
Less Is More: Coarse-Grained Integrative Modeling of Large
Biomolecular Assemblies with HADDOCK
Jorge Roel-Touris,† Charleen G. Don,‡ Rodrigo V. Honorato,† Joaõ P. G. L. M. Rodrigues,§
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ABSTRACT: Predicting the 3D structure of protein inter-
actions remains a challenge in the field of computational
structural biology. This is in part due to difficulties in sampling
the complex energy landscape of multiple interacting flexible
polypeptide chains. Coarse-graining approaches, which reduce
the number of degrees of freedom of the system, help address
this limitation by smoothing the energy landscape, allowing an
easier identification of the global energy minimum. They also
accelerate the calculations, allowing for modeling larger
assemblies. Here, we present the implementation of the
MARTINI coarse-grained force field for proteins into
HADDOCK, our integrative modeling platform. Docking and
refinement are performed at the coarse-grained level, and the
resulting models are then converted back to atomistic resolution
through a distance restraints-guided morphing procedure. Our protocol, tested on the largest complexes of the protein docking
benchmark 5, shows an overall ∼7-fold speed increase compared to standard all-atom calculations, while maintaining a similar
accuracy and yielding substantially more near-native solutions. To showcase the potential of our method, we performed
simultaneous 7 body docking to model the 1:6 KaiC-KaiB complex, integrating mutagenesis and hydrogen/deuterium exchange
data from mass spectrometry with symmetry restraints, and validated the resulting models against a recently published cryo-EM
structure.

■ INTRODUCTION

Proteins are the workhorses of the cellular machinery. In order
to function, they bind to one another, as well as to other
biomolecules, to form large molecular assemblies. These
interactions play a key role in all essential molecular processes
within a cell. Most of these assemblies may exist as transient
associations, which, together with other experimental factors,
makes the characterization of their three-dimensional (3D)
structure a challenge1 for experimental methods such as
nuclear magnetic resonance (NMR) spectroscopy or X-ray
crystallography.2,3 Despite recent advances in cryo-electron
microscopy (cryo-EM), it is unlikely that the substantial gap
between the number of estimated protein−protein interactions
and those deposited in the Protein Data Bank4 can be
overcome based solely on experimental methods.5

Computational docking has come of age as a complement to
experimental methods in order to generate 3D models of
protein assemblies. In particular, data- or information-driven
docking and other integrative approaches are particularly
appealing.1,6−8 While docking performs sufficiently well for
small- and medium-sized proteins, applications to large

biological systems, either containing large individual molecules
or a large number of interactors, are limited by the significant
computational cost of thoroughly sampling complex conforma-
tional landscapes. Coarse-grained (CG) models mitigate this
limitation by grouping atoms into larger “pseudoatoms” or
beads,9−11 thus reducing the number of particles to consider in
the computations. These models were used in the very first
energy minimization of a protein in 196912 and again in the
first docking simulation.13

Since then, several CG models have been developed and
applied to study different aspects of protein structural
biology.14 For protein docking in particular, of the CG models
developed over the years, three stand out for their performance
and/or success in community assessment experiments: Those
implemented in ATTRACT, CABS-dock, and RosettaDock.
The ATTRACT model,15,16 developed by Zacharias and co-
workers for flexible protein docking, represents the protein
backbone by two pseudoatoms and the side chains by an
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additional particle (or two in the case of larger amino acids).
Nonbonded interactions are described by 8−6 LJ potentials
and a Coulomb type term,17 with parameters systematically
optimized on both existing structures of protein−protein
complexes as well as on docked models. As such, this limits the
transferability of ATTRACT to other systems, such as protein-
nucleic acid complexes or membrane proteins. Another model,
CABS (Cα-Cβ-Side group protein model), was originally
developed for structure prediction of globular proteins18 and
later applied to protein-peptide docking19 (CABS-dock). As in
ATTRACT, protein residues are represented by a maximum of
four particles: Cα, Cβ, side chain, and an extra particle
representing a virtual Cα−Cα bond. Knowledge-based
statistical potentials are used to describe particle interactions.
The performance of CABS-dock was benchmarked on a set of
protein-peptide complexes,20 with peptides of 5−15 residues in
length yielding accurate predictions. Although there are no
technical limitations to the application of CABS-dock to larger
protein−protein systems, except the increase in computational
time, this application has not been reported in the literature to
date, and its performance remains thus uncertain. Moreover,
given the specificity of its parameters to proteins, much like
ATTRACT, the transferability of CABS to other molecular
systems might be limited.
Finally, RosettaDock implements a two-step protocol with a

