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Abstract

Background: Recently, there has been a heightened interest in developing and evaluating different methods for
analysing observational data. This has been driven by the increased availability of large data resources such as
Electronic Health Record (EHR) data alongside known limitations and changing characteristics of randomised
controlled trials (RCTs). A wide range of methods are available for analysing observational data. However,
various, sometimes strict, and often unverifiable assumptions must be made in order for the resulting effect
estimates to have a causal interpretation. In this paper we will compare some common approaches to estimating
treatment effects from observational data in order to highlight the importance of considering, and justifying,
the relevant assumptions prior to conducting an observational analysis.

Methods: A simulation study was conducted based upon a small cohort of patients with chronic obstructive
pulmonary disease. Two-stage least squares instrumental variables, propensity score, and linear regression models were
compared under a range of different scenarios including different strengths of instrumental variable and unmeasured
confounding. The effects of violating the assumptions of the instrumental variables analysis were also assessed. Sample
sizes of up to 200,000 patients were considered.

Results: Two-stage least squares instrumental variable methods can yield unbiased treatment effect estimates in the
presence of unmeasured confounding provided the sample size is sufficiently large. Adjusting for measured covariates
in the analysis reduces the variability in the two-stage least squares estimates. In the simulation study, propensity score
methods produced very similar results to linear regression for all scenarios. A weak instrument or strong unmeasured
confounding led to an increase in uncertainty in the two-stage least squares instrumental variable effect estimates. A
violation of the instrumental variable assumptions led to bias in the two-stage least squares effect estimates. Indeed,
these were sometimes even more biased than those from a naive linear regression model.

Conclusions: Instrumental variable methods can perform better than naive regression and propensity scores. However,
the assumptions need to be carefully considered and justified prior to conducting an analysis or performance may be
worse than if the problem of unmeasured confounding had been ignored altogether.
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Background

Over the last few years there has been a heightened
interest in developing and evaluating different methods
for analysing observational data. This has been driven by
the increasing availability of large data resources includ-
ing Electronic Health Record (EHR) data, for example
the Clinical Practice Research Datalink (CPRD) in the
UK, alongside the recognised limitations of randomised
controlled trials (RCTs). Due to the strict eligibility
criteria for RCTs their results may not be generalisable
to the general population which may lead to a different
treatment effect being observed once the treatment is
implemented in practice [1]. Additionally, final clinical,
and patient-relevant, endpoints can be difficult to obtain
in RCTs [2]. These endpoints often require long follow
up and large sample sizes, which are not feasible for an
RCT due to cost and practical time restrictions. As well
as this, RCTs are getting shorter and more streamlined
as regulatory bodies, such as the FDA (Food and Drugs
Administration) and EMA (European Medicines Agency),
wish to accelerate access to innovative health care and
technologies [3]. As a result of the increasingly limited evi-
dence that is available from randomised controlled trials
(RCTs), NICE (the UK National Institute for Health and
Care Excellence) and other policy makers are becoming
ever more reliant on observational data to compare the
clinical and cost-effectiveness of new treatments to
current practice [3]. Due to these issues with RCTs and
the improving availability of large EHR data sets, there is
an increasing need for researchers to analyse these data
appropriately in order to gain additional information
about the effectiveness of treatments in clinical practice.

Randomised controlled trials are the ‘gold standard’
method used to compare the effectiveness of different
treatments or exposures since subjects are randomly
assigned into different exposure groups rendering the
two groups comparable for both known, and unknown,
baseline confounders. Because of this comparability, the
effect estimates obtained in RCTs can be interpreted as
causal effects in that they provide an estimate of the
effect of exposure on outcome that is unlikely to be ex-
plained by other factors such as confounding or reverse
association. Once it is not possible to randomise, the
parameter estimates obtained from an observational
analysis are associational and may, or may not, have a
causal interpretation. Methods have been developed
that can disentangle association from causation in an
observational setting but these require strong assump-
tions and can be very sensitive to violations of these
assumptions.

The notion of an intervention underlies all approaches
to causal inference either explicitly or implicitly. Thus,
when we say that an exposure causes an outcome, we
mean that an intervention on that exposure is
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informative for the outcome. The problem posed by a
causal observational analysis is that of obtaining infor-
mation on what might happen for a specific intervention
when the desired intervention has not taken place [4]. It
should be noted that causal methods are not required if
the aim is to predict a patient’s risk of disease: in this
case association measures would suffice and causal ap-
proaches would be inappropriate or potentially mislead-
ing. However, when the aim is to intervene, and change
a patient’s treatment or exposure, causal approaches are
required to understand the “true’ effect of the intervention
on the outcome of interest. Our focus is on obtaining
reliable estimates of an intervention, by treatment, and so
we require causal estimates of the true effect of treatment
on outcome.

A wide range of methods are available for analysing
observational data. However, various, sometimes strict,
and often unverifiable assumptions must be made in
order for the resulting effect estimates to have a causal
interpretation. These methods need to be evaluated
carefully for applications of relevance to health services
research in order to assess which assumptions are the
most credible in different scenarios. Case studies using
real data to compare two, or more, approaches cannot
inform whether the resulting estimates are similar be-
cause either they are both correct or both incorrect and
when the results are different, it is not possible to deter-
mine which method is better. For such evaluations, we
need to conduct simulation studies where the ‘true’
effect is known [5]. Appropriate methods for simulating
realistic data are hence important to ensure that the
nature and distribution of the simulated data are similar
to those in the population of interest.

