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Background: micro RNA (miRNA) are important regulators of gene expression and may influence phenotypes and
disease traits. The connection between genetics and miRNA expression can be determined through expression
quantitative loci (eQTL) analysis, which has been extensively used in a variety of tissues, and in both human and
model organisms. miRNA play an important role in brain-related diseases, but eQTL studies of miRNA in brain tissue
are limited. We aim to catalog miRNA eQTL in brain tissue using miRNA expression measured on a recombinant
inbred mouse panel. Because samples were collected without any intervention or treatment (naive), the panel
allows characterization of genetic influences on miRNAs' expression levels.

We used brain RNA expression levels of 881 miRNA and 1416 genomic locations to identify miRNA eQTL. To
address multiple testing, we employed permutation p-values and subsequent zero permutation p-value correction.
We also investigated the underlying biology of miRNA regulation using additional analyses, including hotspot
analysis to search for regions controlling multiple miRNAs, and Bayesian network analysis to identify scenarios
where a miRNA mediates the association between genotype and mRNA expression. We used addiction related

Results: Thirty-eight miRNA eQTL were identified after appropriate multiple testing corrections. Ten of these
miRNAs had target genes enriched for brain-related pathways and mapped to four miRNA eQTL hotspots. Bayesian
network analysis revealed four biological networks relating genetic variation, miRNA expression and gene

Conclusions: Our extensive evaluation of miRNA eQTL provides valuable insight into the role of miRNA regulation
in brain tissue. Our miRNA eQTL analysis and extended statistical exploration identifies miRNA candidates in brain

Keywords: miRNA, eQTL, Hotspots, Mediation, Brain, Bayesian networks

Background

In recent years, there has been increasing interest in
micro RNAs (miRNAs) [1]. miRNAs are small (approxi-
mately 22 nucleotides in length) non-coding RNA
known to influence gene expression by way of targeting
messenger RNA (mRNA). Specifically, miRNAs will act
to repress mRNA translation or increase mRNA degra-
dation [2]. miRNAs contain a small ‘seed’ region which
is complementary to the 3’ untranslated region (UTR)
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of the mRNAC(s) it targets [3]. More than 60% of human
mRNA genes have such target sites in their 3" UTR [4].
There are various miRNA biogenesis pathways [5].
The ‘canonical’ biogenesis of a miRNA starts with pri-
mary miRNA (pri-miRNA) being transcribed by either
RNA polymerase II or RNA polymerase III. miRNA are
transcribed from intronic regions (within a host gene) or
from intergenic regions [6]. The pri-miRNA is further
prepared by the Drosha microprocessor complex and
the characteristic hairpin is cleaved by the Dicer
complex [5]. The functional strand of the miRNA then
combines with Argonaute proteins to form the RNA-
induced silencing complex. This complex can then
perform cleavage, promote translational repression, or
deadenylate target mRNA [5]. At any point in this
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pathway there may be alterations or omissions that results
in a non-linear pathway to a mature miRNA and thus,
there exists various regulatory mechanisms of miRNA
expression [5, 7]. miRNAs can be down-regulated or up-
regulated and thereby, positively or negatively regulate
gene expression respectively. miRNAs are important for
cell development (including the vascular, immune, and
neurological cells) [8]. miRNAs are also known to contri-
bute to a wide variety of brain related diseases, including
Alzheimer’s, Parkinson’s, Huntington’s and alcohol use
disorders [8, 9].

The link between genetic background and miRNA
expression can be investigated through expression
quantitative trait loci (eQTL) analysis, which examines
regions of the genome (loci) that influence a quantita-
tive trait [10]. Here, the quantitative trait (i.e., contin-
uous measure) is miRNA expression. Most frequently
the regions of the genome are represented by single
nucleotide polymorphisms (SNPs) [10]. eQTL can be
placed in one of two categories depending on their
genomic location. Local eQTL are located near the
gene (or miRNA) while distal eQTL are in a region
far from the gene (or miRNA). Local and distal are
often referred to as cis or trans, where cis implies
variants affecting transcription factor binding sites or
other regulatory sequences near a gene, and trans
implies variants affecting changes in the structure or
function of transcription factors or other regulatory
proteins for a more ‘global’ effect [11]. True cis
effects are defined by Gilad as, “Regulatory elements
[that] have an allele-specific effect on gene expres-
sion” [12]. Examples of cis regulatory elements
include, promotors and enhancer elements [12]. We
will assume that local implies cis and distal implies
trans, but experimental validation is necessary to con-
firm these assumptions.

Many miRNA eQTL studies have been performed
[13-19], but few examine miRNA specific to brain tissue
[20, 21]. Cataloging brain tissue miRNA eQTL in mice
provides a way to uncover genetic influence on miRNA
expression levels that is difficult to determine in humans
because of the challenges of obtaining brain tissue and
difficulty in limiting the variability due to environmental
exposure. Model organisms have the advantages of living
in a controlled environment, and RNA samples from
brain are easier to collect [22]. By combining the infor-
mation from brain eQTL in mouse models, we can pro-
vide candidate miRNAs for future mechanistic studies in
animals, which will serve as an accompaniment to the
more limited human brain studies. Although in some
cases specific mouse miRNA may not be conserved in
humans, these miRNAs could still reveal biological
mechanisms that are relevant in human. Furthermore,
many miRNA eQTL studies have limited their scope to
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only cis eQTL [19, 21]. We will examine both cis and
trans eQTL to gain more information on the regulation
of miRNAs in brain.

The specific data used in this study are obtained from
the LXS recombinant inbred (RI) panel. This panel was
derived from the parental Inbred Long (L) Sleep and
Inbred Short (S) Sleep strains [23], which were originally
selected to vary in the loss of righting reflex (LORR)
behavioral phenotype and were later inbred over many
generations. The LORR phenotype is defined as the time
it takes for a mouse to right itself in a v-shaped tray after
being given a dose of ethanol [24]. Long sleep strains
take a longer time to right themselves compared to the
short sleep strains and are, therefore, more sensitive to
the hypnotic effects of ethanol.

