]. A computational
pipeline based on the anchor alignment of unmapped
reads was used to identify circRNAs without reliance on
gene annotations [5]. Collectively, 35,350 distinct cir-
cRNA candidates, which contained at least two unique
back-splicing reads, were found in these tissues (Fig. 1b,
Additional file 2: Table S1). Among these circRNAs,
there are 3450 intergenic circRNAs, and 31,900 over-
lapped with known genes (Fig. 1c). The expression ana-
lysis of these circRNA transcripts revealed that a series
of circRNAs was differentially expressed in cancerous
tissues compared with those in matched normal tissues.
Among the 142 differentially expressed circRNAs (fil-
tered by |FC(fold change)| > 2 and P<0.05), 105 were up-
regulated, and 37 were downregulated in GC compared
with those in normal tissues (Fig. 1d, Additional file 3:
Table S2). These circRNAs and their host genes were lo-
cated in diverse genomic regions (Fig. 1e). Then, we fur-
ther confirmed the RNA-seq results of four circRNAs in
25 paired normal and cancerous gastric tissues by qRT-
PCR analysis (Additional file 1: Figure S1).



Wang et al. Molecular Cancer

(2019) 18:162

Page 6 of 17

10 paired
GCladjacent tissues

!

Ribo(-)Stranded RNA-seq

l

Unmapped reads
Anchor alignmentl

Backspliced junctions

l

circular RNA candidates

4

:
E
.
%

Fig. 1 Identification of circular RNAs by RNA-seq analyses in GC. (@) RNA-seq analysis of circular RNAs in ten paired human GC tissues and
matched normal tissues. (b) Total number of circRNAs and back-spliced reads that were identified in ten paired GC tissues and matched normal
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Characterization of circLMTK2 in GC

We noted that one of the most differentially expressed cir-
cRNAs (chr7:98190727-98,194,572, GRCh38/hg38,
Fig. 2a) was derived from a protein-coding gene locus,
LMTK?2, located on chromosome 7q21.3. Thus, we
termed this circRNA as “circLMTK2” (hsa_circ_0001725).
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The genomic structure shows that circLMTK2 is looped
by the tenth and eleventh exons of the LMTK2 gene
(NM_014916). We designed outward-facing primers
(Additional file 1: Table S3) and confirmed the junction
site of circLMTK2 by Sanger sequencing (Fig. 2a). Resist-
ance to digestion by RNase R exonuclease further
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a) The genomic loci of the LMTK2 gene and circLMTK2. The expression of circLMTK2 was
detected by gRT-PCR and was validated by Sanger sequencing. The arrows represent divergent primers that bind to the genomic region of
circLMTK2. (b) gRT-PCR analysis of circLMTK2 and LMTK2 mRNA after treatment with RNase R. (c) gRT-PCR analysis of circLMTK2 and LMTK2 mRNA
after treatment with actinomycin D at the indicated time points. (d) gRT-PCR analysis of circLMTK2 and LMTK2 mRNA in either the cytoplasm or
the nucleus. (e) RNA fluorescence in situ hybridization (FISH) for circLMTK2. The nuclei were stained with 4,6-diamidino-2-phenylindole (DAPI).
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confirmed that this RNA species exists in a circular form
(Fig. 2b). Total RNA was harvested at the indicated time
points after treatment with actinomycin D, a transcription
inhibitor. Analysis of circLMTK2 and LMTK2 mRNA re-
vealed that the circRNA isoform circLMTK2 is highly
stable, as its transcript half-life exceeded 24 h, whereas the
linear transcript of LMTK2 mRNA exhibited a half-life of
<4hin AGS cells (Fig. 2c). Next, qRT-PCR analysis of nu-
clear and cytoplasmic RNA and FISH against circLMTK2
demonstrated that the circular form of LMTK2 preferen-
tially localized within the cytoplasm in AGS cells (Fig. 2d
and e). These results suggest that circLMTK2 is a stable
and cytoplasmic circRNA derived from the LMTK2
mRNA.

