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Long-term survival without graft-versus-
host-disease following infusion of
allogeneic myeloma-specific Vβ T cell
families
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Abstract

Background: Despite chemo-induction therapy and autologous stem cell transplantation (ASCT), the vast majority
of patients with Multiple Myeloma (MM) relapse within 7 years and the disease remains incurable. Adoptive
Allogeneic T-cell therapy (ATCT) might be curative for MM, however current ATCT protocols often lead to graft
versus host disease (GvHD). Transplanting only tumor reactive donor T cells that mediate a graft-versus-myeloma
(GvM) but not GvHD may overcome this problem.

Methods: We used an MHC-matched/miHA-disparate B10.D2→ Balb/c bone marrow transplantation (BMT) murine
model and MOPC315.BM MM cells to develop an ATCT protocol consisting of total body irradiation, autologous-
BMT and infusion of selective, myeloma-reactive lymphocytes of T cell receptor (TCR) Vβ 2, 3 and 8.3 families (MM-
auto BMT ATCT).

Results: Pre-stimulation ex vivo of allogeneic T cells by exposure to MOPC315.BM MM cells in the presence of IL-2,
anti-CD3 and anti-CD28 resulted in expansion of the myeloma-reactive T cell TCRVβ 2, 3 and 8.3 subfamilies. Their
isolation and infusion into MM-bearing mice resulted in a vigorous GvM response without induction GvHD and
long-term survival. Repeated infusion of naïve myeloma-reactive T cell TCRVβ 2, 3 and 8.3 subfamilies was also
effective.

Conclusions: These data demonstrate that a transplantation protocol involving only selective tumor-reactive donor
T cell families is an effective immunotherapy and results in long-term survival in a mouse model of human MM. The
results highlight the need to develop similar ATCT strategies for MM patients that result in enhanced survival
without symptoms of GvHD.

Keywords: Bone marrow transplantation, Graft-versus-host disease, Graft-versus-myeloma, Adoptive allogeneic T-
cell therapy; T cell–receptor Vβ families;

Background
Survival of patients with multiple myeloma (MM) beyond
7 years remains rare even after autologous stem cell trans-
plantation (ASCT) and treatment with novel agents [1].
Consequently, immunotherapies aimed at augmenting the
anti-MM immune response, such as Adoptive Allogeneic

T-cell Therapy (ATCT) have become attractive alternatives
[2–4]. Much of the curative potential of allografts is attrib-
uted to the graft-versus-tumor (GvT) response that aims to
destroy residual tumor cells that persist after induction
therapy and ASCT [5]. Nonetheless, ATCT remains con-
troversial [6] because the bulk donor T cells that mediate
the GvT effect [7] can also induce graft versus-host disease
(GvHD), a major cause of morbidity and mortality in
ATCT recipients [8]. Various approaches to diminish the
GvH response have had limited success [9–13].
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Since GvT responses involve T-cell recognition of
tumor-specific peptides presented by MHC molecules
[14], it may be possible to identify and select donor T cells
that provide beneficial GvT responses but minimal GvHD
risk. In this regard, immune-transcriptome analyses of T
cell receptor (TCR) Vβ CDR3-size and sequence is being
used to characterize alloreactive versus tumor-specific T-
cell responses. Korngold and colleagues identified donor
alloreactive CD8+ and CD4+ Vβ families responsible for
GvHD in several animal models of bone marrow trans-
plantation (BMT) [15–18]. Binsfeld et al. studied the Vβ
families involved in the GvM and the GvH response in an
MM-BMT model, finding the Vβ 2, 3 and 8.3 families of
T cells as those specifically involved in the GvM response
[19]. The implication of these results would be that
myeloma-specific T cell subfamilies might be positively se-
lected from the donor inoculum and infused to myeloma
patients post ASCT, to afford separation of allo- from
tumor-reactive T cells without the prior need to define
specific target antigens.
To test this rationale, we used the allogeneic B10.D2→

Balb/c BMT model with MOPC315.BM myeloma cells. We
first demonstrated that myeloma bearing-Balb/c mice ini-
tially respond clinically to irradiation and auto-BMT but
eventually relapse, similar to MM patients undergoing in-
duction therapy and ASCT. By then infusing the animals
with B10.D2 T cells from only the TCR Vβ 2, 3 and 8.3
families appropriately pre-activated in vitro, we saw a vigor-
ous GvM response without any clinical or histological signs
of GvHD or disease relapse, which translated into long-
term, disease-free survival. These data highlight the possi-
bility that tumor-specific ATCT may lead to long-term
disease-free survival without GvHD in patients with MM.