RI panels allow for improved mapping power due to
their ability to minimize environmental variability and to
isolate genetic variability by taking measurements on
numerous mice from the same strain [23]. Another
major advantage of the RI panel is that they are perpe-
tually renewable and allow for the collection of many
different traits by collaborating research teams over
extended periods of time. The LXS panel is also useful
for investigating variation in non-alcohol related traits,
and has been shown to vary in phenotypes such as long-
evity [25], and hippocampus weight [26]. Furthermore,
the advantage of using strains from a RI panel that have
no experimental exposure (i.e., to ethanol) is that we can
measure RNA expression levels that determine predispo-
sition to a phenotype rather than expression levels that
respond to an exposure.

We performed miRNA eQTL (mi-eQTL) analysis and
mRNA, i.e. gene, eQTL (g-eQTL) analysis on the LXS RI
panel to better understand the role of genetic regulation
of miRNA expression in the brain. Related work
included Rudra et al [24], which used the same miRNA
brain expression data, but focused on a few specific alco-
hol related phenotypes, rather than taking a global
approach. Therefore, our work is presented as a compre-
hensive QTL study that is generalizable to other brain
related traits. This work helps fill the gap in mi-eQTL
literature by providing resources specific to brain tissue,
which is largely understudied. We also reported the
results of a hotspot analysis, which has the potential to
uncover novel regulators of miRNA expression. Finally,
we integrated our results with available gene expression
data on the same RI panel to examine the relationship
between miRNAs and their associated gene targets via
Bayesian network analysis. The extensive evaluation of
mi-eQTL allows us to obtain more information on the
role of miRNA regulation in brain and generate a
resource for researchers investigating miRNA in brain
and brain related diseases. Discovered mi-eQTL are
available at PhenoGen (http://phenogen.org).


http://phenogen.org
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Results

mi-eQTL analysis

mi-eQTL were obtained via correlation of miRNA expres-
sion and the genotype at a given genomic locus (see work-
flow in Additional file 1: Figure S3 and S4). Because of the
multiplicity of SNPs across the RI panel, we test eQTL
associations using strain distribution patterns (SDPs) (see
Methods). Considering the power of our statistical tests
due to the sample size and the nature of our permutation
p-value calculation, each miRNA was limited to one
genome-wide eQTL (across variants) represented by the
maximum logarithm of the odds (LOD) score. The LOD
Score is a representation of eQTL strength and allows us
to compare different types of mi-eQTLs by their statistical
strength (Fig. 1). 38 miRNAs (4.3% of all miRNAs tested)
had a genome-wide significant mi-eQTL. Significance was
determined via a permutation threshold of 0.05 to account
for multiple testing across SDPs and further false discov-
ery rate (FDR) threshold of 0.05 (to adjust for multiple
testing across miRNAs). Table 1 contains all significant
mi-eQTL and their corresponding Bayes’ 95% credible
interval. All mi-eQTL tested can be found on PhenoGen
(see Data Availability section) and Additional file 1: Figure
S1 contains a visualization of eQTLs via a boxplot illus-
trating the differences in miRNA expression between
genetic variant Eight (21%) miRNA involved in mi-eQTL

Page 3 of 14

were novel and 14 (37%) were miRNA transcribed from
intronic regions (Table 2). The majority of mi-eQTL are
cis mi-eQTL (79%), leaving only eight trans mi-eQTL
(mmu-miR-677-5p, mmu-miR-193a-3p, mmu-miR-6929-
3p, mmu-miR-6516-5p, mmu-miR-381-5p, mmu-miR-
3086-5p, mmu-miR-32-3p, novel:chrd_10452). Human
orthologs (of 8 miRNA) can be found in Additional file 1:
Table S1.

Cis mi-eQTL compared to trans mi-eQTL have signif-
icantly higher LOD scores (p-value =0.023; Fig. 1la).
Additionally, novel miRNAs have significantly higher
LOD scores on average, compared to annotated miRNAs
(p-value = 0.028; Fig. 1b). However, there is no signifi-
cant difference in mi-eQTL LOD score based on miRNA
location (intronic versus non-intronic; Fig. 1c) or
between highly conserved miRNAs and lowly conserved
miRNAs (p-value = 0.169; Fig. 1d). The number of vali-
dated gene targets, as determined by MultiMiR [27]
varied substantially between miRNAs (Table 2). Finally,
we find a strong positive correlation between mi-eQTL
LOD score and heritability of the miRNA involved
(p-value = 3.67e-8; Fig. le).