In observational data, patients are not randomised to
different treatment or exposure groups and therefore the
different groups are often not comparable. Propensity
scoring methods are often used to reduce the imbalance
between treatment groups using measured baseline
covariates [6—8]. The underlying assumption that there
are no unmeasured confounders [6] is often not reason-
able in observational data.

Instrumental variable (IV) methods can vyield causal
treatment effect estimates, even in the presence of
unmeasured confounding, provided the assumptions of
the IV analysis have been satisfied [9-12]. It is known
that the level of bias in a two-stage least squares (2SLS)
instrumental variables analysis is influenced by the
strength of the IV, strength of confounding, and sample
size [13-15]. Violations of the assumptions of an IV ana-
lysis can also lead to bias in the effect estimates [15, 16].
In previous health services research and health technol-
ogy assessment studies [13, 15], the simulated data were
not based upon patient data. Additionally, only relatively
small sample sizes (<10,000 patients) were considered
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which were representative of the smaller sample sizes
previously observed in clinical research practice [13].
With extensive EHR data now becoming available, and
with IV approaches being more widely recommended
for the analysis of such data [17, 18], much larger sample
sizes are required to assess how such methods would
perform in these settings.

The aim of this paper is to revisit some common
methods for causal treatment effect estimation in obser-
vational data with regard to their performance in big
data situations. Our simulations, although simple, are
based on an observed cohort of patients with chronic
obstructive pulmonary disease (COPD) and assess the
appropriateness of 2SLS analysis for different strengths
of IV and unmeasured confounding compared with the
frequently used approaches of propensity scoring and
linear regression. In particular, we wish to quantify the
extent to which large sample sizes alleviate some of the
recognised problems with IV estimation due to weak
instruments, strong unmeasured confounding and small
sample bias in a straightforward setting where these
methods can, in principle, perform well. More complex
settings, such as the analyses of binary and time-to-
event outcomes where the IV estimators are often not
even theoretically unbiased, will likely pose additional
challenges. With the increasing reliance on observational
data for treatment effect estimation, it is crucial that
researchers understand the underlying assumptions of
causal methods and the scenarios for which the different
approaches are most appropriate.

Methods

The target parameter we consider is the average causal
effect (ACE) of an exposure X on an outcome Y. The
ACE is a population parameter and is also the target
of randomised control trials. The ACE is defined as
the difference in expectations for different levels of X,
where do(X =x) represents an intervention which sets
X to x [19, 20]:

ACE(x1,%,) = E[Y| do(X = x1)]-E[Y | do(X = x3)].

If it is assumed that all relationships are linear with no
interactions then the dependence of Y on X and
confounders C can be formulated as in the following
equation [16]:

ElY|do(X =x),C=c] =a+ pxX+ y*C.

Under this so called structural assumption the ACE is
Bx1 —x) and so B is the causal parameter of interest
[11, 16]. The ACE can be estimated using linear regres-
sion and propensity scores when all confounders have
been measured [6]. Instrumental variable approaches
can be used when unobserved confounding is suspected.
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Propensity score

Propensity score methods assume that all confounders
have been measured. Let X be a treatment variable
and W a set of measured baseline covariates. The
propensity score is defined to be the probability of
treatment assignment conditional on observed base-
line covariates [6, 8]:

B(W)i :P(Xl =1 |Wl)

The inverse probability of treatment weighting (IPTW)
approach uses weights, obtained from the propensity
score, so that the distribution of observed baseline co-
variates is independent of treatment assignment within
the weighted sample [6]. Weighted regression models
can then be used to obtain an estimate of the treatment
effect. Propensity score stratification, whereby subjects
are ranked according to their propensity score and then
split into strata based on pre-defined thresholds [6] was
also considered.

Instrumental variables

An IV analysis addresses the case where there are some
confounders that are either unknown or unmeasured.
For exposure X and outcome Y, let U represent the set
of unmeasured factors confounding the association be-
tween X and Y. For two variables A and B, the notation
A L B denotes that A is independent of B. For a variable
Z to be an IV it needs to satisfy the following three
conditions:

a) Z is associated with X

b) Z affects the outcome Y only through X or, more
formally, Z L Y | X, U

¢) Z is independent of unmeasured confounders U

These conditional (in)dependencies are uniquely
represented in the directed acyclic graph (DAG) in
Fig. 1. Note that only the first of these can be verified
empirically as the others involve the unmeasured
confounding U.