Methods
Ethical statement
All experimental procedures were performed in accord-
ance with protocols approved by the Ariel University In-
stitutional Animal Care and Use Committee. Animal
welfare was assessed at least daily. After completion of
experiments mice were euthanized in a CO2 chamber.

Animals
Balb/c (H-2d) mice were obtained from Envigo La-
boratories (Jerusalem, Israel). B10.D2 (H-2d) mice
were purchased from Jackson Laboratories (Bar Har-
bor, ME, USA) and bred in the Ariel University Ani-
mal Facility. For all experiments, male mice between
the ages of 10 and 14 weeks were used as donors and
recipients. Treated mice were kept in a pathogen-free
environment in autoclaved microisolator cages and
were provided with acidified (pH 2.5) water and auto-
claved food ad libitum.

Myeloma cell line and model
MOPC315.BM cells [20] was kindly provided by Prof.
Bjarne Bogen (University of Oslo, Norway). They were
cultured at 37 °C in 5% CO2 in RPMI 1640 (Sigma-Al-
drich, Rehovot, Israel) supplemented with 10% FBS, 1%
MEM NEAA 100x (Gibco), 0.005% 1M I-thioglycerol,
0.03% Gensumycin 40 mg/ml (Sigma-Aldrich) and 2
mML-glutamine (Biological Industries, Beit Haemek,
Israel). I.v. injection of MOPC315.BM cells results in
tumor development in the bone marrow (BM) and
spleen and is associated with osteolytic lesions, validat-
ing the model as resembling human MM disease [21]. In
advanced disease stages (within 3–4 weeks), the mice de-
velop paraplegia through spinal cord compression. They
were sacrificed when presenting signs of paraplegia, de-
terioration of general condition or apathy.

Experimental transplantation design (Fig. 1a)
Balb/c mice were injected i.v. into the tail vein with 1 ×
106 MOPC315.BM cells in 100 μl RPMI 1640. Preliminary
experiments showed that paraplegia developed 38 days
post injection (Additional file 1: Figure S1). At day 35,
mice were irradiated with 6.5 Gy (Total Body Irradiation)
using an X ray source (Kimtron Polaris 320) and injected
6 h later with an infusion of syngeneic 10 × 106 BM and
70 × 106 spleen cells from healthy Balb/c donors (Day 0).
BM cells were collected by flushing the femurs and tibias
into sterile PBS. Spleens were crushed through a 70-μm
cell strainer into sterile PBS (Biological Industries) and
Red blood cells lysed (RBC lysis buffer, eBioscience, San
Diego, USA). Animals that received this transplant proto-
col are referred to as “MM-Auto-BMT” mice. For ATCT
experiments, on day 10 and in some experiments also on
day 17 post MM Auto-BMT, mice received an infusion of
1 × 106 or 2.5 × 106 B10.D2 or Balb/c Vβ 2, 3 and 8.3 posi-
tive T cells (MM-Auto-BMT-ATCT group) or unselected
spleenocytes. These Myeloma-reactive T cells (MT-cells)
were isolated with antibody-coated magnetic beads from
donor spleenocytes, either pre-activated by MOPC315.BM
cells or not (naïve cells) (see below).
Recipient mice were checked daily for morbidity and

mortality and sacrificed after appearance of symptoms of
myeloma (See Additional file 1: Video S1) and/or GvHD.
Three mice from each experimental condition were eutha-
nized on days − 2 (before), + 7 and + 14 post auto-BMT
and at the end point. BM and spleens were harvested and
analyzed by flow cytometry for the presence of
MOPC315.BM cells and to monitor repopulation of T cell
subsets. Before sacrifice, a blood sample was obtained for
measurement of M315 myeloma paraprotein.