mi-eQTL enrichment analysis
We were only able to perform enrichment analysis on
annotated miRNAs (30 of the 38 miRNAs with mi-
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Fig. 1 Comparisons of characteristics of mi-eQTL in brain with statistical significance. Log transformed LOD scores are for visualization reasons
only. The actual calculations were done on untransformed LOD scores. a The difference in mi-eQTL strength between cis and trans mi-eQTL
(Wilcoxon summed rank test-statistic (W) = 183, p-value = 0.023). b The difference in mi-eQTL strength between mi-eQTL of annotated miRNA
compared to mi-eQTL of novel mIRNA (W =59, p-value = 0.028). ¢ The difference in mi-eQTL strength between mi-eQTL with miRNA in intronic
locations compared to those in non-intronic locations (W =229, p-value = 0.067). d The difference in strength between mi-eQTL involving miRNAs
that were highly conserved (mean PhastCon conservation score above 0.5) compared to those involving lowly conserved miRNAs (W = 108, p-
value =0.169). The conservation scores were dichotomized at 0.5 because that were often close to zero or one. e The relationship between mi-
eQTL strength and the heritability (measured by the intraclass correlation coefficient) of the miRNA involved (in the mi-eQTL)
(rho=0.82, p-value = 3.67e-8)
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Table 1 Significant brain mi-eQTL and their characteristics
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miRNA eQTL eQTL eQTL eQTL Genome-wide FDR Cis/trans
chr location (Mb) 95% C.I. LOD p-value
mmu-miR-8114 1 1543 (1529, 154.9) 10.11 0.0010 0.0251 C
mmu-miR-32-3p 1 171.8 (171.1,174.0) 551 0.0010 0.0251 T
mmu-miR-1981-3p 1 187.2 (183, 188.7) 763 0.0010 0.0251 C
mmu-miR-205-5p 1 1936 (1925, 193.6) 6.38 0.0010 0.0251 C
mmu-miR-6690-5p 2 9.8 (5.6, 10.9) 532 0.0020 0.0463 C
mmu-miR-467e-5p 2 106 (3.2, 10.9) 549 0.0010 0.0251 C
mmu-miR-669a-5p 2 106 (8.1,109) 6.29 0.0010 0.0251 C
mmu-miR-297b-5p 2 106 (106, 10.9) 583 0.0020 0.0463 C
mmu-miR-7674-5p 2 328 (328, 34.6) 6.77 0.0010 0.0251 C
mmu-miR-466q 3 284 (28, 28.9) 18.86 0.0010 0.0251 C
novel:chr4_9669 4 431 (32,43.7) 1241 0.0010 0.0251 C
novel:chr4_11381 4 87.1 (87.1,87.2) 2347 0.0010 0.0251 C
mmu-miR-9769-3p 7 306 (30,6, 30.6) 2592 0.0010 0.0251 C
mmu-miR-5121 7 435 (403, 45.5) 17.25 0.0010 0.0251 C
mmu-miR-7057-5p 7 64.6 (57,67.1) 2443 0.0010 0.0251 C
novel:chr8_23508 8 1255 (125.4,125.6) 21.89 0.0010 0.0251 C
novel:chr9_24385 9 773 (773,77.3) 19.99 0.0010 0.0251 C
novel:chr4_10452 9 100.3 (94, 1134) 578 0.0010 0.0251 T
novel:chr10_26214 10 438 4, 56) 3253 0.0010 0.0251 C
mmu-miR-6905-5p 10 253 (248, 25.9) 12.75 0.0010 0.0251 C
novel:chr10_26328 10 253 (248, 25.9) 20.74 0.0010 0.0251 C
mmu-miR-1934-5p 11 69.0 (67.8,69.7) 20.39 0.0010 0.0251 C
mmu-miR-193a-3p 11 74.3 (743, 79.5) 729 0.0010 0.0251 T
mmu-miR-8103 11 95.1 (95.1, 99.6) 8.04 0.0010 0.0251 C
mmu-miR-152-5p 11 96.2 (934, 1034) 6.33 0.0010 0.0251 C
mmu-miR-677-5p 11 983 (964, 101) 20.81 0.0010 0.0251 T
mmu-miR-5621-5p 11 1156 (1154, 116) 25.18 0.0010 0.0251 C
mmu-miR-208b-3p 14 54.7 (54.6, 55) 932 0.0010 0.0251 C
novel:chr15_40280 15 94.8 (94.8, 95.5) 8.10 0.0010 0.0251 C
mmu-miR-6516-5p 16 457 (45.7,51.5) 5.94 0.0020 0.0463 T
mmu-miR-381-5p 16 458 (45.7,515) 559 0.0010 0.0251 T
mmu-miR-6929-3p 19 300 (293, 30.5) 746 0.0010 0.0251 T
mmu-miR-3086-5p 19 30.2 (293, 30.5) 5.06 0.0010 0.0251 T
mmu-miR-201-5p X 66.6 (654, 66.6) 8.63 0.0010 0.0251 C
mmu-miR-465¢-5p X 66.6 (654, 82.2) 544 0.0010 0.0251 C
mmu-miR-547-3p X 66.6 (654, 66.6) 9.58 0.0010 0.0251 C
mmu-miR-871-3p X 66.6 (49, 674) 6.28 0.0010 0.0251 C
mmu-miR-881-3p X 66.6 (654, 67.4) 6.13 0.0010 0.0251 C

Abbreviations: Chr Chromosome, pos Position, Mb Megabase, C.I. Bayes’ credible interval, LOD Logarithm of the odds score, FDR False Discovery Rate, cis/trans cis
(within 5 Mb on either side of the associated SDP) or trans (indicated by C or T)

eQTL). Of those 30 miRNAs, three had no related
KEGG pathway information for their target genes, and
13 had less than four target genes with KEGG pathways
information. Of the remaining 14 miRNAs with KEGG

pathway information for at least four of their target
genes, ten had brain-related KEGG pathways relevant to
the nervous system, brain tissue, brain function or neu-
rological/neuropsychiatric disease (Table 3). All results
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Table 2 miRNA characteristics of those miRNA with significant mi-eQTL