coarse-grained global search followed by an all-atom refine-
ment.21 In the coarse-grained step, the interacting proteins are
represented by their backbone atoms and a single pseudoatom
for the side chain. The resulting models are ranked using a
combination of residue pairwise interaction terms, a contact-
based term, and a term that penalizes overlapping residues.
The all-atom refinement step uses the full Rosetta scoring
function. As such, in the case of large assemblies, RosettaDock
benefits from a smoother energy landscape during the
conformational sampling, but the second all-atom refinement
stage is computationally expensive.
On the other hand, some CG models were developed to be

easily transferrable. MARTINI, a CG model for biomolecules,
was originally applied to study lipid bilayer assembly22 and
later extended to proteins,23 carbohydrates,24 and nucleic
acids.25,26 This model maps, generally, four heavy atoms onto
one coarse-grained bead. Its corresponding force field
parameters have been calibrated to reproduce thermodynamic
measurements. Systems are represented by 4 different basic
particle types−polar (P), nonpolar (N), apolar (C), and
charged (Q)−that are further divided based on their hydrogen-
bonding properties and their degree of polarity, giving a total
of 18 unique “building blocks”. In addition to the 4 standard
types of beads, the 2.2p version of MARTINI includes off-
center charges for polar and charged amino acids. These extra
“fake beads” improve the description of interactions between
charged residues (ARG, LYS, ASP, GLU) and provide
directionality/orientation in the case of polar residues,
mimicking to some extent hydrogen bonds (e.g., an ASN
side-chain bead has two “fake beads” associated carrying a
small positive and negative charge, respectively). In addition,
the MARTINI model is able to represent several types of
molecules and allows for a straightforward conversion to
atomistic resolution, making it ideal to use in HADDOCK for
integrative modeling applications.
Here, we describe the implementation of the MARTINI CG

force field for proteins27 in our information-driven docking
software HADDOCK.28 We evaluated the performance of the

coarse-grained HADDOCK protocol using the largest
complexes from the protein docking benchmark 5,29

comparing it to the standard all-atom protocol. The perform-
ance increase from using a smaller set of particles to describe
the molecular system allows for a substantial decrease in
computational time, enabling the modeling of larger systems.
As a demonstration, we modeled the heptameric KaiC-KaiB
1:6 assembly, which is part of the endogenous biological clock
in cyanobacteria,30,31 by performing a simultaneous 7 body
docking, guided by mass spectrometry (MS) and mutagenesis
data in combination with symmetry restraints.

■ METHODS

Implementation of MARTINI in HADDOCK. The
integration of the MARTINI CG force field for proteins into
HADDOCK focused on three key aspects: (1) converting the
topology description and parametrization for each amino acid
in a format suited for HADDOCK and its computational
engine CNS (Crystallography and NMR System33,34), (2)
adapting the atomic solvation parameters35 used to calculate
the desolvation energy in HADDOCK to the CG particles, and
(3) developing a protocol to convert the coarse-grained system
back to atomistic resolution after the semiflexible refinement
stage of HADDOCK, making use of distance restraints derived
from the MARTINI atoms-to-bead mapping.
As in standard MARTINI, four types of interaction sites are

considered: polar (P), nonpolar (N), apolar (C), and charged
(Q). The conversion of the backbone to the CG beads follows
a four-to-one (4:1) mapping rule, where all four heavy atoms
(N, Cα, C, O) are represented by a single bead placed at their
geometric center. The conversion of side chains varies, ranging
from the same 4:1 mapping to 2:1 mapping and “small” beads
in rings (HIS, PHE, TYR, TRP). We converted the topology
and corresponding parameters of MARTINI 2.2p to a format
compatible with CNS (see Tables SI-1−4 in the Supporting
Information). The force field, however, does not account for
either the various possible histidine charge states (i.e., neutral
with the proton on either the δ or ε nitrogen atom or doubly
protonated and positively charged) nor for nonstandard
residues (e.g., amino acids with post-translational modifica-
tions) or cofactors.
Since the amino acid backbone parameters in MARTINI are

secondary structure-dependent, we use DSSP36,37 to analyze
the initial structures and encode the secondary structure in the
B-factor field. Using the later information HADDOCK
automatically selects the proper parameters for each backbone
bead in the coarse-grained structures when building the
topology of the system. This effectively restrains the existing
secondary structures, which might be a limitation for docking
cases with large conformational changes between the unbound
and bound states. However, if no secondary structure
information is encoded in the B-factor field, random coil
parameters allowing for possible conformational changes will
apply. Note that in contrast to standard molecular dynamics
simulations of proteins using the MARTINI force field, no Go
terms are used in HADDOCK since only the interface is
refined, and therefore the majority of the structure is kept rigid
by default.
Nonbonded CG interactions are calculated using a 14 Å

cutoff, as recommended, while interactions between atoms in
the final stage are calculated using the OPLS force field38

parameters with the default 8.5 Å cutoff used in HADDOCK.
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Solvation Parameters for the Coarse-Grained Par-
ticles. The HADDOCK score, used to rank the predicted
models, is a linear combination of energetical and empirical
terms (see Scoring below), including a solvent-accessible
surface-based desolvation energy term35 (Edesolv). In order to
score CG models using this desolvation energy, we mapped the
atomistic solvation parameters onto the CG beads. For this,
the solvation energy of each group of atoms belonging to a
specific bead was calculated for all 20 amino acids X in a
GGXGG peptide. Since the solvation energy depends on the
solvent accessible surface area of an atom/bead, the total
atomistic energy was divided by the solvent accessible surface
area of the corresponding CG bead in a similar peptide in
order to obtain the CG solvation parameters SPicg for a specific
CG particle i (eq 1)