Two-stage least squares

In order to obtain a point estimate for the ACE, add-
itional assumptions must be made. The 2SLS procedure
is one of the more popular IV approaches to estimating
the ACE [11]. Here, we assume that all relationships
outlined in the DAG in Fig. 1 are linear with no interac-
tions [16]. If Y;, Z; and X, denote the outcome, IV and
exposure for each individual i respectively, 2SLS pro-
ceeds as follows:

1. Regress X on Z by least squares to obtain fitted
values X



John et al. BMIC Medical Research Methodology (2019) 19:207

Page 4 of 15

Z » X

-~
~~~
-~ -
-~ -
-~ -
-~ _———
- ————

Fig. 1 Directed acyclic graph (DAG) representing the conditional (in)dependencies implied by the IV core assumptions. The dashed line
represents a violation of condition (b) whereby there is a path from the instrument Z to the outcome Y that does not go through X

--Y

2. Regress Y on X.

2SLS can be extended to adjust for measured covari-
ates W in the data.

Under the structural assumption, the above approach
targets the average causal effect which is defined in
terms of changes across the whole population and is the
target of an RCT. Sometimes it is of interest to consider
local causal effects, especially when there is effect modi-
fication whereby individuals in different subgroups,
defined by age for example, respond differently to expos-
ure or intervention. Moreover, the classical model
(above) is implausible in many situations especially when
Z and X are both discrete [11], although it may be a rea-
sonable approximation. Two particular local parameters
are popular and can be targeted under weaker assump-
tions. The effect of exposure on the exposed (or the
effect of treatment received) can be identified under the
conditions of an additive structural mean model which,
unlike the linear no interactions model, makes no as-
sumptions about the role of U provided there is no ef-
fect modification by Z. This parameter is useful in
econometrics for evaluating effectiveness of training
schemes that involve voluntary participation, for ex-
ample. The bias induced by self-selection into the
scheme means that reliable estimation of the ACE is not
possible without additional, potentially untestable, as-
sumptions. Similarly in an RCT with invalid randomisa-
tion, such as when seriously ill patients have the right to
be given the experimental treatment, estimates of the
desired population parameter will be confounded by the
patients’ attitudes and/or health while the local param-
eter can provide some useful information on the effect-
iveness of the treatment [21]. With valid randomisation,
IV core conditions (b) and (c) can be replaced by the ex-
clusion restriction stating that Z has no causal effect on
Y other than through X. This, together with a monoton-
icity assumption (that there are no defiers) is sufficient
to identify the complier causal effect which is the effect of
treatment assignment on a population with comparable

compliance behaviour. Compliers are those patients who
would follow their assigned treatment regardless of which
treatment they were assigned to whilst defiers are those
patients who will always take the opposite of what they
are assigned to. The set of “compliers’ is an unidentifiable
subgroup and is IV-dependent. There are also issues with
interpreting this parameter when the IV is not causal, as it
is implicitly assumed to be in the potential outcomes
framework: compliance is then defined with respect to
some latent causal factors associated with the IV. For
these reasons, it is argued that the complier causal effect is
not always an ideal parameter to target for decision-
making purposes [4, 9-12, 22-25].

Simulation study

A simulation study was conducted based upon a small
dataset of patients with COPD containing less than 100
patients across the two treatment groups [26, 27]. The
outcome of interest was the percentage change in FEV1
(forced expiratory volume in 1 s) between the initial
exacerbation visit and the follow-up visit at 2 weeks. The
exposure of interest was treatment with steroids and
antibiotics versus treatment with steroids alone. Un-
measured confounding of the treatment-outcome associ-
ation was suspected.

The IV proposed for this analysis was sputum type.
Sputum type was classified into two categories: mucoid
and mucopurulent. Mucoid sputum is a clear watery
substance, mucopurulent sputum is thicker and yellowy
in colour. Clinical knowledge indicated that an increase
in purulence of sputum is indicative of an infection and
should increase the subject’s likelihood of being prescribed
antibiotics. Clinical opinion indicated that sputum colour
should not affect the outcome, change in FEV1 after 2
weeks, other than via treatment. However, the possibility
of a backdoor path through the unmeasured confounders
could not be completely ruled out. Any such backdoor
path was deemed likely to be very weak compared to the
response to intervention. The following baseline charac-
teristics were simulated based on observed values in the
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real data: body mass index (BMI), time since diagnosis of
COPD (TimeCOPD) and previous hospitalisations (Hos-
pitalisation). These three variables were simulated based
on features of their joint distribution inferred from the
real dataset.

Dataset generation

The measured covariates were generated using the
observation that the joint distribution for three variables,
A (BMI), B (TimeCOPD) and C (Hospitalisation), can be
factorised as:

P(A,B,C) = P(A|B,C) P(B| C) P(C).