miRNA chr start end miRNA type Anno- conservation ICC No. targets
location location location tation
mmu-miR-8114 1 153899989 153900009 I A 0.064 0.71 0
mmu-miR-32-3p 4 56895232 56895252 N A 1.000 031 0
mmu-miR-1981-3p 1 184822409 184822429 I A 0.062 0.56 0
mmu-miR-205-5p 1 193507503 193507524 N A 1.000 025 31
mmu-miR-6690-5p 2 10514318 10514340 N A 0.972 0.16 8
mmu-miR-467e-5p 2 10505731 10505752 N A NA 035 12
mmu-miR-669a-5p 2 10510185 10510208 N A NA 0.26 13
mmu-miR-297b-5p 2 10511686 10511707 N A 0.727 0.09 147
mmu-miR-7674-5p 2 32050946 32050969 I A 0.093 040 0
mmu-miR-466q 3 28419988 28420007 N A NA 0.80 175
novel:chr4_9669 4 41640264 41640319 N N 0.525 0.59 0
novel:chr4_11381 4 87071780 87071841 I N 0.264 0.88 0
mmu-miR-9769-3p 7 30552871 30552892 N A 0.820 0.89 0
mmu-miR-5121 7 45126925 45126945 N A 0.799 0.72 17
mmu-miR-7057-5p 7 66381702 66381719 I A 0.000 0.85 0
novel:chr8_23508 8 125837774 125837841 N N 0.003 0.84 0
novel:chr9_24385 9 74966743 74966804 I N 0474 0.75 0
novel:chr4_10452 4 132310004 132310065 N N 0.822 0.56 0
novel:chr10_26214 10 4092814 4092873 I N 0.002 0.87 0
mmu-miR-6905-5p 10 24910669 24910691 I A 0.000 0.62 0
novel:chr10_26328 10 25416000 25416061 N N 0923 0.71 0
mmu-miR-1934-5p 11 69663055 69663077 N A 0.000 0.60 13
mmu-miR-193a-3p 11 79712009 79712030 I A 1.000 033 8
mmu-miR-8103 11 97063829 97063849 N A 0.001 033 0
mmu-miR-152-5p 11 96850400 96850423 N A 0.996 048 0
mmu-miR-677-5p 10 128085291 128085312 I A 0.858 0.76 51
mmu-miR-5621-5p 11 115795824 115795846 N A 0.003 0.83 0
mmu-miR-208b-3p 14 54975710 54975731 N A 1.000 038 12
novel:chr15_40280 15 95488968 95489024 N N 0.001 038 0
mmu-miR-6516-5p 11 117077370 117077391 N A 0974 051 0
mmu-miR-381-5p 12 109726829 109726851 I A 1.000 031 0
mmu-miR-6929-3p 11 101419187 101419209 I A 0.165 025 0
mmu-miR-3086-5p 19 58911725 58911744 N A 0.012 035 9
mmu-miR-201-5p X 67988135 67988156 I A 0.001 048 31
mmu-miR-465¢-5p X 66832566 66832587 N A 0.079 039 24
mmu-miR-547-3p X 67988383 67988403 I A 0.025 050 14
mmu-miR-871-3p X 66810438 66810460 N A 0.001 043 5
mmu-miR-881-3p X 66801954 66801975 N A 0.045 0.50 28

Abbreviations: Chr Chromosome, annotation Annotated or novel (indicated by A or N), where novel miRNAs were identified by the mirDeep2 software, miRNA type
intronic or non-intronic (indicated by | or N) as determined by the UCSC Genome Table Browser, conservation PhastCons Conservation Score (closer to 1 indicates
more highly conserved) where Not Applicable (NA) values indicate that a score was not returned by the Table Browser, ICC Intraclass correlation (a measure of
miRNA heritability), No. targets Number of validated gene targets identified by the MultiMiR R package
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Table 3 Brain-related enriched pathways obtained for annotated miRNA with a significant mi-eQTL

miRNA Brain Related KEGG Pathway # of genes FDR
miR-547-3p Axon guidance 5 0.0165
mmu-miR-32-3p GABAergic synapse 7 <0.0001
Glutamatergic synapse 8 0.0007
Nicotine addiction 5 0.0045
Morphine addiction 6 0.0046
Amphetamine addiction 7 0.0052
Axon guidance 9 0.0095
mmu-miR-208b-3p Glioma 5 0.0007
Neurotrophin signaling pathway 6 0.0346
mmu-miR-8114 Axon guidance 5 0.0456
mmu-miR-677-5p mTOR signaling pathway 13 0.0037
Cocaine addiction 8 0.0273
mmu-miR-6929-3p Ubiquitin mediated proteolysis 5 0.0208
mmu-miR-465¢-5p GABAergic synapse 9 <0.0001
Morphine addiction 10 < 0.0001
Nicotine addiction 6 0.0028
mmu-miR-193a-3p Glioma 4 0.0015
mmu-miR-466q Nicotine addiction 4 0.0038
mmu-miR-7674-5p Axon guidance 5 0.0010

FDR are the adjusted p-values. Only pathways with 4 or more genes and an FDR less than 5% are shown in the table. Pathways were deemed brain related if the
PubMed search of the pathway name AND the keyword “brain” yielded at least one abstract. The abstract(s) were read to confirm brain related research

from the enrichment analysis can be found in

Additional file 2.

Hotspot analysis

Figure 2 provides a visualization of the mi-eQTL analysis
by physical location of the loci and of the miRNA.
Although there are many cis mi-eQTL, indicated by
points on the diagonal, there are also potential hotspots,
indicated by vertical bands.

Potential hotspots were identified by dividing the gen-
ome into non-overlapping bins that were four SDPs wide
(total number of bins equal to 354). Assuming mi-
eQTLs were uniformly distributed across the genome,
the counts of mi-eQTL in each bin follow a Poisson dis-
tribution [28]. To obtain a Bonferroni corrected p-value
less than 0.05, a hotspot must have contained more than
six mi-eQTLs. Using this cutoff, we identified seven bins
with six or more mi-eQTL (see Fig. 3 and Table 4), that
were collapsed into four final hotspots.

There were originally two additional hotspots on chro-
mosome 7 and one additional hotspot on chromosome
11 but they were collapsed with an adjacent hotspot (i.e.
the ending SDP of the first hotspot resided directly next
to the starting SDP of the second hotspot). Three of the
four hotspots overlapped addiction related behavioral
QTLs. We performed an enrichment analysis on the tar-
gets of any miRNA with mi-eQTL within a given

hotspot using Diana-MirPath [32] (Additional file 1:
Table S2). Of the nine miRNAs in the hotspots, seven
had enrichment to a variety of functions including sig-
naling and metabolism pathways.

Bayesian network analysis

We tested triplets of SDP, miRNA, gene (i.e. mRNA) for
evidence of mediation, where the association of the SDP
with the miRNA (or gene) is mediated by a gene (or
miRNA) respectively. Triplets were determined by the
overlap of SDPs of the 38 significant mi-eQTL and SDPs
of the 2389 significant g-eQTL (data not shown). Of the
175 possible triplets (SDPs, miRNA, mRNA), there were
11 significant triplets (p < 0.05) based on an initial med-
iation analysis (Additional file 1: Table S3). We then per-
formed Bayesian Network Analysis (BNA) on these top
mediation pathway candidates, which consist of four dis-
tinct miRNAs. Bayesian networks that included all genes
and all miRNA associated with a given SDP were fit
(Fig. 4).