circLMTK2 promotes GC cell proliferation and
tumourigenicity in vitro and in vivo

To investigate the potential role of circLMTK2 in GC
cells, we initially explored the effect of blocking
circLMTK2 on cell growth. We designed two siRNAs to
target the back-splice sequence. As expected, siRNA di-
rected against the back-splice sequence inhibited only
the circular transcript of circLMTK2 and did not affect
the expression of the LMTK2 linear species (Additional
file 1: Figure S3C). Silencing circLMTK2 expression sig-
nificantly suppressed cell proliferation rates (Fig. 3a and
b) and colony formation abilities in both GC cell lines
(Fig. 3g and h) and impaired nucleotide synthesis (Fig.
3d and e). In contrast, the ectopic expression of
circLMTK2 in BGC-823 cells (designated circLMTK2-
OE), which was induced by lentiviruses with circular
frames and circLMTK?2 sequences (Additional file 1: Fig-
ure S3A and B), dramatically promoted cell growth (Fig.
3c and i) and increased the EdU incorporation rate (Fig.
3f). Furthermore, circLMTK2-OE and empty vector cells
were inoculated subcutaneously into the flanks of nude
mice, and these mice were monitored closely for tumour
growth for 4 weeks. Our results illustrated that tumours
derived from circLMTK2-OE cells were significantly lar-
ger than those derived from empty vector cells, both in
terms of tumour volumes and weights (Fig. 3j—1). These
results suggest that circLMTK2 significantly promotes
GC cell proliferation and tumourigenicity in vitro and
in vivo.

circLMTK2 enhances GC cell migration and invasion

in vitro and tumour metastasis in vivo

Next, we studied the effects of circLMTK2 expression
on GC cell migration and invasion. Our migration and
invasion assay results showed that circLMTK2 knock-
down significantly eliminated the migratory and invasive
capacities of AGS and MGC-803 cells when compared
with the indicated controls conditions (Fig. 4a-d). In
contrast, the migration and invasion were greater in
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BGC-823 cells overexpressing circLMTK2 than in empty
vector cells (Fig. 4e). These results indicate that
circLMTK?2 increases cell invasion and metastasis, which
we further validated in vivo. The in vivo metastasis assay
was performed by injecting circLMTK2-OE and empty
vector cells into nude mice through the lateral tail vein
to examine the cells’ lung metastasis ability. Metastatic
nodules in the lungs were confirmed histologically. The
number of metastatic nodules was significantly higher in
mice injected with circLMTK2-OE BGC-823 cells than
in mice injected with empty vector BGC-823 cells (Fig.
4f). Consistently, these data demonstrate that
circLMTK2 significantly promotes GC cell migration
and invasion in vitro and tumour metastasis in vivo.

circLMTK2 abundantly sponges miR-150-5p in GC cells
Given that circRNA has been shown to act as a miRNA
sponge and that circLMTK2 is abundant and stable in
the cytoplasm, we next investigated the ability of
circLMTK2 to bind to miRNAs. CircNet (http://syslab5s.
nchu.edu.tw/CircNet/) and TargetScan (http://www.tar-
getscan.org) were used to predict the potential target
miRNAs that could bind with the circLMTK2 sequence
(Fig. 5¢), and miR-150-5p was selected as the best poten-
tial target of circLMTK2 (Fig. 5a). Next, we designed a
specific biotin-labelled circLMTK2 probe to perform
RNA in vivo precipitation (RIP) to confirm whether
miR-150-5p can interact with circLMTK2 in GC cells,
which has been reported in several studies [14—16]. We
purified circLMTK2-associated RNA and performed
qPCR to measure circLMTK2 and miR-150-5p expres-
sion. The results showed a significant enrichment of
circLMTK2 and miR-150-5p compared to the controls
(Fig. 5b), indicating that miR-150-5p was sponged by
circLMTK2 in GC cells. We further constructed a
circLMTK2 fragment and inserted it immediately down-
stream of the luciferase reporter gene (LUC+
circLMTK2). Then, miR-150-5p or some potential miR-
NAs mimics were transfected with reporter gene into
HEK 293 T cells. A significant reduction in luciferase re-
porter activity was observed relative to co-transfection
with control mimic or other miRNAs (Fig. 5d). In
addition, there was a significant inverse correlation be-
tween miR-150-5p and circLMTK2 expression levels in
120 GC samples (Fig. 5e). Together, these results suggest
that circLMTK2 may serve as a binding platform for
miR-150-5p.