Specifically, continuous BMI was generated from a
normal distribution with the mean and standard devi-
ation taken from the actual COPD dataset. The normal
distribution was truncated, using the truncnorm pack-
age in R, taking values roughly based on the minimum
and maximum in the observed data. The binary variable
Hospitalisation was generated to be dependent upon the
following three BMI categories: healthy, overweight and
obese. Hospitalisation was obtained using the propor-
tions in each BMI category taken from the COPD data-
set. Continuous TimeCOPD was set to be dependent
upon both Hospitalisation and BMI. TimeCOPD was
generated separately for each combination of the
different BMI and Hospitalisation categories. For each
combination, TimeCOPD was taken from a normal
distribution with the mean and standard deviation taken
from the respective BMI and Hospitalisation distribu-
tions. The normal distributions were truncated using
values roughly based on the minimum and maximum in
the observed data. The continuous variables BMI and
TimeCOPD were then centred around their respective
means. A normally distributed variable U, with zero
mean and standard deviation 1, was created to represent
unmeasured confounding. The binary instrumental vari-
able, sputum type (Z), was simulated using the propor-
tions observed in the COPD dataset. The values taken
from the COPD dataset and used in the simulation are
given in Table 1.

The exposure, treatment allocation (X), and the out-
come, percentage change in FEV1 (Y), were then gener-
ated based on the simulated baseline characteristics and
unmeasured confounding. Binary treatment was simu-
lated to be dependent on the IV and unmeasured
confounding using probabilities taken from a probit dis-
tribution (1). The treatment for each participant i was
then generated by drawing from a binomial distribution
with probability trtprob; (2):

trtprob; = © (ap + ay1xZ; + ar*xU;) (1)

X;~Binom(1, trtprob;) (2)
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Table 1 Parameter values, taken from a dataset of patients with
Chronic Obstructive Pulmonary Disease (COPD), used to
simulate the baseline covariates. BMI, Body Mass Index;
TimeCOPD, Time since diagnosis of COPD; SD, Standard
Deviation

Baseline Covariate Mean (SD)  Min — Max  Proportion (%)
BMI 2562 (461) 16.00-40.00 -
Hospitalisation (Hosp = 1)
Healthy - - 40.00
Overweight - - 36.00
Obese - - 26.70
TimeCOPD
No admission, Healthy 959 (9.21) 0.10-3500 -
No admission, Overweight  9.13 (800) 0.10-30.00 -
No admission, Obese 7.25(9.92) 0.10-2500 -
Admission(s), Healthy 820 (803) 0.10-3000 -
Admission(s), Overweight 321 (247)  0.10-1000 -
Admission(s), Obese 567 (3.87) 0.10-1500 -
Sputum Type (Z=1) - - 77.65

where X; =1 represents the steroid and antibiotic treat-
ment group and X; = 0 the steroid only treatment group.
Note that the 2SLS IV analysis assumes the relationship
between treatment and the IV to be linear despite both
being binary variables. This may be a poor approxima-
tion but 2SLS is quite robust to misspecification of the
‘first stage’ regression model, especially if measured
covariates have been accounted for [28]. In an attempt
to induce imbalance between the treatment groups,
treatment was also simulated to be dependent upon the
covariates BMI, Hospitalisations and TimeCOPD, in
addition to sputum type. The results of the propensity
score analysis were very similar to those obtained when
treatment probability was simulated as above and so are
not presented here.

The outcome, percentage change in FEV1 (Y) was then
generated to be dependent on treatment, the baseline
covariates and unmeasured confounding (3).

Yi = fy+ By Xi+ B, (BMI~E[BMI)
+ B4 (TimeCOPD;-E[TimeCOPD)) (3)
+p, Hospitalisation; + B U; + €;

where &; ~ Normal(0, ®). Under the assumptions of lin-
earity and no interactions, f3; is the causal treatment ef-
fect parameter we wish to recover [16]. The parameters
Bo B2 B3 Pa and ¢* in (3) were obtained from a linear
regression of the outcome on the baseline covariates and
treatment in the real COPD data set. These values are
provided in the caption of Table 2. In the COPD study,
patients had >50 % chance of being treated with steroids
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Table 2 Parameter values used in different simulation scenarios.
The following parameters remained fixed across all scenarios:
ap=03, Bo=17480, B,=1335, B3=0493, B,=14007, 0’ =
10.0

Scenario Parameter Value
Strength of IV

a, 0.1,03,05,08, 1.0
Strength of Confounding

a, 0.0,0.1,03,05,08

Bs 00, 1.0, 50, 100
Causal Treatment Effect

B 05,10, 20, 30,50
Direct Effect

Bs 00,0.1,03,05,1.0

and antibiotics regardless of which sputum class the
patient was in. Sputum type was hence a weak predictor
of treatment which is often the case for non-randomised
IVs. The parameter a, in (1) was set at 0.3 to give a
baseline probability of treatment similar to that observed
in the COPD data. The summary measures of the simu-
lated covariates compared well with those from the real
COPD data and so seemed reasonably realistic.

Scenarios to be investigated

A weak IV is an instrument that does not explain much
of the variability in the exposure X [14]. Different
strengths of IV were assessed by varying the a; param-
eter. The strength of unmeasured confounding of the
treatment-outcome association on the results of the IV
analysis was assessed by varying a, and f35s. The strength
of causal treatment effect f; was varied throughout the
simulation study. An additional parameter 3¢ was intro-