The Bayesian network results identified two types of
mediation for the four, candidate miRNAs. In one type
of network, genes are acting as mediators of the effect of
the genetic variant on miRNA expression (Fig. 4a, b),
while in the other miRNAs are acting as mediators of
the effect of the genetic variant on gene expression (Fig.
4c, d). The strength of associations was typically strong,
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Table 4 Brain mi-eQTL hotspots and their respective locations
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name chromosome start (Mb) end number of Overlapping
(Mb) mi-eQTL Addiction-related
bQTL
Hotspot-chr7 7 378 64.6 22 Alcohol preference [29]
Hotspot-chr10 10 236 253 8 Morphine Preference [30]
Hotspot-chr11 11 934 102.6 13 LORR [31]
Hotspot-chrX X 66.6 82.2 9 No Addiction Related

Hotspots were evaluated using mi-eQTL determined at a Bonferroni corrected threshold of 0.05 (4e-8) and hotspot significance of 0.05 after Bonferroni
adjustment for number of bins tested. Overlapping bQTLs were determined by results of the MGI Phenotypes, Alleles, & Disease Models Search

as indicated by the thickness of the arrow (Fig. 4). In
particular, 78% of all edges were contained in more than
80% of the bootstrap sample networks (Additional file 1:
Table S4).

Phenotypes

As an example of the utility of the mi-eQTL results, we
evaluated the associations of mi-eQTL miRNAs with
several alcohol related behavioral phenotypes including
Sleep Time (ethanol and saline pre-treatment), Acute
Functional Tolerance (ethanol and saline pre-treatment),
and Rapid Tolerance from Bennett et al. [33]. Four miR-
NAs with a significant mi-eQTL had associations with
phenotypes (FDR < 0.2), two with the Sleep Time and
two with Acute Functional Tolerance (Table 5). The

behavioral QTL (bQTL) for ST Saline on chromosome 4
overlaps with the mi-eQTL for novel:chr4_11381 (Table
5). In addition, the miRNA eQTL hotspots also over-
lapped with addiction-related bQTL (Table 4).

Discussion

Protein coding gene expression has been the subject of
most eQTL analyses, while mi-eQTL analyses have gar-
nered less attention. These studies indicate that some
eQTL are consistent across tissues, but other eQTL vary
by tissue [34]. Because there are few eQTL analyses for
miRNA, and because miRNA eQTL can vary by tissue
[35], there is a need for tissue specific mi-eQTL studies.
In particular, brain tissue has not been the subject of
any genome-wide mi-eQTL analyses. In this work, we

A)
Chr11:Mb 69.0
\ 4
miR-1934-5p
Q

network d novel:chr10_26214 network

B)

| Chr7:Mb 43.5 |

Fig. 4 Bayesian networks of the four miRNAs. Using the hill-climbing algorithm, these were the networks determined by BIC and bootstrapping.
A black box indicates the SDP location (associated with the miRNA), blue the miRNA, and red the genes. The thickness of the arrow shows the
strength of association and the darkness of the arrow shows the strength of directionality as defined by the percent of the bootstrap iterations
the edge or direction was observed, respectively. A plus sign next to an edge represents a positive association and a negative sign next to an
edge represents a negative association (as determined by Spearman Correlation). @ miR-1934-5p network b miR-5121 network ¢ miR-7057-5p
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Table 5 miRNA associated with ethanol related phenotypes

Page 9 of 14

mMiRNA phenotype Rho FDR bQTL bQTL bQTL
chr location (Mb) p-value
novel:chr4_11381 ST Saline —-0415 0.061 4 87.1 0.018
mmu-miR-32-3p ST Saline 0.349 0.170 1 1718 0318
mmu-miR-208b-3p AFT Ethanol 0338 0.193 14 547 0.189
novel:chr4_10452 AFT Ethanol 0.343 0.193 9 100.3 0.206

Spearman correlation was used to determine associations. bQTL analysis was performed on the mi-eQTL locations of those miRNA associated with an ethanol
related phenotype. ST Saline is the sleep time phenotype measured on mice pre-treated with saline. AFT Ethanol is the acute functional tolerance phenotype
measured on mice pre-treated with ethanol. FDR is the false discovery rate. Only associations with FDR < 0.2 are shown

successfully identified and characterized significant mi-
eQTL in brain tissue. We found hotspots and evidence
of miRNAs as mediators of the genetic effects on gene
expression. Furthermore, we established enrichment for
brain related pathways among targets for miRNA with
significant mi-eQTL. To our knowledge, this mi-eQTL
study in mouse brain tissue is the most comprehensive
genome-wide eQTL study to date.

Since miRNAs are regulators of steady state gene
expression levels, the association between genetic differ-
ences and miRNA expression, as determined by mi-
eQTL analysis, is relevant for identifying miRNAs that
are important to gene regulation and may explain the
genetic component of disease.

By examining features of the miRNA with mi-eQTL
more closely, we may gain insight into the complex role
that individual miRNA play in brain gene expression
levels. In particular, we found that cis mi-eQTLs were
significantly stronger than trams mi-eQTLs, which is
consistent with cis eQTL generally being stronger than
trans eQTL from g-eQTL analyses [36]. The significant
correlation between mi-eQTL strength and miRNA her-
itability was also to be expected since large heritability
indicates a strong overall genetic component for miRNA
expression, and a strong mi-eQTL indicates a specific
miRNA expression and genetic locus association [37].
Novel miRNAs were shown to have significantly stron-
ger mi-eQTL as well.