circLMTK2 promotes GC cell growth and metastasis by
sponging miR-150-5p and downregulating c-myc
Previous studies have described the tumour suppressor
role of miR-150-5p in various cancers [17—19]; however,
the potential mechanisms of miR-150-5p regulation of
GC progression remain unclear. We detected that miR-
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Fig. 3 circLMTK2 promotes GC cell proliferation and tumourigenicity in vitro and in vivo. (@ and b) Assessment of the proliferation of AGS and
MGC-803 cells transfected with control or circLMTK2 siRNAs by CCK-8 assay. (c) Stable circLMTK2 overexpression promoted BGC-823 cell
proliferation. OD, optical density. (d and e) Assessment of DNA synthesis using an EdU assay in MGC-803 and AGS cells transfected with control
or circLMTK2 siRNAs. (f) Stable circLMTK2 overexpression promoted DNA synthesis in BGC-823 cells. Micrographs represent at least three
experiments. Scale bar =200 um. (g and h) Colony formation assay using AGS and MGC-803 cells transfected with control or circLMTK2 siRNAs. (i)
Stable circLMTK2 overexpression promoted BGC-823 cell colony formation. (j) Xenograft assay with BGC-823 stable cell lines. (k) circLMTK2 over-
expression increased the volume of the xenograft tumours. (I) circLMTK2 over-expression increased the weight of the xenograft tumours. (a-I)
Results are shown as the mean + standard error of the mean (SEM) of three experiments. *P < 0.05; **P < 0.01; ***P < 0.001 (Student’s t-test)

150-5p overexpression in MGC-803 cells blocked the
proliferation rate (Fig. 6a), DNA synthesis (Fig. 6b), and
migration and invasion abilities (Fig. 6¢), while miR-150-
5p blockade had the opposite effects on GC cells. To
further address whether circLMTK2 executes its func-
tion by interacting with miR-150-5p, we cotransfected
miR-150-5p mimics and circLMTK2 expression con-
structs into GC cells. The effects on GC cell growth and
motility suppression induced by miR-150-5p were re-
versed when the cells overexpressed circLMTK2 (Fig.
6a-c and Additional file 1: Figure S5A-D). These data re-
veal that circLMTK2 promotes GC cell growth and me-
tastasis by sponging miR-150-5p.

We previously studied that c-Myc-associated circular
RNAs, and we noted that circLMTK2 overexpression
could increase c-Myc expression at both the mRNA and
protein levels, while circLMTK2 knockdown and miR-
150-5p overexpression exerted the opposite effects on
GC cells (Fig. 7a-b). As expected, we validated that c-
Myc could be a potential target gene of miR-150-5p
using the TargetScan database. 3'-UTR luciferase re-
porter assays further confirmed that miR-150-5p could
bind directly to a site in the 3'-UTR of c-Myc (Fig. 7c).
Although a correlation analysis showed a weak positive
correlation between circLMTK2 expression and c-Myc
mRNA levels in cancerous tissues (Fig. 7d), it also indi-
cated that circLMTK2 could indirectly regulate c-Myc
expression to some extent. These results suggested that
c-Myc might be a putative target of miR-150-5p.