= _E
SP

desolv aa
ASA

i
i

icg
cg (1)

where Ei
desolv_aa is the atomistic solvation energy for the group

of atoms belonging to a given bead i, and ASAi
cg is the

accessible surface area of that bead in the GGXGG peptide.
The all-atom and CG solvent accessible areas were

calculated using CNS with an accuracy of 0.0025 using a
water radius of 1.4 Å excluding all hydrogen atoms. The so-
called “fake beads” are not included in the desolvation energy
calculation. The resulting solvation parameters values for the
MARTINI CG beads are listed in Table 1.
Preprocessing of Input Structures for Coarse-Grained

Docking. Setting up a CG docking run requires first
converting the coordinate files, which contain information on
individual atoms, into a CG representation. To this end, we

adapted the “martinize1.1py” (https://github.com/Tsjerk) to
account for the name type extensions (i.e., “fake beads” present
in the 2.2p version of MARTINI) and to additionally generate
distance restraints, in CNS format, between the original atoms
and the corresponding CG beads, which are used in the final
back-mapping stage of the protocol (see below). Since the
MARTINI backbone parametrization depends on the local
secondary structure, we numerically store the secondary
structure assignments computed by DSSP36,37 into the B-
factor column of the resulting CG PDB files. As in the standard
protocol, HADDOCK automatically builds any missing atom
when creating both the topology and coordinate files from the
user-provided PDB files. This procedure is done both for the
starting CG and all-atom structures. The latter are used in the
final back-mapping stage from CG to all-atom.

Back-Mapping Coarse-Grained Models to Atomic
Resolution by Distance Restraints. In order to convert
the final coarse-grained models back to an all-atom
representation, we make use of the ability of HADDOCK to
use distance restraints to guide the modeling, using the atom-
to-bead distance restraints derived during the initial setup
stage. For a group of atoms belonging to a particular CG bead,
we create one distance restraint with 0 length between the
geometric center of the atoms and the bead to which they
belong. The conversion protocol consists of the following
steps:

1. Initial Fitting onto the CG Model. The all-atom structure
of each molecule of the complex is fitted onto its respective
CG representation in the docked CG model by rigid body
energy minimization (EM) guided by the CG-to-AA distance
restraints. During this step the CG model is kept fixed, and the
intermolecular interactions are scaled by a factor 0.001 to
account for possible clashes between the AA molecules. No
energy terms are included for the CG model, except the
distance restraining potential.

2. Inducing Conformational Changes. In order to morph
the all-atom structure onto the CG model, which might have
undergone conformational changes during the flexible stage of
the docking protocol, we first perform two short rounds of
energy minimization (500 steps), increasing the scaling factor
for intermolecular interactions to 0.01 after the first
minimization. Then, we perform 500 steps of Cartesian
molecular dynamics (MD) at 300 K with an integration time
step of 0.0005 ps and another round of EM.

3. Clearing Clashes and Optimizing All-Atom Interac-
tions. We perform two rounds of energy minimization,
increasing the scaling factor of the intermolecular interactions
to 0.1 and 1.0, respectively, followed by another short MD
(500 integration steps) and two extra minimization rounds.
In all three steps, all covalent and noncovalent energy terms

are included for the AA models together with the restraint
energy term for the atom-to-bead distance restraints. Once the
all-atom models have been generated, the CG models are
discarded, the morphing distance restraints are removed, and
all other restraining energy terms representing the various data
given to HADDOCK to drive the docking are reintroduced.
These are used in a final round of energy minimization.
Although computationally expensive for large systems, the user
can then choose to follow-up with the full water refinement
stage of the standard HADDOCK protocol (turned off by
default).