Because there is limited knowledge about the factors
that are important for tissue specific regulation of
miRNA expression, we performed further analyses to
gain deeper insight beyond just the discovery of indivi-
dual mi-eQTL. Hotspot analysis is useful in identifying
potential, ‘master regulators’ (one position in the gen-
ome that affects many miRNA) [38]. Many hotspot ana-
lyses have been performed on g-eQTL results [28, 39,
40] (see [38] for an entire list of gene hotspot studies),
with fewer being performed on mi-eQTL results [13].
Identification of hotspots provides information on key
loci that influence the expression of multiple miRNAs
and subsequently the expression levels of genes targeted
by those miRNAs. We discovered four hotspots in our
analysis suggesting there are loci that control many

miRNAs. These hotspots are especially important
because miRNA expression hotspots in brain have not
been well studied. Although the genes for Dicer and
Drosha, which are important for the biogenesis of all
miRNAs, were not physically contained by any of the
hotspots, there may be other potential regulators for
subsets of miRNAs.

To achieve an improved biological understanding of
the mi-eQTL results, enrichment of miRNAs’ targets
was performed. The targets of four of the miRNAs (miR-
547-3p, mmu-miR-32-3p, mmu-miR-8114, and mmu-
miR-7674-5p) with a significant mi-eQTL were individu-
ally enriched for the Axon Guidance KEGG pathway
and the targets of four miRNAs (mmu-miR-32-3p, mmu-
miR-677-5p, mmu-miR-465¢-Sp, and mmu-miR-466q)
were enriched for addiction related pathways. Axon gui-
dance is an integral part of the development of neural
circuits. Improperly developed circuits can lead to Alz-
heimer’s or Parkinson’s disease [41]. Addiction pathways
are also highly related to neuronal development in brain
[42]. These enrichment results highlight the importance
and specificity of miRNA in brain.

There were two miRNAs, miR-677-5p and miR-547-
3p, that showed enrichment for brain related pathways
and that were also involved in hotspots. miR-677-5p
showed enrichment for the cocaine addiction and
mTOR signaling pathways and was contained in
Hotspot-chrll, which was also enriched for the mTOR
signaling pathway. The mTOR pathway can be regulated
by the drug Curcumin, and has been suggested as treat-
ment for spinal cord injury (SCI) [43]. Additionally,
Hotspot-chrll overlaps with a bQTL for Loss of Right-
ing Reflex (a phenotype that showcases the effects of
ethanol) [31]. miR-547-3p was enriched for the axon
guidance pathway, as previously discussed. miR-547-3p
was associated with an SDP contained in Hotspot_chrX,
which showed significant enrichment for morphine
addiction, another brain specific pathway. The finding of
these brain related functions suggests miRNA may influ-
ence predisposition to behavior or disease.

The connection between miRNA and mRNA expres-
sion is also important. To probe this connection, we
combined multiple genes associated with a miRNA
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and a genetic variant in a directed network analysis.
We identified two miRNA networks where the asso-
ciation between a genetic locus and gene expression is
mediated by a miRNA, which suggests that the med-
iating effect of a miRNA is important to consider in
gene eQTL studies. We also identified networks where
genes may be mediating the association between a
genetic locus and miRNA expression. The gene med-
iating networks may indicate indirect effects of genes
regulating miRNAs.

Specifically, there were pathways mediated by miR-
7057-5p and novel:chr10_26214 as shown in the Baye-
sian networks. miRNA novel:chr10_26214 is predicted
to target genes Rmndl (required for meiotic nuclear
division 1 homolog) and Ndufallb (NADH:ubiquinone
oxidoreductase subunit A11B) from chromosome 10 and
miR-7057-5p mediates the relationship between chro-
mosome 7 and Tarsl2 (threonyl-tRNA synthetase-like 2),
which in turn Gm13853 (predicted gene 13,853) reacts
to. miR-7057 has also appeared as a mediator of an alco-
hol related phenotype. There were also two pathways in
which genes Alox8 (arachidonate 8-lipoxygenase) and
Zfp658 (zinc finger protein 658) mediate the influence
genetics on a miRNA.

Many of the genes involved in our Bayesian networks
have a biological role in brain related diseases. Cptlc
(carnitine palmitoyltransferase 1c) is mainly expressed in
neurons and has been shown to be associated with spas-
tic paraplegia, a genetic disorder that causes leg stiffness
and change in gait [44]. Snrnp70 (small nuclear ribonu-
cleoprotein 70) encodes a protein that is associated with
the formation of amyloid-beta plaques that contribute to
the development of Alzheimer’s Disease [45]. Also, of
importance, Tarsl2, partially encodes for aminoacyl-
tRNA synthetases (ARSs) [46]. ARSs have been asso-
ciated with several neuronal diseases [46].

As an example of the utility of our research, we inves-
tigated the connection between addiction related pheno-
types and our results. We found four miRNA associated
with the behavioral phenotypes we tested and an over-
lapping bQTL and mi-eQTL involving miRNA novel:
chrd_11381 and the sleep time after pretreatment with
saline (ST Saline) phenotype. Additionally, there were
overlapping addiction related bQTL and hotspots, mak-
ing those regions stronger candidates for further
research.

There were a couple limitations to our study. First, as
in most recombinant inbred panels, sample size is small
and consequently, statistical power is limited. It is likely
then, that weak (often the case for trans eQTL) mi-
eQTL were not detected. However, the LXS panel is one
of the largest mouse RI panels available. Second, both a
potential drawback and advantage is the use of whole
brain samples. On one hand, our results do not reflect a
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specific brain region, but as an advantage, they provide a
general resource if the relevant brain region is not known.
Finally, we were also unable to obtain enrichment path-
ways for novel miRNAs due to the lack of available anno-
tation. Further investigations would need to be performed
to confirm gene targets of the novel miRNAs.

The full mi-eQTL table can be found on PhenoGen
(see Data Availability section). Researchers can use the
mi-eQTL table to investigate a genomic location asso-
ciated with a specific trait or disease and determine asso-
ciated miRNA for that region. Alternatively, an
investigator may start with a specific miRNA and check
the mi-eQTL resource for evidence of a genetic associa-
tion. These types of inquiries can identify candidate
miRNAs and loci that are important for the regulation
of a behavioral or disease phenotype and motivate future
biochemical and mechanistic studies.