In vitro T-cell activation and cytotoxicity
Target MOPC315.BM cells were treated for 2 h with
5 μg/ml of mitomycin C (Sigma-Aldrich) to arrest cell
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growth. Following washing, they were then co-cultured
in complete medium (RPMI 1640, 10% FBS, 1% Penicil-
lin/Streptomycin, 2 mM L-glutamine and 50 μg/mL 2-
mercaptoethanol) supplemented with recombinant IL--2
(20 U/mL, Biolegend) for 4 days at a ratio of 20:1 with
5 × 106 spleenocytes isolated from healthy B10.D2 or
Balb/c mice. In later experiments, cells were co-cultured
for 2 days in medium containing 50 U/mL rIL-2, anti-

CD3 (5 μg/ml) and anti-CD28 (2 μg/ml) (eBioscience)
antibodies. Vβ 2, 3 and 8.3 T cells activated with this
second protocol are referred to as “IL-2/Ab” activated
allo- (B10.D2) or auto- (Balb/c) MT-cells. Following co-
culture, spleenocytes were analyzed by flow cytometry
and used for cytotoxicity assays. MT cells were isolated
by incubation with 0.5 mg/ml of PE-conjugated mono-
clonal antibodies: anti-Vβ 2 (clone B20.6), anti-Vβ 3

Fig. 1 a Experimental design and monitoring of a mouse model of multiple myeloma to test Graft versus Myeloma and Graft versus Host Disease
effects following allogeneic adoptive T cell therapy. MM-bearing Balb/c (Additional file 1: Figure S1) were irradiated and transplanted by i.v.
injection of both BM cells and spleenocytes from healthy Balb/c donor mice. Immune reconstitution was validated by evaluation of CD4+ and
CD8+ lymphocyte population representation in BM and spleen (Additional file 1: Figure S4). These animals were referred to as “MM-Auto-BMT”
mice. For ATCT experiments, on day 10 and in some experiments also on day 17 post Auto-BMT, mice received an infusion of B10.D2 or Balb/c
Vβ 2, 3 and 8.3 positive T cells (MM-Auto-BMT-ATCT group). These Myeloma-reactive T cells (MT-cells) were isolated with antibody-coated
magnetic beads from donor spleenocytes, pre-activated by MOPC315.BM cells or not (target-naïve cells) (see text). b Survival of myeloma bearing
Balb/c mice treated by irradiation and autologous bone marrow transplant (Auto-BMT) and then allogeneic lymphocyte infusion. The presented
results represent the average of two independent experiments. On day 10 after Auto-BMT, mice were injected i.v. with naïve or MOPC315.BM
(target cell) activated B10.D2 Vβ 2, 3 and 8.3 T cells. Recipient mice were sacrificed when severe GvHD symptoms (GvHD score > 8/10), myeloma
symptoms (e.g. paraplegia) or apathy were present. Statistical significance between survival curves was determined using the Log-Rank test. MM-
Auto-BMT versus MM-Auto-BMT + Allo naive vβ 2, 3, 8.3 (× 1), *p = 0.005; MM-Auto-BMT versus MM-Auto-BMT + Allo activated vβ 2, 3, 8.3 (× 1),
p = 0.137; MM-Auto-BMT + Allo naive vβ 2, 3, 8.3 (× 1) versus MM-Auto-BMT + Allo activated vβ 2, 3, 8.3 (× 1), p = 0.862
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(clone KJ25), and anti-Vβ 8.3 (clone 1B3.3) (BD Phar-
mingen, San Jose, CA) followed by anti-PE mAb–conju-
gated magnetic beads and separation using the
SuperMacs system (Miltenyi Biotec, Auburn, CA). The
positive fraction was typically > 90% PE positive as deter-
mined by flow cytometry.
To test the cytotoxicity of donor B10.D2 or Balb/c MT

cells, 107 fresh MOPC315.BM target cells/mL were la-
beled with 1 μM carboxyfluorescein succinimidyl ester
(CFSE) (eBioscience) for 10 min at RT. The reaction was
stopped by addition of 4–5 volumes of cold complete
media and 5-min incubation on ice. After washing with
complete medium, the target cells were resuspended in
complete medium at 1 × 106 cells/mL dispensed into 96-
well microtiter plates (100 μL/well). MT cell populations
were added in 20:1 10:1 and 5:1 effector-to-target ratios
in a total volume of 250 μL complete medium and plates
were incubated at 37 °C in 5% CO2 for 4 h. The percent-
age of MOPC315.BM cell death was evaluated by stain-
ing with Sytox blue (1 μM, Molecular Probes) and flow
cytometry. Target cells incubated without effector cells
(to measure spontaneous death) were used as control.