Docking Procedure. All docking calculations were
performed using a local installation of the new HADDOCK

Table 1. Coarse-Grained Solvation Parameters for Each
Amino Acid, Mapped from the All-Atom Empirical
Solvation Parameters onto MARTINI Beadsa

solvation parameter
*

Kcal
mol Å2

amino acid BB SC*

ALA −0.0107 -
GLY −0.0089 -
ILE −0.0153 0.0255
LEU −0.0153 0.0243
VAL −0.0158 0.0222
PRO −0.0046 0.0230
ASN −0.0137 −0.0192
GLN −0.0147 −0.0135
THR −0.0165 −0.0009
SER −0.0154 −0.0056
MET −0.0130 0.0202
CYS −0.0167 0.0201
PHE −0.0126 0.1005
TYR −0.0134 0.0669
TRP −0.0134 0.0872
ASP −0.0169 −0.0360
GLU −0.0150 −0.0301
HIS −0.0155 0.0501
LYS −0.0163 −0.0210
ARG −0.0162 −0.0229

aBB: backbone beads. SC*: any side-chain bead. Note that “fake
beads” (SCD) are not considered.
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version 2.4 supporting CG docking. This protocol is also
supported by the new version of our Web server39 soon to be
released. For comparison purposes, the docking was performed
both with all-atom and coarse-grained representations, using
the united-atom OPLS force field40 and MARTINI 2.2p,
respectively. The docking was guided by ambiguous interaction
restraints (AIRs) derived from the bound complexes (true
interface) by selecting all solvent accessible residues with at
least one heavy atom within 3.9 Å from any heavy atom of the
partner molecule. These restraints represent an ideal scenario
where accurate information is available about the residues in
the interface but not about their specific pairwise contacts
(information that can be obtained, e.g., from NMR chemical
shift perturbations, mass spectrometry hydrogen/deuterium
exchange, ...).7,8 The sampling parameters were kept as default
in HADDOCK: 1000/200/200 models were generated for the
rigid body (it0), semiflexible (it1), and water refinement (itw)
stages, respectively. In the CG runs, the final water refinement
stage was replaced by the back-mapping from CG to all-atom
as shown in Figure 1. The final models were clustered based on
the fraction of common contacts (FCC)41 using a 0.6 cutoff
and a minimum number of 4 models per cluster.
Scoring. We investigated whether reparametrizing the

HADDOCK-CG score led to a better scoring performance
by systematically varying the weights of the scoring function.
Since we did not observe significant improvements (data not
shown), we kept the original HADDOCK scoring functions
(HS) for the three stages of the docking protocol (rigid-body
EM (it0); semiflexible refinement (it1); explicit solvent
refinement (itw))

= * + * + * + * − *E E E EHS 0.01 1.0 0.01 1.0 0.01 BSAit0 vdw elec AIR desolv

= * + * + * + * − *E E E EHS 1.0 1.0 0.1 1.0 0.01 BSAit1 vdw elec AIR desolv

= * + * + * + *E E E EHS 1.0 0.2 0.1 1.0itw vdw elec AIR desolv

where Evdw and Eelec are the van der Waals and electrostatic
energies terms calculated using a 12-6 Lennard-Jones and
Coulomb potential, respectively, with MARTINI (it0, it1) or
OPLS (itw) nonbonded parameters, EAIR is the ambiguous
interaction restraints energy, Edesolv is the empirical desolvation
score, and BSA is the buried surface area in Å2.
Protein Docking Benchmark. To test the performance of

our HADDOCK-CG protocol, we selected a subset of
complexes from the Protein−Protein Docking Benchmark
version 5.0,29 consisting of all complexes with more than 5,000
heavy atoms, excluding all antibody−antigen cases. This
selection yielded a benchmark set of 27 cases (see Table SI-
5 in the Supporting Information).
Metrics for Evaluation of Model Quality. The quality of

the generated models was evaluated using standard CAPRI42

criteria, including the fraction of native contacts (FNAT) and
the positional interface (i-RMSD) and ligand (l-RMSD) root-
mean-square deviations from the reference crystal structure.
FNAT is calculated using all heavy atom−heavy atom
intermolecular contacts using a 5 Å distance cutoff (CAPRI
definition).42 The i-RMSD is calculated on the interface after
superimposition on the interface residues, defined as those
with any heavy atom within a 10 Å distance of the partner
protein. The l-RMSD is calculated on the ligand (usually the
smallest molecule) after superimposition on the backbone
atoms of the receptor (largest molecule). For both, i-RMSD
and l-RMSD, only backbone heavy atoms are considered (Cα,

C, N, O). Based on these three metrics, the quality of the
docking poses is classified as

• High: FNAT ≥ 0.5 and i-RMSD ≤ 1 Å or l-RMSD ≤ 1
Å,

• Medium: FNAT ≥ 0.3 and 1 Å < i-RMSD ≤ 2 or 1 Å <
l-RMSD ≤ 5 Å,

• Acceptable: FNAT ≥ 0.1 and 2 Å < i-RMSD ≤ 4 or 5 Å
< l-RMSD ≤ 10 Å,

• Near-Acceptable: FNAT ≥ 0.1 and 4 Å < i-RMSD ≤ 6
Å, and

• Low quality: FNAT < 0.1 or i-RMSD > 6 Å or l-RMSD
> 10 Å.