Conclusions

Our results fill a deficiency in the mi-eQTL literature by
providing resources specific to brain tissue. The hotspot
analysis uncovered miRNAs that target biologically rele-
vant genes in brain. Finally, by examining the relation-
ship between miRNA expression and gene expression
using Bayesian network analysis, we improve our under-
standing of how miRNAs may be associated with genetic
variants and genes. This extensive evaluation of mi-
eQTLs creates a platform for obtaining more informa-
tion on the role of miRNA regulation in brain.

Methods

Animals

The LXS RI panel [47] was generated from crosses
between the ILS and ISS strains of mice [24]. F2 mice
pairs are then repeatedly inbred to create the inbred
lines [24]. 175, group housed, male mice (59 LXS strains,
2-3 biological replicates per strain) were rapidly sacri-
ficed using CO2 gas at approximately 10 weeks of age
during the light phase, and brains were removed, divided
sagittally, and placed in RNALater (Thermo Fisher
Scientific) for RNA extraction and quantitation [24, 48].
All procedures for the Care and Use of Laboratory Ani-
mals were approved by the University of Colorado
Boulder, ITACUC. The procedures for RNA isolation
were approved by the University of Colorado Anschutz
Medical Campus IACUC.

Genotype data

Genotype data on the LXS panel from Yang et al. [49]
contains 34,642 informative SNPs excluding SNPs with
missing data in at least one of the 59 strains used for
analysis. Any number of SNPs can have the same SDP if
they are in complete linkage disequilibrium [24]. If two
SNPs have the same distribution of alleles across all
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strains, they have the same SDP. Since we only have 59
strains, many of the SNPs have the same pattern of var-
iation. SNPs were compressed into SDPs to be computa-
tionally efficient. In total, we had 1416 SDPs, which were
used for the mi-eQTL analysis. SDP locations are
reported as the median SNP location of all SNPs that
have an equivalent SDP.

miRNA expression

miRNA expression data was obtained from animals bred
at the Institute for Behavioral Genetics, Boulder, CO.
RNA was obtained from whole brain tissue. Fragments
in the 20-35bp range were size selected to create the
sequencing libraries. The Illumina HiSeq 2500 instru-
ment was used to sequence single-end 50 base pair reads
[24]. For mapping and quantification, we used a novel
miRNA pipeline (miR-MaGiC) that allows for stringent
mapping criteria because it maps to the individual tran-
scriptome for each strain, and then further collapses
miRNAs into, ‘miRNA families’ that allow for more
accurate read quantification per miRNA (i.e., to avoid
double read counting) [50]. The miRDeep2 software [51]
was also implemented in order to identify novel miRNA
by mapping reads to the genome. miRDeep2 first identi-
fies an accumulation of reads that map to unannotated
genome regions. Then, the region with reads and the
regions that flank them are scored based on their prob-
ability to contain a secondary structure that resembles a
miRNA precursor [51].

After mapping and quantitation, to remove batch
effects and other unknown factors, we applied the
Remove Unwanted Variations using residuals (RUVr)
method [24, 52]. In total, 881 miRNAs remain, with 86
of them being novel [24]. To account for heteroskedasti-
city and dependence between the mean and variance,
the Variance Stabilizing Transformation (VST) was used.
The VST transformed expression data for individual
mice was collapsed into strain averages [24]. We imple-
mented VST via the DEseq2 (Version 1.22.2) package
using the local dispersion fit parameter [53].

Messenger RNA (mRNA) expression

Mouse whole brain mRNA expression data was obtained
from the PhenoGen website [54], specifically as Affyme-
trix Mouse Exon 1.0 ST Array (Affymetrix, Santa Clara,
CA) CEL files [24]. Probesets were filtered in accordance
to the method of Vanderlinden et al. [55]. Probes that
failed to align uniquely to the mouse genome or aligned
to regions in the reference genome that contained a SNP
for either of the parent strains compared to the refer-
ence genome were masked [55]. For probesets targeting
the same gene, expression values were combined into a
single expression value on the log base 2 scale using
robust multi-array analysis (RMA) [24] within
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Affymetrix Power Tools [56]. Batch effects were adjusted
for via the ComBat methodology [57]. mRNA samples
were collapsed down to strain average means after keep-
ing only the 59 strains that overlapped with the miRNA
expression data.

eQTL analysis

Following transformation of the count data via VST [58]
and the calculation of strain means, expression quantita-
tive trait loci analysis was performed using marker
regression implemented using the R/qtl (Version 1.44.9)
package [59]. In a marker regression analysis, expression
is regressed onto the genotype. To be consistent with
the literature [14, 16, 20] and the controlled nature of
recombinant inbred mice (all of which are male), no
covariates were included in the model. 95% Bayes’ cred-
ible intervals were also calculated using R/qtl. Credible
intervals with zero width were expanded to the SDP’s
widest SNP locations. Local eQTL are located within 5
Mb of the gene (or miRNA) while distal eQTL are in a
region at least 5 Mb away from the gene (or miRNA) or
on a separate chromosome [34]. We used the local and
distal terminology interchangeably with cis and trans
respectively.

We primarily focused on mi-eQTL, but g-eQTLs were
also determined (see below). The complete workflow is
presented in Additional file 1: Figure S3. Significant
eQTLs were defined by permutation adjusted p values
calculated in the R/qtl (Version 1.44.9) package [59].
One thousand permutations were used in the adjust-
ment, and an alpha level of 0.05 was assumed. Due to
limited power because of the sample size, mi-eQTL were
limited to the eQTL with the maximum LOD score for
each miRNA. Then, to correct for permutation p-values
equal to 0, we implemented the Phipson and Smyth
recommended estimate of exact p-values (adding one to
both the numerator and denominator of the permuta-
tion p-value calculation) [60]. The permutation p-values
account for the multiple testing across SDPs for each
miRNA by permuting the strain labels. Note that this
does not account for the multiple testing across miR-
NAs. Thus, multiple testing across miRNAs was con-
trolled via a False Discovery Rate (FDR) threshold of
0.05 [61].

miRNA with multiple locations

There are 32 miRNAs that have copies in multiple loca-
tions in the genome. To report a mi-eQTL, we must
choose one location. Determining the best location for
miRNA with multiple locations falls into three situa-
tions. In the most common situation, we decide based
on the location with the strongest local eQTL (within 5
Mb on either side of the eQTL position [34]). If all pos-
sible locations fall into the same local window, then the
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location was chosen based on distance to the strongest
SDP within the local window. Finally, if no SDPs fall
within any of the local windows, then the location was
chosen based on the shortest distance to the strongest
SDP anywhere on the chromosome (Additional file 1:
Figure S2).