circLMTK2 expression is upregulated in GC

To assess the clinical impact of the circLMTK2 expres-
sion on GC, we collected clinical data from the afore-
mentioned patients. As presented in Fig. 7e, circLMTK2
levels were significantly higher in tumour tissues than in
non-cancerous tissues. More importantly, increased
circLMTK2 expression in GC tissues was significantly
correlated with poor prognosis in GC patients, as shown
by the Kaplan-Meier survival curve using the median
value of circLMTK2 expression as the cut-off value (me-
dian survival of 16 months vs 45 months, P = 0.0114, log-
rank test; Fig. 7f). Significantly higher numbers of late T
stage (T4) or poor TNM stage (III-IV) tumours and
cases of positive lymph node status were found in the

high-circLMTK2 group (P <0.05, Table 1). No signifi-
cant differences were observed in the other clinical and
pathological characteristics between the high and low
circLMTK2 groups. We also performed univariate and
multivariate Cox proportional hazards analyses, which
included several known prognostic markers (sex, age,
tumour size, differentiation grade, TNM stage, Lauren
classification, lymphatic invasion and nerve invasion).
The results showed that circLMTK2 level and TNM
stage were independent prognostic factors for OS in pa-
tients with GC (Table 2).

Discussion
Recently, with the advent of next-generation sequencing,
numerous circular RNAs have been identified from vari-
ous animal genomes. Many of these highly stable cir-
cRNAs are abundantly expressed and play a role in
many diseases, especially in tumours, via acting as
miRNA sponges, decoying proteins, and affecting trans-
lation [20]. RNA-seq results provide useful information
for revealing general circRNA expression trends and
helping select candidate circRNAs for further research.
In this study, we successfully identified thousands of cir-
cRNAs in human GC tissues and normal gastric tissues,
and hundreds of them were differentially expressed.
Nevertheless, the expression of each candidate circRNA
still needs to be verified in a cohort of clinical samples
and cell lines because most of the circRNAs have low
abundance (Additional file 1: Figure S2).

circRNAs have been characterized as vital factors in
cancer biology [21, 22]. It was previously reported that
circRNAs could act as a miRNA “sponge” to decrease
the abundance of miRNAs [23]. Shen et al. conducted a
study showing that circRNA_001569 could significantly
increase cell viability and inhibit cell apoptosis in GC via
the miR-145/NR4A2 axis [24]. Another research group
found that the novel circRNA-100,269 could target miR-
630, leading to the inhibition of tumour cell growth [25].
circRNA_0023642 was shown to induce apoptosis and
suppress cell proliferation, migration and invasion in GC
via the EMT signalling pathway [26]. Additionally, cir-
cLARP4 was found to sponge miR-424, thus inhibiting
the biological behaviours of GC [27]. Several studies re-
vealed that circRNAs might also be valuable factors for
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the diagnosis of GC. Li et al. have assessed the
plasma circRNA_002059 levels and determined a
qRT-PCR method for detecting circRNA levels in GC
patients [28]. Lower levels of circRNA_0000190 were
also found in 104 gastric patient plasma samples and
served as a novel non-invasive diagnostic biomarker
for GC [29]. One recent study showed that GC cell-

derived exosomes could promote the transformation
of preadipocytes into brown-like cells by delivering
ciRS-133 to suppress miR-133 and activate PRDM16
[30]. These studies show that the primary function of
circRNAs is to deregulate miRNAs in pathogenic pro-
cesses, which is important for demonstrating their po-
tential role in cancer [31].
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Here, we demonstrated that circLMTK2, which is an
exonic circRNA originating from exons 10 and 11 of
LMTK2 mRNA, was upregulated in GC tissues and pre-
dominantly localized in the cytoplasm. circLMTK2 is de-
rived from the human lemur tyrosine kinase 2 gene,

which is known as LMTK2. Previous studies have

focused mainly on the biological function of LMTK2 in
prostate cancer. The rs6465657 variant of LMTK2 was
evidently related to the development of prostate cancer
[32]. Additionally, LMTK2 has been identified as a driver
mutation in lung adenocarcinoma by a large-
seq analysis [33].. Recently, He et al. reported that

scale RNA-
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circLMTK2 could act as a novel tumour suppressor in
GC; however, they did not explain the source of
circLMTK2 or submit any RNA-seq data in their study
[34]. In addition, we validated the expression of
circLMTK2 in our 25-patient cohort by qRT-PCR using