GvHD clinical-scoring system
GvHD symptoms were evaluated with a scoring system
adapted from Cooke et al. [22]. The score is based on
weight loss (< 10% = 0; 10–20% = 1; > 20% = 2), hunched
back posture (normal = 0; hunched-back while resting =
1; persistent = 2), general activity (normal = 0, reduced
activity = 1, apathy = 2), alopecia (normal = 0, < 1 cm2 =
1, > 1 cm2 = 2) and skin fibrosis (normal = 0, fibrosis = 1;
scabs = 2) with a maximum score of 10. Each animal’s
condition was monitored daily, and the GvHD score was
calculated at least 3 times per week. Mice were sacrificed
if they reached a score of 8/10 or when apathetic.

Flow cytometry
Fc receptor binding was blocked by incubation with
anti-CD16/CD32 antibodies (clone 93, eBioscience) for
5 min at RT. The cells were then incubated for 30 min at
4 °C with specific antibodies (anti-CD3e/APC (145-
2C11), anti-CD4/FITC (GK1.5), anti-CD8/eFluor506
(53–6.7), anti-CD25/PE-Cy7 (PC61.5), (eBioscience);
anti-CD3/PE (17A2); anti-CD69/Pacific blue (H1.2F3);
anti-B220/ PE-Cy7 (RA3-6B2) (Biolegend (San Diego,
CA); anti-IgA/FITC (C10–3) (BD Biosciences) and
CD138/APC (REA104) (Miltenyi Biotec) in PBS/ 3%
FBS, washed and resuspended in cold PBS. The data
were acquired by a CytoFLEX (Beckman Coulter) flow
cytometer and analyzed using FlowJo software.

Histology
Approximately 2 cm2 of shaved skin from the interscap-
ular region (GvHD–target organ) and representative

spleen and colon samples were collected from sacrificed
mice, fixed in 10% formalin, paraffin embedded, cut into
5-μm-thick sections and stained with hematoxylin and
eosin. Histological processing and assessment was per-
formed by Patho-Lab Diagnostics (Nes Ziona, Science
Park, Israel).

Serum paraprotein quantitation
Paraprotein production by MOPC315.BM cells was eval-
uated by ELISA [23]. Briefly, 96 well Nunclon ELISA
plates were coated with 2 μg/ml of anti-MOPC315.BM
paraprotein idiotype (Ab2.1–4) (kindly provided by Prof
Bjarne Bogen, University of Oslo, Norway) at 4 °C over-
night. Wells were blocked with PBS/0.02% sodium
azide/1% BSA, washed and incubated for 2 h at 37 °C
with serum samples or standard paraprotein (ranging
from 400 to 0.39 ng/ml) diluted in PBS/ 0.02% sodium
azide/0.1% BSA/0.1% Tween 20. Then, the plates were
incubated with 1 μg/ml biotinylated rat anti-mouse IgA
(clone C10–1, BD Pharmingen, Germany) for 1 h at RT,
washed, incubated with streptavidin- HRP (1:2000;
Sigma-Aldrich) for 1 h at RT and washed again. TMB
substrate (Merck Millipore, Billerica, MA, USA) was
added for 10-min, the reaction was terminated with
H2O2 and absorbance measured at 450 nm with a
TECAN Infinite M200 ELISA reader.

Statistics
The Log-Rank test was used to compare the Kaplan-
Meyer survival plots. Median survival times (MST) were
calculated, and a p value ≤0.05 was considered statisti-
cally significant. Statistical significance between groups
was determined using a Student t test. A p value ≤0.05
was considered statistically significant.

Results
B10.D2 Vβ 2, 3 and 8.3 T cells families induce GvM but
not GvHD
On day 10 after Auto-BMT, but prior to the time of
their expected relapse, MM-Auto-BMT mice received a
T cell infusion comprising donor B10.D2, or Balb/c MT
cells (Allo-MT cells or Auto-MT cells respectively) or
unselected spleenocytes.
MM-Auto-BMT control mice who received sham (no