duced to (3) to assess the effect of a direct path between
the IV and outcome (see Fig. 1). In this last scenario the
outcome, was generated using (4):

Y; =B, + B, trt; + B, (BMI,—E[BMI])
+p; (TimeCOPD;-E[TimeCOPD]) (4)
+p, Hospitalisation; + Bs U; + B¢ Z; + €;

The parameter values used for the different simulation
scenarios are given in Table 2. Combinations of these
parameters were also considered to see the effect of
varying more than one factor at the same time.

Sample and simulation size

Datasets with 2 000, 20 000 and 200 000 patients were
created. Even the smallest of these is much larger than
the original dataset upon which this simulation study is
based. Two hundred simulated data sets were generated
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for each sample size and scenario under investigation.
All simulations were run using the statistical software
package R.

Analysis models fitted

Adjusted linear regression An adjusted linear model
was fitted to give a naive estimate of the treatment ef-
fect. Under the strong and unverifiable assumption of
‘no unmeasured confounding’, this would be an estimate
of the causal effect of treatment. The fitted linear model
adjusted for all measured covariates is:

Yi=yo+y1 Xi+y, BMI; + y; TimeCOPD;
+ y, Hospitalisation;. (5)

Propensity score Propensity score models were fitted
incorporating the baseline covariates BMI, Hospitalisa-
tion and TimeCOPD since they are predictive of the
outcome. Sputum type was only predictive of exposure,
and not outcome, so was not included as this could lead
to amplified bias in the propensity score regression re-
sults [29, 30]. The propensity score (e;) was fitted using
a logistic regression of the exposure X on the baseline
covariates:

1
14 exp(t1 BMI; + 15 TimeCOPD; + 13 Hospitalisation;)

(6)

IPTW propensity score weights (7) were calculated
using the formula in (7) for exposure X; and propensity
score e; and incorporated into a weighted linear regres-
sion model.

€;

Tl':%-i- — : (7)

Instrumental variables Unadjusted 2SLS IV models
were fitted with robust standard errors [9] to give an es-
timate of the average causal treatment effect on the out-
come. The first and second stage regression models are
given in Eqs. 8 and 9 respectively:

EX|Z)=ay +a1 Z 8)

E[Y] = By + B, E[X|Z] ©)
2SLS IV models adjusting for the measured covariates
were also fitted.

Outcome and summary measures

All models were compared on 200 simulated data sets in
each scenario. The following outcome measures were
recorded for each model and dataset:
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1. Treatment effect estimate: 3,
2. Bias: Bms(/)’1 ﬁé -B1
3. Z-statistic: Zy, = . )
4. Mean squared erroﬁ MSE /:.’1 E[(B-51) ]

= Var(B,) -|—Bms(,31,/31)

where f3; is the known ‘true’ causal treatment effect par-
ameter used in the simulation. SE(f;) is the standard
error of the parameter effect estimate from each model.

These outcome measures were summarised across all
simulations using the sample mean and Monte-Carlo
standard deviations. Coverage, defined as the proportion
of the 200 simulated data sets that had a 95% confidence
interval containing the true effect estimate 5}, and power
to detect a treatment effect, defined as the proportion of
the 200 simulated data sets with a 95% confidence inter-
val that did not contain zero, were also reported.

Results

Initial parameter values

Initially the data were simulated using a relatively strong
IV (a; =0.5), with a small level of unmeasured con-
founding of the treatment-outcome association (a; = 0.3,
Bs=1.0) and a moderate treatment effect (5; = 3.0). The
results are presented in Table 3. The adjusted linear
regression model was biased, but very precise, at all
sample sizes. Coverage was poor with none of the 95%
confidence intervals covering the true treatment effect
estimate but power was high. The IPTW propensity
score approach yielded exactly the same results as the
adjusted linear regression model.

The unadjusted 2SLS IV model was biased at small
sample sizes with fairly high variability (SD > 2.50) across
the effect estimates. The uncertainty in the effect esti-
mates led to large bias and very low power to detect a
statistically significant treatment effect at small sample
sizes (N =2000). The bias and variability in the effect
estimate reduces as the sample size increases leading to
an increase in both the power and coverage of the effect
estimates. Adjusting for measured covariates in the 2SLS
IV model led to a large reduction in the variability of the
effect estimates across all sample sizes and also makes
the method more robust to misspecification of the first
stage regression [28]. The bias of the effect estimates
was also reduced, especially at small sample sizes, and
power and coverage were both high for larger sample
sizes (N = 20,000).

Strength of instrumental variable

The adjusted linear regression model and propensity
score models do not involve the IV and therefore had
the same level of bias as in the baseline scenario for all
strengths of IV.
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Table 3 Summary measures for the initial parameter values:
a;=0.5,a,=03, 5= 1.0. The causal treatment effect was 3, =
3.0. Results are across 200 simulated data sets; values are:
sample mean (Monte Carlo SD) unless otherwise stated

N = 2000 N = 20,000 N =200,000
Adjusted Linear Model and Propensity Score IPTW
Effect Estimate 347 (0.05) 347 (0.02) 347 (0.01)
Bias 047 (0.05) 047 (0.02) 047 (0.01)
Mean Square Error 0.23 (0.04) 0.22 (0.02) 0.22 (0.00)