Metrics for the Evaluation of the Docking Success
Rate. The performance of the docking calculations was
analyzed as follows: (1) The percentage of cases in which at
least one model of a given accuracy is found within the top N
solutions ranked by HADDOCK (N = 1, 5, 10, 20, 25, 50, 100,
200), and (2) the percentage of cases in which at least one

Figure 1. HADDOCK coarse-grained flowchart. Default protein−
protein coarse-grained protocol in HADDOCK. AA = all-atom, CG =
coarse-grained, FCC = fraction of common contacts. * Back-mapping
coarse-grained models to atomic resolution by distance restraints.
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acceptable or higher quality model was found in the top T
clusters (T = 1, 2, 3, 4, 5).
KaiC-KaiB Coarse-Grained Integrative Modeling with

HADDOCK. In order to model the KaiC:KaiB 1:6 complex, we
performed two different docking runs, targeting either the CI
or CII domains on KaiC since the H/D exchange data from
MS point to two possible interfaces (for details refer to Snijder
et al.43). We used the crystal structure of KaiC (PDB ID:
3DVL) consisting of 12 domains (two 6-membered rings) as a
starting point for the docking. For KaiB, we used six copies of
the recent NMR structure (PDB ID: 5JYT),44 which shows a
fold-switch at the interacting region compared to the
previously determined crystal structure.45

The regions experimentally identified by HDX-MS as
protected from solvent in either the CI or CII domains of
KaiC and in KaiB were specified as active residues in

HADDOCK, after filtering them for solvent accessibility
(relative residue solvent accessibility larger than 50% as
calculated with NACCESS46) (see Table SI-6 in the
Supporting Information, for a detailed list of residues). For
KaiB, we included three additional residues identified by
mutagenesis experiments. A structural similarity analysis of
KaiC revealed an asymmetrical structure with RMSD values for
the interface regions between subunits in the hexamer ranging
from 0.9 to 1.9 Å (see Table SI-7 in the Supporting
Information for more details). As a result, we restrained the
KaiB monomers to an approximate C6 symmetry by defining
three C2 symmetry pairs (B-E/C-F/D-G) and two C3
symmetry triplets (B-D-F/C-E-G), but we did not use
noncrystallographic symmetry restraints (NCS) since the
interfaces are asymmetrical.

Figure 2. Performance of the all-atom and coarse-grained protocols in HADDOCK on the 27 largest complexes of the docking benchmark 5. (A)
Overall success rates (%) of the all-atom protocol on ranking single models (Single) or clusters (Clustering) as a function of the number of models/
clusters considered. (B) Same as (A) but for the coarse-grained protocol. (C) and (D) Quality of the docking models for all 27 cases as a function
of the number of models considered. The complexes are ordered by increasing degree of difficulty (from top to bottom) for both all-atom and CG
docking runs. The color coding indicates the quality of the docked models.
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Because of the symmetry restraints, sampling of 180°
rotations during the rigid-body stage was disabled. Further-
more, given the large size of the complex and the number of
subunits to dock (7), the sampling was increased to 10000/
400/400 models for it0/it1/itw, respectively. Finally, we
disabled the final refinement in explicit water, only performing
the back-mapping from CG to all-atom (as part of the default
HADDOCK-CG pipeline). We only used the top 200 models
according to the HADDOCK score for analysis and validation
purposes.

■ RESULTS AND DISCUSSION
We have integrated the MARTINI 2.2p force field for proteins
into HADDOCK (see Methods), adapted the desolvation
energy terms to the coarse-grained beads, and developed a
distance restraints-based back-mapping method to restore the
atomic resolution of the final models while accounting for
possible conformational changes that took place during the CG
semiflexible refinement step. In the following sections, we
discuss the performance of our protocol in terms of success
rate, sampling, and computational efficiency using the 27
largest complexes from the docking benchmark 5. We then
showcase its potential by modeling a large heptameric complex
using mass spectrometry and mutagenesis data.
Overall Performance of Coarse-Grained HADDOCK.

We compared the unbound docking performance of
HADDOCK-CG with the default all-atom protocol for 27
binary complexes from the docking benchmark 5 (see
Methods; Protein Docking Benchmark). Fourteen of those
complexes were classified as easy according to the structural
differences between the bound and unbound structures of the
monomers, 8 as medium, and 5 as hard. The docking was
performed starting from the unbound structures of each
protein and driven by information from the real interface (see
Methods; Docking Procedure), mimicking an ideal scenario for
HADDOCK users. The success rate was defined as the
percentage of cases for which an acceptable or better model
was obtained in the top N ranked models (for details see
Methods; Metrics for Evaluation of Success in Docking).
Coarse-grained docking shows a slightly better overall