lymphocyte) infusion succumbed to MM with an MST of
28 d, while those who received Allo-MT experienced sig-
nificantly extended survival (MST = 28 d versus MST = 36
d, respectively; *p = 0.005) and did not develop signs of
GvHD. However, 100% of these mice eventually
succumbed to myeloma progression (Fig. 1b). MM-Auto-
BMT mice who received unselected B10.D2 spleenocytes
also experienced extended survival. However, they devel-
oped typical signs of chronic GvHD and succumbed to
the disease with a MST of 35 d.
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We tested whether ex vivo activation of Allo-MT cells
prior to injection could boost the GvM response with
minimal GvHD complications. B10.D2 spleen cells were
co-cultured with Mitomycin C-pretreated myeloma cells
at a ratio of 20:1 in medium supplemented with 20 U
rIL-2. Flow cytometry showed an expansion of both
CD8+ and CD4+ T cell populations and a significant in-
crease in activated CD4+ and CD8+vβ (2, 3, 8.3)+ T cells,
confirming their reactivity against myeloma target cells
(Additional file 1: Figure S2). Therefore, 1 × 106 Allo-
MT cells, either naïve or MOPC315.BM-activated, were
injected into MM-Auto-BMT mice on day 10 after the
autograft. This treatment also extended the MST to 35d
and there were no signs of GvHD but again, 80% of the
mice eventually succumbed to myeloma progression.
There was no significant difference in MST between
mice that received naïve or MOPC315.BM-activated
Allo-MT cells (MST = 35 d versus MST = 36 d, respect-
ively; p = 0.862) (Fig. 1b).
At sacrifice, all ATCT treated groups who received ei-

ther naïve or activated Vbeta T cells or naïve unselected
spleenocytes, had significantly lower myeloma cell infil-
tration in the spleen compared to the control group
(Fig. 2a, *p = 0.0006, **p = 0.0018, ***p = 0.0001 respect-
ively) and accordingly they produced less serum para-
protein (Fig. 2b). Percentages of activated CD4+ and
CD8+ T cells were significantly higher in the BM and
spleen of mice that received MT cells (Fig. 2c), suggest-
ing that these cells might be responsible for the observed
GvM effect. These data indicate that infusion of donor
myeloma-reactive T cells can provoke a potent GvM ef-
fect, without GvHD, leading to extended, but nonethe-
less limited, overall survival.

Improved activation of B10.D2 Vβ 2, 3 and 8.3 T cells
We questioned whether a more clinically effective GvM (no
GvHD) response might be obtained by improving the
ex vivo activation protocol of the Allo-MT cells. Therefore,
spleenocytes from B10.D2 or Balb/c mice were stimulated
by Mitomycin-C-treated MOPC315.BM cells for 2 days in
medium containing 50U/mL rIL-2 and anti-CD3/anti-
CD28 antibodies (referred to as IL-2/Ab) [24]. This protocol
resulted in an expansion of CD4+ T cells and a significant
expansion of CD8+ T cells (2-fold) in B10.D2 spleenocyte
cultures (Fig. 3). In Balb/c spleenocyte cultures, only CD8+

T cells expanded. There was a strong activation induced
CD25 expression on MT cell families in both B10.D2 and
Balb/c spleenocyte cultures. The cytotoxic capacity of these
activated lymphocytes was validated by co-culturing them in
different ratios with CFSE-labeled fresh MOPC315.BM. The
degree of target cell killing was depended on the effector:tar-
get cell ratio with the best specific lysis (24% for B10.D2 and
19% for Balb/c) achieved at the highest E/T ratio tested (20:
1) (Additional file 1: Figure S3).

Enhanced MT cell activation leads to long-term survival
without GvHD
The effect of the IL-2/Ab activated MT cells was then
tested in vivo. On day 10 after auto-BMT, MM-Auto-
BMT mice received 2.5 × 106 of IL-2/Ab activated Allo- or
Auto-MT cells (The equivalent dose of these cells found
in healthy B10.D2 and Balb/c mouse spleens as deter-
mined by flow cytometry). As shown in Fig. 4, 88% of mice
who received IL-2/Ab activated Allo-MT cells survived at
least 109 days post auto-BMT. Significantly, none of these
animals developed symptoms of GvHD. Infusion of IL-2/
Ab activated Auto-MT cells also provided a significant, al-
beit short-term GvM effect (MST = 44 d versus MST = 19
d, respectively; *p < 0.0001), although 100% of these mice
eventually succumbed to myeloma progression.
We also tested whether an additional dose of naïve Allo-