Z Statistic 1(092) 29.97 (1.05) 94.92 (1.06)
Coverage: n (%) 0 (0.00) 0 (0.00) 0 (0.00)
Power: n (%) 200 (100.00) 200 (100.00) 200 (100.00)
2SLS IV
Effect Estimate 262 (2.53) 3.06 (0.73) 2.98 (0.24)
Bias —-0.38 (2.53) 0.06 (0.73) —0.02 (0.24)
Mean Square Error 12.90 (10.63) 1.06 (0.84) 0.12 (0.07)
Z Statistic —0.12 (0.90) 0.08 (0.87) —0.07 (0.93)
Coverage: n (%) 192 (96.00) 194 (97.00) 197 (98.50)
Power: n (%) 27 (13.50) 191 (95.50) 200 (100.00)
Adjusted 2SLS IV
Effect Estimate 3.03 (0.30) 3.00 (0.10) 3.00 (0.03)
Bias 0.03 (0.30) 0.00 (0.10) 0.00 (0.03)
Mean Square Error 8 (0.16) 0.02 (0.01) 0.00 (0.00)
Z Statistic 5(0.87) 0.04 (1.00) —0.07 (1.04)
Coverage: n (%) 194 (97.00) 192 (96.00) 187 (93.50)
Power: n (%) 200 (100.00) 200 (100.00) 200 (100.00)

When a weak IV (a; =0.1) was used, there was bias
and variability in the unadjusted 2SLS IV model esti-
mates across all sample sizes. This led to very low power
of the unadjusted 2SLS model to detect a significant
treatment effect. Bias improved with larger sample sizes
but there was still considerable variability and a power
of only 66% even for 200,000 individuals.

The effect estimates and 95% confidence intervals
from the adjusted 2SLS IV analysis are presented in
Fig. 2 for different strengths of IV, treatment effect and
sample sizes. A weak IV (a; =0.1) led to much greater
uncertainty in the effect estimates at all sample sizes
compared to when a stronger IV was used even when
N =200,000. There was reduced power to detect a sig-
nificant treatment effect when there was a weak IV
(a1 =0.1) alongside a weak causal treatment effect (8, =
1.0) even for a fairly large sample size (Fig. 2a(3)). In
this case much larger sample sizes (N =200,000) were
required to obtain a high power (Fig. 2a(4)). Estimate
precision was greatly increased for stronger IVs with
the causal treatment effect estimates also much closer
to the true value. For the smallest sample size
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considered (N =2,000), both the adjusted and un-
adjusted 2SLS IV estimates were actually more biased
than the linear regression estimates when the IV was
weak. 2SLS is known to be affected by finite sample
bias and this is exacerbated by a weak IV [14].

The F-statistic, taken from a regression of the exposure
X on the instrument Z can be used as a measure of the

strength of an instrument. An F-value greater than 10 is
usually taken as an indicator of a ‘strong’ IV [14, 31]. For
the smallest sample size, N = 2000 the average F-value was
only 2.94 for when a; = 0.1 which indicated that this was a
weak IV. For larger sample sizes, the F-values were greater
than 10, however they were still much smaller than in the
baseline scenario when a; = 0.5.
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Strength of unmeasured confounding

The following combinations of a, and 55 were simulated
to give a range of different strengths of unmeasured con-
founding of the treatment-outcome association:

-G ECIEE 6
£ (2 (352 ()

When there was no confounding (i.e. @, and/or S5 is
zero), the linear regression model yielded an unbiased
estimate of the causal treatment effect and was less vari-
able than unadjusted 2SLS. This can be seen in Fig. 3
where there is less uncertainty in the linear regression
effect estimates compared to the unadjusted 2SLS esti-
mates for all strengths of IV. The uncertainty in the
unadjusted 2SLS estimates increased when a weaker IV
was used. Adjusting for covariates in the 2SLS regression
reduced this uncertainty giving similar results to the
linear regression estimates (not shown). As the strength
of confounding increased, the bias and variability of the
linear regression estimates increased and coverage was
poor for all sample sizes, even with weak confounding
(@)= (33) ). IPTW propensity scoring performed
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similarly to linear regression for all strengths of un-
measured confounding.

With weak confounding of the treatment-outcome
association, and all other parameters at their baseline
values, unadjusted 2SLS had power and coverage over
90% once the sample size was reasonably large (N= 20,
000) and there was minimal bias in the treatment effect
estimates. There was much greater variability at the
smallest sample size (N =2,000) where unadjusted 2SLS
effect estimates were slightly more biased than the linear
regression estimates. Adjusting for measured covariates
resolved this problem with minimal bias and high cover-
age and power at all sample sizes (Fig. 4a(1,2)).

Figure 4 shows the effect of increasing the strength of
confounding on the adjusted 2SLS effect estimates.
Uncertainty in effect estimates increases and power re-
duces with increasing levels of confounding. Even with a
very large sample size, the variability was still greatly in-
creased when there was strong unmeasured confounding
although the power remains high.

A weak 1V, together with strong confounding, leads to
very high uncertainty and large bias in the adjusted 2SLS
IV effect estimates. Power to detect a statistically signifi-
cant treatment effect is low, even at larger sample sizes
(N'=200,000) as shown in Fig. 4c(3). Performance
improves with increasing IV strength but strong

Strong IV (a; = 0.5)

Moderate IV (a; = 0.3)

Weak IV (a; = 0.1)

Effect Estimate

Effect Estimate

el
M“ i
\

Adjusted Linear
Model

Unadjusted 2SLS IV
Model

0 100 200 0 100 150 200 0 ! 100 150 200
Slmulatlon (ordered) Slmulatlon (ordered) Slmulatlon (ordered)