performance (Figure 2) in the top 1 for single structure
ranking (best ranked structure) than the standard all-atom
protocol, with success rates for acceptable or higher quality
models of 51.8% and 48.1%, respectively. However, this trend
reverses for the performance in the top 5, with 66.6% and
77.7% success rates for coarse-grained and atomistic models,
respectively. For the remaining top N (N = 10, 20, 50, 100,
200), the performance of HADDOCK-CG is comparable with
that of all-atom calculations, reaching a maximum of 92.5% at
N = 200. For the two cases with the largest conformational
change (i-RMSD values of 4.69 Å/5.79 Å between unbound
and bound structures for 1Y64/4GAM, respectively), neither
coarse-grained nor all-atom calculations generated near-
acceptable solutions.
We also analyzed the success rate on a per-cluster basis,

which is the standard scoring scheme of HADDOCK.
Clustering models improve the success rate for both coarse-
grained and all-atom simulations to 59.2% and 51.8%,
respectively, for the top 1 cluster. The success rate is maximal
for the top 5 clusters reaching 88.8% for acceptable or higher
quality models (Figure 2B). The all-atom protocol reached the
maximum success rate (88.8%) at the top 4 clusters. Compared
to single structure scoring, no near-native cluster was obtained

for 1IB1 due to the fact that only 3 models passed the quality
thresholds and our clustering strategy requires a minimum of 4
models per cluster.
Concerning the quality of the models (see Methods; Metrics

for Evaluation of Model Quality), the all-atom runs generated
higher quality solutions than CG runs (Figure 2C and 2D).
For the easy cases, all-atom runs rank medium quality models
in the top 10 solutions for 10 out of 14 cases and acceptable
quality models for 13 out of 14 cases. For the CG runs,
medium quality models are obtained in the top 10 solutions for
7 out of 14 easy cases, and acceptable quality models are
obtained for all 14 cases. As for the intermediate and hard
cases, the all-atom runs generate medium quality models for
only 5 out of 13 cases, while CG runs generate them in 2 cases.
Overall, coarse-grained HADDOCK generated medium quality
solutions for 12 out of all 27 complexes including intermediate
cases, slightly worse than the 16 cases for the all-atom runs.
Interestingly there are 2 cases where CG docking generates

better quality models than all-atom runs. For 3BIW, an easy
case, coarse-grained docking generated medium quality models
ranked in the top 10. The best of these models has an FNAT
of 0.61 and i-RMSD of 1.9 Å, compared to an FNAT of 0.52
and i-RMSD of 3.5 Å for the all-atom run. For 1HE8, a
medium difficulty case, we found a medium quality model in
the top 5 with an FNAT of 0.55 and l-RMSD of 4.9 Å, while
the best all-atom model has an FNAT of 0.44 and l-RMSD of
6.1 Å.
Given the back-mapping to all-atom resolution at the end of

the coarse-grained protocol, we also evaluated the quality of
the final models in terms of the number of atomic clashes at
the interface. A clash was defined as any pair of heavy atoms
belonging to different molecules within 3 Å distance, in
accordance with the CAPRI assessment procedure.47 The
number of clashes was then divided by the buried surface area
of the complex, and models with more than 0.1 clashes/Å2

were considered of poor quality. We found no model, in both
CG and all-atom runs, that scored under this clash threshold.
However, and interestingly, docked structures generated via
coarse-graining presented, on average, half the clashes of the
models from the all-atom runs, which might be explained by
the multiple energy minimization rounds performed during the
back-mapping protocol, compared to the default water
refinement protocol.

Reduction of the Energy Landscape Complexity. A
product of coarse-graining is a smoothening of the energy
landscape, which should allow for an easier sampling compared
to all-atom calculations. The coarse-grained landscape might
help find energy minima, especially in cases where only few or
no data are available to drive the modeling and should,
therefore, contribute to a better performance of coarse-grained
docking runs (i.e., an increase in the number of near-acceptable
models). To test this hypothesis, we performed docking
without any experimental information, using the ab initio
mode of HADDOCK in which, for each docked model, pairs
of residues on the interacting molecules are randomly selected
and ambiguous interaction restraints are defined between
surface patches within 7.5 Å of those residues. In order to test
whether coarse-graining improves sampling, we ran our
benchmark with this type of random restraints for both all-
atom and coarse-grained protocols, increasing in both cases the
sampling to 10000/400/400 models for it0/it1/itw. We indeed
observe (Table 2) a substantial increase (28.4%) in the
number of models of acceptable or better quality during the
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rigid body stage of coarse-grained docking, compared to all-
atom simulations. However, when using interface data to drive
the calculations, this difference decreases to 8% more
acceptable or higher quality models for the coarse-grained
protocol, which is still a substantial improvement.
Computational Performance. The main motivation to

implement a coarse-grained force field in HADDOCK was to
accelerate and enable the modeling of large biomolecular
assemblies by reducing the number of particles considered
during the computations. The atom-to-bead mapping of the
MARTINI model leads to a significant reduction in the
number of particles, making the computations substantially
more efficient. It was previously shown that MARTINI allows
for an increase in computational efficiency by a factor 2 to 4
compared to common all-atom models.23 In our case,
integrating MARTINI into HADDOCK led to an average
∼7-fold speed-up in total computation time (Table 3).
Coarse-Grained Integrative Modeling of KaiC-KaiB.