He’s primer (Additional file 1: Table S3). We further
confirmed that circLMTK2 was indeed upregulated in
tumours compared with that in non-cancerous tissues
(Additional file 1: Figure S4). Further analyses were con-
ducted to determine the biological function and
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molecular mechanism of circLMTK2 in GC cells. We elements in circLMTK2 are essential for their interaction.
found that circLMTK2 promoted GC cell proliferation  MiR-150 has been implicated as either an oncogene or a
and tumourigenicity in vitro and in vivo. Furthermore, tumour suppressor in various types of solid tumours [35—
ectopic circLMTK2 expression effectively enhanced GC  38]. MiR-150-5p was first considered as the main miRNA
cell migration and invasion in vitro and tumour metasta-  in immune and haematopoietic cells [39]. It has recently
sis in vivo. been shown that Myc upregulates LIN28 expression in

circRNAs have been suggested to function as miRNA  myeloid cells, which inhibits miR-150 maturation from its
sponges. We also demonstrated that circLMTK2 could precursor pri-miR-150 [40]. However, the function of
bind to miR-150-5p and that five miR-150-5p-binding  miR-150-5p in the pathogenesis of GC is unknown. We
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Table 2 Univariate analysis identifies factors influencing the overall survival rate of gastric cancer patients

Factors Univariate analysis Multivariate analysis

HR (95% Cl) P value HR (95% Cl) P value
Sex 1454 (0.812-1.784) 0.188
Age 1.243 (0.864-1.790) 0.241
Tumor size 1.332 (0.995-2.034) 0.108
Differentiation grade 0.823 (0.691-1.032) 0.156
Lauren classification 1.096 (0.563-1.872) 0.038* 0.148
TNM stage 1.586 (1.012-3.986) 0.001% 2.043 (1.640-4.232) 0.002%
Lymphatic invasion 1.825 (1.256-2.771) 0.024* 0.204
Nervous invasion 1.643 (1.157-2.635) 0.013* 0.192
circLMTK2 expression 0.736 (0.033-1.326) 0.001% 0.832 (0.354-1.012) 0.001*

HR Hazard ratio, C/ confidence interval
* P<0.05

also demonstrated that miR-150-5p inhibited GC cell pro-
liferation and motility in vitro. More importantly, we iden-
tified that circLMTK2 exerts oncogenic functions by
sponging miR-150-5p.

Intriguingly, we found that c-Myc is a potential func-
tional target of miR-150-5p. c-Myc is a key basic helix-
loop-helix leucine zipper transcription factor that is fre-
quently upregulated in various human cancers, including
GC [41]. Its overexpression contributes to malignant
transformation by regulating the expression of a number
of genes participating in multiple aspects of tumourigen-
esis, such as cell cycle progression, cell invasion, migra-
tion, metastasis, and angiogenesis [42-46]. c-Myc has
been implicated in controlling miRNA expression, and c-
Myc-regulated miRNAs affect virtually all aspects of the
hallmarks of Myc-driven diseases [47, 48]. Increasing evi-
dence has indicated that there is significant crosstalk be-
tween c-Myc and miRNAs. In fact, c-Myc regulates the
expression of a number of miRNAs, resulting in wide-
spread miRNA repression, and c-Myc is regulated by miR-
NAs, leading to sustained Myc activity [49]. Our results
showed that circLMTK2 could regulate c-Myc expression
by sponging miR-150-5p, indicating that c-Myc may act as
an essential component of the regulatory circuit and pro-
viding further mechanistic evidence to support the notion
that c-Myc is a promising therapeutic target in the treat-
ment of GC.

In conclusion, our study reveals that circLMTK2 is
upregulated in GC tissues and that high circLMTK2
expression is associated with poor prognosis, lymph
node metastasis and poor TNM stage in GC patients.
Moreover, enhanced circLMTK2 expression promoted
GC cell growth and motility in vitro and in vivo
through sponging miR-150-5p to upregulate c-Myc.
Consequently, circLMTK2 may have considerable po-
tential as a prognostic predictor and therapeutic tar-
get for GC.
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