Evaluation of significant mi-eQTL
A variety of methods were used to evaluate significant
mi-eQTL (see workflow in Additional file 1: Figure S4).
Sequence conservation was determined using the Phast-
Con conservation score [62]. Scores for each miRNA
involved in an eQTL were obtained from the UCSC gen-
ome browser Table browser tool using the Dec. 2011
(GRCm38/mm10) mouse reference genome and the 60
Vertebrate Conservation (Vert. Cons.) group of organ-
isms for comparison. Scores were dichotomized using a
cut-point of 0.5. Also, from the UCSC genome browser,
both the same reference genome and Consensus Coding
Sequences (CCDS) track were used to determine
whether a miRNA was intronic. Heritability was esti-
mated by calculating the intraclass correlation (ICC)
using the HeritSeq (Version 1.0.1) package in R [37].
The multiMiR (Version 1.4.0) package [27] collates
miRNA-target interactions derived from 11 external
databases. From this software, we obtained both experi-
mentally validated and computationally predicted
miRNA gene targets. Predicted gene targets were only
considered if the predictions were indicated by 3 or
more databases.

Enrichment analysis

Enriched pathways for both validated (Tarbase v7.0 [63])
and predicted (MicroT-CDS v5.0 [64]) gene targets of
miRNA with eQTL were determined using the Diana-
MiR Path bioinformatics tool [32]. KEGG Molecular
pathways were investigated via the hypergeometric sta-
tistical test using an FDR correction for multiple testing
[32]. Pathways were deemed brain related if the PubMed
search of the pathway name AND the keyword “brain”
yielded at least one abstract. The abstract(s) were read
to confirm brain related research. Enrichment analysis
on hotspots was performed on all miRNA targets asso-
ciated with miRNA with mi-eQTL in a hotspot region.

Hotspots

The two main approaches for hotspot detection are
either permutations or based on bins [13, 28, 38, 39].
Since recombinant inbred strains have approximately a
50:50 allele frequency, permuting within SDPs is unne-
cessary. Therefore, we performed our hotspot analysis
via the bin-based approach of Brem et al [28]. If the sig-
nificant eQTL were uniformly distributed across the
entire genome, then the number of eQTL within one bin
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(or window) would follow a Poisson distribution with
mean and variance equal to the total number of eQTL
divided by the total number of bins. Based on a Bonfer-
roni corrected threshold of 0.05 (4e-8) on raw p-values
and splitting the genome into 4 SDP wide bins, our Pois-
son mean was calculated to be 0.56. Using this threshold
and Bonferroni correction for the number of bins, a hot-
spot must contain at least 6 eQTLs. Therefore, if the mi-
eQTLs were randomly distributed across the entire gen-
ome then the probability of a bin containing more than
6 eQTLs is less than 0.05 adjusting for the number of
bins tested. Sensitivity analysis with bin widths of 3 and
5 SDPs did not qualitatively change the results (data not
shown).

Bayesian network analysis (BNA)

We explored the relationships between genetic loci, and
corresponding genes and miRNA in three steps. First, g-
eQTL analysis was performed to determine associations
between SDPs and genes (i.e. mRNA expression). Tri-
plets of SDP, miRNA, gene (i.e. mRNA)) were initially
identified by mi-eQTL and g-eQTL overlapping at a
common SDP. Second, as a filter for Bayesian network
analysis, we tested the triplets for evidence of (causal
and reverse) mediation using the standard linear struc-
tural equation modeling (LSEM) method developed by
Baron and Kenny was implemented [65].

Confidence intervals around the mediation coefficients
were computed using the non-parametric bootstrap
(1000 iterations) using the boot (Version 1.3.20) package
[66, 67] in R. Due to the exploratory nature of the med-
iation analysis, 99.5% confidence intervals were deter-
mined, but no formal multiple testing correction was
applied. Pathways were deemed significant if the confi-
dence interval did not contain zero. Both miRNA
expression and mRNA expression were evaluated as
mediators.

Many significant triplets contained the same miRNA
and different mRNA. Thus, for the third step, to esti-
mate the direction of relationships among the many
genes and the miRNA, Bayesian Networks [68] were fit
using all genes implicated in a significant triplet with
each miRNA. Gaussian Bayesian networks were fit using
the hill-climbing algorithm [69] from the bnlearn (Ver-
sion 4.4.1) package in R [70]. Network models were
prioritized by the Bayesian Information Criteria (BIC).
Edges were forced to be directed away from the SDP in
all networks (since genetic variants are not influenced by
either miRNA expression or mRNA expression). Edge
strength was calculated by repeating the network learn-
ing process using 500 bootstrap samples of the original
59 strains. Network averaging was used to determine the
final network structure (keeping a directed edge if
observed in at least 50% of the bootstrap iterations) [70].
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Phenotypes

Associations between miRNA expression and LXS phe-
notypes were determined by Spearman correlation
(corr.test in R) on strain means. As a use case we ana-
lyzed the Sleep Time with ethanol pre-treatment, Sleep
Time with saline pre-treatment, Acute Functional Toler-
ance with ethanol pre-treatment, Acute Functional Tol-
erance with saline pre-treatment, and Rapid Tolerance
phenotypes from the study conducted by Bennett et al.
[33]. We performed bQTL analysis on the phenotypes
associated with miRNA using the SDPs involved in their
respective mi-eQTL. bQTL analysis was performed using
simple linear regression in base R.
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