MT cells might circumvent the need for pre-activation. As
shown in Fig. 4, mice who received an additional infusion
of these cells on day 17 displayed no symptoms of GvHD
and 80% of them had survived by the end of the experiment
(109 days). Mice who received unselected B10.D2 spleeno-
cytes displayed the typical signs of chronic GvHD and suc-
cumbed to the disease with a MST of 35 days.
The effect of these different infusions on disease bur-

den was tracked. On day − 2 before the auto-BMT, MM
cells were detected in spleen and BM while at day + 7
after auto-BMT, there was a decrease in of MM cells
(Fig. 5a–b), probably due to irradiation. At day + 14, the
percentage of MM cells increased in all groups, except
in those that received IL-2/Ab activated Allo-MT cells
or naïve unselected B10.D2 spleenocytes on day 10 after
auto-BMT. At the end point of each group, MM cell in-
filtration had further increased in the control mice and
in those that received activated Auto- or naïve Allo-MT
cells only on day 10. Conversely, MM cells were essen-
tially undetectable in mice who received two infusions of
naïve Allo-MT cells or unselected B10.D2 spleenocytes
and in those that received IL-2/Ab activated Allo-MT
cells only on day 10. These results were highly correlated
with paraprotein serum M315 levels (Fig. 5c). Histo-
pathological examination of interscapular skin tissues
collected at experiment end points showed that Auto-
BMT mice had no change in skin architecture (Fig. 6a)
and were similar to normal mice (not shown). Likewise,
mice who received either IL-2/Ab activated (Fig. 6b) or
naive Allo-MT cells (× 2) (Fig. 6c) had a normal epider-
mis, whereas mice who received unselected B10.D2
spleenocytes exhibited classical chronic GvHD pathology
(Fig. 6d). Liver and colon samples showed no histo-
logical signs of GvHD (data not shown). Taken together,
these findings highlight that ATCT with appropriately
pre-activated donor B10.D2 T cell families can produce
a long-lasting GvM response in the complete absence of
GvHD in MM-bearing Balb/c mice. Impressive results

Yado et al. Journal for ImmunoTherapy of Cancer           (2019) 7:301 Page 5 of 12



Fig. 2 (See legend on next page.)
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can be also be obtained with repeated infusion of naïve
MM-specific donor B10.D2 T cell families.

Discussion
Allogeneic immunotherapy remains the only potentially
curable treatment for MM but the frequent co-
development of GvHD after this type of therapy severely
limits its clinical application. Unfortunately, the clinical
success of strategies to reduce GvHD while retaining the
GvT response have been limited [3, 10, 25].
Korngold and colleagues demonstrated that CDR3-size

spectratyping of the TCRVβ-chain can characterize and dif-
ferentiate alloreactive from GvT-specific T-cell repertoire re-
sponses, highlighting the potential for tailoring the donor
inoculum to target only the recipient’s malignant cells [18, 26,
27]. Our aim was to apply TCRVβ-chain CDR3-sizing to

allo-immunotherapy, by positively selecting MM-specific
donor T cell families and testing if their infusion could affect
a clinically relevant GvM response without inducing GvHD.
We used the well-established MHC-matched/ miHA-

disparate B10.D2→Balb/c BMT model [28] and induced
MM in recipients by injecting MOPC315.BM MM cells [21].
MM-bearing mice were treated by total body irradiation and
auto-BMT, followed by infusion of donor myeloma-reactive
TCR Vβ+ T cells (Vβ 2, 3 and 8.3 families) identified previ-
ously [19]. In vitro experiments (Additional file 1: Figure S3)
and the finding that the transplantation of these cells induced
life-prolonging GvM effects but with no clinical (Fig. 4), bio-
marker (Fig. 5) or histological (Fig. 6) signs of GvHD indicates
that these Vβ T cells families indeed respond to tumor-
specific antigens expressed on MOPC315.BM cells. Similar to
human MM cells, MOPC315.BM cells express and secrete

(See figure on previous page.)
Fig. 2 Involvement of vβ TCR CDR3 2, 3, 8.3 T cell families in the graft-versus-myeloma effect in myeloma bearing Balb/c mice treated by
irradiation, Auto-BMT and then allogeneic lymphocyte infusion. Recipient mice were sacrificed when severe GvHD symptoms, myeloma
symptoms or apathy were present. Flow cytometry staining was performed on cells from spleen and bone marrow at sacrifice. a Infiltration of
MOPC MM cells in the bone marrow and spleen identified as CD138+CD4+ double positive cells. *p = 0.0006. **p = 0.0018 (Student t test). b
Paraprotein serum IgA quantitation (μg/ml) by ELISA before Auto-BMT, 1 week after and at sacrifice. *p = 0.0003. **p = 0.005 (Student t test). c
vβ(2 + 3 + 8.3)+ T cell populations in the graft-versus-myeloma effect. Shown are percentages of activated CD4+vβ(2 + 3 + 8.3)+ T cells (CD69+
within CD4+vβ(2 + 3 + 8.3)+ T cells) and activated CD8+vβ(2 + 3 + 8.3)+ T cells (CD69+ within CD8+vβ(2 + 3 + 8.3)+ T cells) in the spleen (left panel)
BM (right panel) in the MM-Auto-BMT, MM-Auto-BMT + Allo naive vβ 2, 3, 8.3 (× 1) group, MM-Auto-BMT + Allo activated vβ 2, 3, 8.3 (× 1) or in
healthy Balb/c mice. *p < 0.0001; **p < 0.0001; ***p < 0.05 (Student t test)