Fig. 3 Comparison of adjusted linear model and unadjusted 2SLS IV model estimates from 200 simulated data sets for a sample size of 20,000
and no unmeasured confounding; Different strengths of IV a; =0.1 (weak), a; =0.3 (moderate), a; = 0.5 (strong) are given across the x-axis;
dashed blue horizontal line is the true causal treatment effect 8, = 3.0, error bars are 95% confidence intervals for the treatment effect estimates
for each simulated data set. Black error bars indicate a significant effect estimate, red error bars indicate a non-significant effect estimate
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J

confounding causes problems for a moderately strong IV
even in large samples. A strong IV (a; =0.8) was re-
quired to overcome most of the adverse effects of strong
confounding but small sample bias remained an issue.

Strength of direct effect of the IV on the outcome

Introducing a small direct effect (5 =0.1) of the IV on
the outcome to the baseline scenario, and hence violat-
ing IV core condition (b), led to biased estimates from
both 2SLS IV models at all sample sizes. Adjusting for
covariates did not improve performance once there was
a direct effect with bias even at large sample sizes (N =
200,000). The adjusted linear regression model was also
biased at all sample sizes, with a slight increase in bias
compared to the baseline scenario, due to the additional

unmeasured covariate Z. Propensity scoring approaches
performed similarly to linear regression in all cases.
Increasing the strength of the direct effect led to an
increase in bias in the 2SLS effect estimates across all
sample sizes with poorer performance than linear regres-
sion once the direct effect size was moderate (35 =0.3).
When a stronger direct effect is observed (¢ > 0.3), there
is much more bias in the adjusted 2SLS effect estimates
compared to the linear regression model with none of
the 95% confidence intervals covering the true effect.
Despite the increase in bias, the variability of the ad-
justed 2SLS effect estimates remained fairly low even
when there was a strong direct effect (s> 0.5) leading
to precise but inaccurate effect estimates. This can be
seen in Table 4 where the standard deviation across the
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Table 4 Summary measures for a strong direct effect (B =0.5).
Confounding and strength of IV remained as in the baseline
scenario with a; =0.5, a, =0.3, 85 =1.0. The causal treatment
effect was 3; = 3.0. Results are across 200 simulated data sets;
values are: sample mean (Monte Carlo SD) unless otherwise
stated

N =2000 N =20,000 N = 200,000
Adjusted Linear Model and Propensity score IPTW
Effect Estimate 3.55 (0.05) 3.55(0.02) 3.55 (0.01)
Bias 0.55 (0.05) 0.55 (0.02) 0.55 (0.01)
Mean Square Error 0.30 (0.05) 0.30 (0.02) 0.30 (0.01)
Z Statistic 10.76 (0.94) 34.18 (1.04) 108.28 (1.07)
Coverage: n (%) 0 (0.00) 0 (0.00) 0 (0.00)
Power: n (%) 200 (100.00) 200 (100.00) 200 (100.00)
2SLS IV
Effect Estimate 567 (2.52) 6.10 (0.72) 6.01 (0.25)
Bias 267 (2.52) 3.10 (0.72) 3.01 (0.25)
Mean Square Error 19.83 (17.89) 10.65 (441) 9.17 (1.49)
Z Statistic 0.99 (0.89) 3.69 (0.84) 11.39 (0.90)
Coverage: n (%) 177 (88.50) 8 (4.00) 0 (0.00)
Power: n (%) 118 (59.00) 200 (100.00) 200 (100.00)
Adjusted 2SLS IV
Effect Estimate 6.07 (0.44) 6.04 (0.16) 6.02 (0.05)
Bias 3.07 (044) 3.04 (0.16) 3.02 (0.05)
Mean Square Error 9.82 (2.81) 9.32 (0.97) 9.15 (0.30)
Z Statistic 6.03 (0.65) 18.93 (0.73) 60.01 (0.66)
Coverage: n (%) 0 (0.00) 0 (0.00) 0 (0.00)
Power: n (%) 200 (100.00) 200 (100.00) 200 (100.00)

200 simulations remains less than 0.5 even for a strong
direct effect.

The impact of a direct effect of the IV on the outcome
was exacerbated with a weak IV. Here, the 2SLS analyses
were a lot more biased than linear regression for all
sample sizes considered, even when the direct effect on
the outcome was weak. As might be expected, increasing
levels of confounding also had a negative effect on
performance with increased bias and uncertainty appar-
ent for all sample sizes, and the effect is further
compounded when a weak IV was used.

Discussion

This simulation study verified that, when the instrumen-
tal variable and modelling assumptions hold, the 2SLS
IV method yielded unbiased estimates in the presence of
unmeasured confounding provided that the IV was
strong and the sample size was relatively large (N = 20,
000 in this case). Whilst the precision of the effect esti-
mates increased with increasing sample size, linear re-
gression and propensity score methods remained biased
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due to the effect of unmeasured confounding. The 2SLS
IV method was biased for small sample sizes regardless
of the strength of IV or unmeasured confounding. Much
larger sample sizes were required when weak instru-
ments were used or when there was strong unmeasured
confounding. In particular, strong confounding together
with a weak IV could lead to high uncertainty and bias
even in very large samples. Whilst adjusting for measured
covariates is not theoretically required in order to get an
unbiased treatment effect estimate in an IV analysis [9],
adjusting always improved performance when the IV was
valid [28].

When the assumptions of an IV analysis were violated
due to a direct effect of the instrument on the outcome,
the 2SLS IV method was biased for all sample sizes.
There was also a slight increase in bias of the linear
regression and propensity score approaches due to the
presence of an additional unmeasured confounder but
the 2SLS IV analyses were more sensitive to small