To demonstrate our coarse-grained HADDOCK protocol, we
modeled the heptameric KaiC-KaiB (stoichiometry 1:6)
complex by simultaneous 7 body docking using data from
mutagenesis experiments and hydrogen−deuterium exchange
MS.43 The structures of KaiC and KaiB have been both
characterized individually at the atomic level. KaiC forms
hexamers and consists of two domains, CI and CII.48,49 It has
been shown that six KaiB monomers bind to one KaiC
hexamer.30 The first published model of this complex43

wrongly pointed to CII as binding mode, based on better
agreement with collision cross section data obtained by time-
of-flight MS. Later on, the cryo-EM structure50 of KaiCBA
revealed a CI binding mode and a different fold of KaiB
corresponding to the solution NMR structure (PDB ID 5JYT)
that was solved after the initial model was published. This
NMR structure, which is also the conformation found in the
cryo-EM structure, shows a fold switch compared to the crystal
structure (PDB ID 4KSO) that was used in the initial

modeling. The crystal structure was the only available one at
the time of the first modeling. The first model was built by
docking one KaiB onto two domains of KaiC (out of the 12
domains in full KaiC). We repeated here this modeling, using
this time the full KaiC structure and six copies of the binding
competent KaiB conformation (the NMR structure). Two 7
body docking runs targeting the CI and CII binding interfaces
were performed with HADDOCK-CG. Along with the
experimental data, we imposed symmetry restraints (C3 +
C2, as an approximation of C6) between the 6 KaiB
components. The resulting models were scored and ranked
according to the HADDOCK score (see Methods; Scoring),
including an additional energy term for the symmetry
restraints. The cryo-EM map (EMDB-3603) was used for
independent validation of the models.
Using the new, binding-competent KaiB structure we clearly

identify the CI binding mode as the right answer, with a
significantly lower HADDOCK score than CII: −216.7 ± 13.2
au versus +44.5 ± 19 au for the best cluster of each run (see
Table SI-8 in the Supporting Information). This model
obtained based on mutagenesis and mass spectrometry data
is consistent with the recent cryo-EM model of the
KaiC:KaiB:KaiA complex in a fully assembled state50 with a
l-RMSD of 3.6 Å, calculated over all six interfaces, for the best
model of the top scoring cluster (for more details, see Table
SI-9 in the Supporting Information). We further validated our
model by quantifying its agreement with the published cryo-
EM map of the complex (EMDB-3603) using Chimera:51 The
correlation score of our model is 0.82, compared to 0.84 for
the original cryo-EM backbone model (PDB ID 5N8Y) as
shown in Figure 3.
While the first all-atom model was obtained by docking a

subset of the full complex, in this work we modeled here the
full 1:6 KaiC-KaiB complex. By coarse-graining, we reduced
the number of particles from 31726 in the original all-atom
model to 9842 for the coarse-grained model, reducing the
computational time by about a factor 6 times, from 4 h to 48
min, on average, per model.

■ CONCLUSIONS

In this work, we presented the integration of the MARTINI
coarse-grained force field in our HADDOCK integrative
modeling software. Our new docking protocol makes use of
coarse-grained representations during the rigid body and
semiflexible refinement stages and restores the final docked
models to atomistic resolution in a final back-mapping stage.
By using distance restraints between beads and the atoms that
belong to them, the back-mapping protocol is able to morph
conformational changes that potentially took place during the
coarse-grained flexible refinement. The performance of coarse-
grained docking is similar to that of the standard all-atom
protocol in terms of success rate and quality of the generated
models. In addition, it generates more near-native models

Table 2. Comparison of the Total Number of Acceptable or
Higher Quality Models, Generated over All 27 Complexes
at the Rigid-Body Stage (it0), between Coarse-Grained and
Standard All-Atom HADDOCK Protocols in the Absence of
Information To Drive the Docking (ab Initio Mode) and
Using True Interface Informationa

top 200 top 400 total ratio CG/AA

ab Initio Docking (Random Patches)
coarse-grained 15 16 74 1.39
all-atom 11 13 53

True Interface Docking
coarse-grained 2666 5066 9689 1.08
all-atom 2702 4940 8896

a10000 models were generated in the case of ab initio docking. For
details, see Tables SI-10−11 in the Supporting Information.