Fig. 3 Flow cytometric T cell phenotyping before (day 0) and after in vitro activation (day 2) of B10.D2 (a) and Balb/c (b) Spleenocytes with
Mitomycin-C-treated MOPC315.BM cells in medium containing 50 U/mL rIL and CD3/CD28 antibodies. The gating strategy is shown by the red
arrows. The resulting CD4+ and CD8+ populations were further gated based on positivity for vβ (2, 3, 8.3) and CD25 (right panels). T cell activation
was assessed by CD25 expression. One representative example of 2 independent experiments is shown
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Fig. 4 Survival curves of myeloma bearing Balb/c recipient mice treated by irradiation, Auto-BMT and then allogeneic or autologous lymphocyte
infusion. The presented results represent the average of two independent experiments. On day 10 and/or day 17 after Auto-BMT, recipient mice
were injected i.v. with naïve or activated B10.D2 / Balb/c Vβ 2, 3 and 8.3 T cells. Recipient mice were sacrificed when severe GvHD symptoms,
myeloma symptoms or apathy were present. Statistical significance between survival curves was determined using the Log-Rank test. MM-Auto-
BMT versus MM-Auto-BMT + Auto activated vβ 2, 3, 8.3 (× 1), *p < 0.0001; MM-Auto-BMT versus MM-Auto-BMT + Allo naive vβ 2, 3, 8.3
(× 1), **p = 0.0001

Fig. 5 Correlation between MM disease parameters, GvHD and Adoptive T cell Therapy strategies. Infiltration of MM cells in spleen (a) and bone
marrow (b) and levels of M315 myeloma protein (μg/ml) in sera of mice (c) for MM-Auto-BMT control group and ATCT groups. Three mice per
group were sacrifice 2 days before transplantation, 10 and 17 days after transplantation and at the end point. Data are expressed as the mean ±
SD. MOPC cells identified as CD138+CD4+ double positive cells by flow cytometry staining
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an idiotypic (Id) antibody and peptides from this antibody
presented in association with MHC-Class I molecules
would likely be one target recognized by the donor MT
cells [29]. The induction of anti-MM-Id peptide responses
has been studied following the vaccination of MM patients
with autologous Id-pulsed dendritic cells [30] and a recent
trial (#NCT01426828) aims to evaluate whether infusion
of Id-KLH primed CD3/CD28 activated autologous lym-
phocytes mediates a clinically relevant Id-specific immun-
ity.. Unfortunately, there is no information on other
potential MOPC315.BM tumor specific molecules that
might be recognized by MT cells. A search in several
immunoinformatic databases (IMTG, VDJdb, McPAS-
TCR) did not clearly indicate which MHC presented pep-
tides might be bound by TCR bearing Vβ CDR3 2, 3 and
8.3 sequences. With regards to human MM there is cur-
rently no information on the myeloma-specific TCR se-
quence repertoire in MM patients [31].
The relative contribution of each Vβ family to the

overall GvM response we observed is a subject for on-
going studies. Not all families may contribute equally to
the GvM effect, possibly because only some of them are
presented with dominant MHC-bound peptides [32, 33],
or because they secrete cytokines that induce more ef-
fective anti-tumor responses. In another study, the Vβ13
family by itself was shown to dominate the B10.BR CD8

T-cell response against a myeloid leukemia cell line.
Transplantation of these cell induced a slight GvT re-
sponse with no concomitant acute GvHD [27].
Appropriate T-cell co-stimulation is critical for induc-

tion of effective anti-tumor T-cell function [24, 34–37].
Porter et al. [35] and Biavati et al. [38] showed that ex vivo
co-stimulation of T cells via their CD3 and CD28 recep-
tors can produce activated T cells that enhance the antitu-
mor effect of donor lymphocyte infusions after allogeneic
hematopoietic stem cell transplantation in patients with
chronic myelogenous leukemia and MM. Noonan et al.
were the first to report that infusion of autologous, ex vivo
activated, marrow-infiltrating T cells could induce anti-
tumor reactivity and enhance progression-free survival in
MM patients, although there was no difference in overall
survival [39]. Our results are in line with these findings.
We saw that although in vitro activation of auto-MT cells
led to target cell killing (Additional file 1: Figure S3) and
transplantation of IL2/Ab stimulated auto-MT cells more
than doubled the mean survival time (from 20 to 43 days,
p < 0.0001), the mice eventually relapsed. The short-lived
response after auto-MT infusion may be due to T cell ex-
haustion, a topic currently under intensive study [40, 41].
While appropriately activated (IL-2/Ab) allogeneic MT
cells responded aggressively to target cells in vitro and in-
duced long-term survival in vivo, on the other hand,

Fig. 6 Histologic changes in skin. Comparive histology of skin tissue collected from the interscapular region of mice who received auto-BMT
alone, IL-2/anti-CD3/anti-CD28 activated B10.D2 Vβ 2, 3 and 8.3 T cells, naive B10.D2 Vβ 2, 3 and 8.3 T cells (× 2) or unselected naive B10.D2
spleenocytes. H&E reveals normal epidermis in the samples of mice who received auto-BMT alone (a), IL-2/anti-CD3/anti-CD28 activated B10.D2
Vβ 2, 3 (b) and 8.3 T cells and naive B10.D2 Vβ 2, 3 and 8.3 T cells (× 2) (c), whereas there is decrease in follicular units, increased collagen density
with increased cellularity (fibrosis) in the sample of mice who received unselected naive B10.D2 spleenocytes (d). Original magnification × 10.
GvHD disease score (based on weight loss, hunched back posture, general activity, alopecia and skin fibrosis, on a scale of 0–10), was calculated
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transplantation of one dose of naïve allo-MT cells lead to
only short-term clinical efficacy. Interruption of the GvM
effect may have been due to development of effector T cell
exhaustion because an additional infusion of naïve allo-
MT cells was more effective allowing for long-term
disease-free survival (Additional file 1: Figure S4, Fig. 4).
Another explanation for the lack of efficacy of auto-MT

cells infusion may be the specificity of the Balb/c MT cells
themselves. Flow cytometry clearly showed that co-culture
with target cells resulted in overall expansion and activation
of both CD4+ and CD8+ B10.D2 populations but only the
CD4+ Balb/c population. While Balb/c T cells expressing 2,
3 and 8.3 Vβ family containing TCRs did become activated
(but did not expand) they may not be the best anti-
MOPC315.BM effector T cell clones and may only induce a
weaker and short-lived GvM response. Transcriptome ana-
lysis of the Balb/c CD8+ T cell TCRs may reveal that other
subfamilies are more effective. This may also be true in pa-
tients, however there is currently no data available to ad-
equately address this question. A third explanation may be
that the effectiveness of the allo- over auto-MT cell activity
in our model is due to a miHA antigen (or antigens) recog-
nized on the MOPC315.BM by B10.D2 but not Balb/c T
cells (MOPC315 cells are Balb/c derived). These antigens
would need to be different from the shared myeloma and
allo-antigens reported by Binsfeld et al. that are recognized
by TCRVβ families other than those used in our study [19].
A number of human leukemic restricted miHAs have been
identified, including some on MM cells [42]. Some of these
are capable of eliciting anti-tumor T cell responses [43] and
indeed recent studies report development of engineered T
cells bearing human miHA specific TCRs [44, 45]. Their ac-
tivity towards MM has not been demonstrated.

Conclusion
We have shown for the first time invocation of a strong
and life-saving GvM response and prevention of GvHD by
integrating auto-BMT with a ATCT composed only of
transcriptome-identified MM reactive Vβ T cell families.
With the use of new TCR sequencing technologies [46–48]
it should become feasible to characterize, isolate and infuse
tumor-specific donor T cell Vβ families into patients. This
strategy is significant for MM therapy because it highlights
the opportunity to develop a more effective treatment
protocol combining a vigorous GvM response that elimi-
nates residual MM cells in patients who have undergone
pre-conditioning and auto-HSCT without inducing GvHD.
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1186/s40425-019-0776-9.
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