Table 3. Comparison of Average CPU Times (Seconds/Model)a for the Test Benchmark (N = 27) between the All-Atom and
Coarse-Grained HADDOCK Protocols

it0 it1 itwb ⟨ratio⟩ AA/CG

all-atom 22.2 ± 19.8 1327.2 ± 1077 1577.4 ± 975 6.78 ± 1.3
coarse-grained 2.4 ± 1.2 165.6 ± 134.4 276 ± 198.6

aThe timings correspond to the total time reported by CNS as measured on an AMD Opteron (tm) Processor 6344. bThe coarse-grained protocol
does not include refinement in explicit solvent but instead performs a back-mapping procedure to restore all-atom resolution to the final models.
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when limited or no data are available and comes with the
benefit of an ∼7-fold reduction in computing time. The power
of our coarse-grained integrative modeling approach was
demonstrated by modeling the structure of the heptameric
KaiC:KaiB (1:6) complex, for which we obtained models in
excellent agreement with the cryo-EM structure. In conclusion,
the implementation of the MARTINI coarse-grained force field
into HADDOCK extends its ability to model increasingly
larger and more intricate biomolecular assemblies. In the
future, we plan to make use of the MARTINI models for lipids
and nucleic acids and extend our protocol to allow modeling of
nucleic acid complexes, as well as membrane and membrane-
associated complexes, for which we recently published a new
docking benchmark.32
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(35) Fernańdez-Recio, J.; Totrov, M.; Abagyan, R. Identification of
Protein-Protein Interaction Sites from Docking Energy Landscapes. J.
Mol. Biol. 2004, 335 (3), 843−865.
(36) Kabsch, W.; Sander, C. Dictionary of Protein Secondary
Structure: Pattern Recognition of Hydrogen-bonded and Geometrical
Features. Biopolymers 1983, 22 (12), 2577−2637.
(37) Touw, W. G.; Baakman, C.; Black, J.; Te Beek, T. A. H.;
Krieger, E.; Joosten, R. P.; Vriend, G. A Series of PDB-Related
Databanks for Everyday Needs. Nucleic Acids Res. 2015, 43, D364−
D368.
(38) Jorgensen, W. L.; Tirado-Rives, J. The OPLS [Optimized
Potentials for Liquid Simulations] Potential Functions for Proteins,
Energy Minimizations for Crystals of Cyclic Peptides and Crambin. J.
Am. Chem. Soc. 1988, 110 (6), 1657−1666.
(39) Van Zundert, G. C. P.; Rodrigues, J. P. G. L. M.; Trellet, M.;
Schmitz, C.; Kastritis, P. L.; Karaca, E.; Melquiond, A. S. J.; Van Dijk,
M.; De Vries, S. J.; Bonvin, A. M. J. J. The HADDOCK2.2 Web
Server: User-Friendly Integrative Modeling of Biomolecular Com-
plexes. J. Mol. Biol. 2016, 428 (4), 720−725.
(40) Jorgensen, W. L.; Tirado-Rives, J. The OPLS Potential
Functions for Proteins. Energy Minimizations for Crystals of Cyclic
Peptides and Crambin. J. Am. Chem. Soc. 1988, 110 (6), 1657−66.
(41) Rodrigues, J. P. G. L. M.; Trellet, M.; Schmitz, C.; Kastritis, P.;
Karaca, E.; Melquiond, A. S. J.; Bonvin, A. M. J. J. Clustering
Biomolecular Complexes by Residue Contacts Similarity. Proteins:
Struct., Funct., Genet. 2012, 80 (7), 1810−1817.
(42) Lensink, M. F.; Wodak, S. J. Docking and Scoring Protein
Interactions: CAPRI 2009. Proteins: Struct., Funct., Genet. 2010, 78
(15), 3073−3084.
(43) Snijder, J.; Burnley, R. J.; Wiegard, A.; Melquiond, A. S. J.;
Bonvin, A. M. J. J.; Axmann, I. M.; Heck, A. J. R. Insight into
Cyanobacterial Circadian Timing from Structural Details of the KaiB-
KaiC Interaction. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 1379−
1384.
(44) Tseng, R.; Goularte, N. F.; Chavan, A.; Luu, J.; Cohen, S. E.;
Chang, Y. G.; Heisler, J.; Li, S.; Michael, A. K.; Tripathi, S.; et al.
Structural Basis of the Day-Night Transition in a Bacterial Circadian
Clock. Science (Washington, DC, U. S.) 2017, 355 (6330), 1174−1180.
(45) Villarreal, S. A.; Pattanayek, R.; Williams, D. R.; Mori, T.; Qin,
X.; Johnson, C. H.; Egli, M.; Stewart, P. L. CryoEM and Molecular
Dynamics of the Circadian KaiB-KaiC Complex Indicates That KaiB
Monomers Interact with KaiC and Block ATP Binding Clefts. J. Mol.
Biol. 2013, 425 (18), 3311−24.
(46) Lee, B.; Richards, F. M. The Interpretation of Protein
Structures: Estimation of Static Accessibility. J. Mol. Biol. 1971, 55
(3), 379−400.
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