increases in the strength of the direct effect. These prob-
lems were compounded for weak IVs and strong
unmeasured confounding with the 2SLS IV estimates
becoming more biased than those from a naive linear
regression which completely ignores the unmeasured
confounding.

When there was no unmeasured confounding both
linear regression and 2SLS approaches yielded unbiased
estimates of the causal treatment effect. However, there
was greater uncertainty in the unadjusted 2SLS estimates
compared to those from linear regression or propensity
score approaches. Therefore, an IV analysis should only
be considered when it can be reasonably assumed that
the presence of unmeasured confounding is plausible.
Otherwise, there is no benefit to using an IV approach
over other, simpler, methods such as linear regression
that make less stringent assumptions. Of course, model-
ling assumptions should be checked for all potential
analysis methods and the method for which these seem
most plausible for a particular application should be
employed.

Propensity scoring approaches are commonly used to
reduce bias and balance known confounding factors
between treatment groups in observational data. Whilst
a number of different propensity score methods have
been proposed, [6, 7, 32, 33], there is some debate as to
how well they work in particular situations [34, 35].
They cannot account for unmeasured confounding so
they too will yield biased estimates in that case. In our
study, propensity scoring methods were found to do no
better than a linear regression model. This is perhaps
due to our model being truly linear and so the advan-
tages of propensity scores, for non-linear outcomes or in
terms of incorporating non-linear terms, were not ob-
served in this setting [6, 34].



John et al. BMIC Medical Research Methodology (2019) 19:207

Under the assumption of no unmeasured confounders
propensity score methods can yield unbiased estimates
of the average causal effect. However, if the model for
the propensity score is mis-specified this could lead to
an inconsistent estimator of the ACE [36]. Alternatively,
a regression model for the outcome can be specified
based on measured baseline covariates. The ACE is then
estimated based on the coefficients from a linear regres-
sion which will often be an approximation of the true
outcome model. The mis-specification of the outcome
model can have a detrimental impact on the bias of the
effect estimate if the covariate distributions within the
exposed and unexposed treatment groups are very
different [37]. Doubly robust estimators have been
proposed for causal inference, they are consistent when
either the propensity score model for treatment assign-
ment, or the regression model, are correctly specified.
These doubly robust estimators give researchers two
chances of obtaining an unbiased estimate of the ACE.
Simulation studies have shown that doubly robust estima-
tors are more efficient when one of the two models is
mis-specified but bias can still arise if both models are
incorrect [36, 37]. These estimators should be considered
especially when there is high-dimensional confound-
ing. In the simple models considered here, doubly
robust methods did not improve on linear regression
or propensity score approaches.

When unmeasured confounding is suspected, the 2SLS
IV estimator is robust to mis-specification of the first
stage regression provided that the second stage is cor-
rectly specified [28]. This was observed in our simula-
tions where the first stage regression was assumed to be
linear even though the binary treatment values were
generated using a probit model. However, the 2SLS IV
estimator may not be consistent if the outcome model is
mis-specified and the instrument depends non-linearly
on the covariates. Locally efficient doubly robust IV esti-
mators have been proposed which are consistent if either
the model for the effect of covariates on the outcome, or
the model for the instrumental variable given the covari-
ates is correctly specified [38]. Vansteelandt and Didelez
[28] have suggested a strategy that will guarantee
efficiency of the estimator provided the model for the IV
has been correctly specified.

One of the main challenges with instrumental variables
analysis is finding an appropriate instrument. It is particu-
larly hard to find a strong IV that is valid (i.e. satisfies as-
sumptions (a)-(c)) when the instrument cannot be
randomised by the investigator as is often the case in ob-
servational data. There is an upper bound on how strong
an IV can be that depends on the strength of unmeasured
confounding [31]. Hence, there often is no choice about
the strength of IV and researchers cannot be sure that the
effect estimates obtained from an analysis with a weak IV
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are reliable. Furthermore, two of the three IV assumptions
((b) and (c)) cannot be verified empirically from the data
as they involve the unmeasured confounder and instead
have to be justified from background knowledge which
may require consultation and collaboration with relevant
experts [12, 16]. In the real COPD data, whilst sputum
type appeared to be the most appropriate available IV, the
observed association with treatment was unconvincing.
This may have been partly due to the very small sample
size but it would seem plausible that sputum type is either
an invalid, or extremely weak, instrument. While we are
willing to believe that sputum type should not affect
change in FEV1 after 2 weeks other than via treatment,
the possibility of a backdoor path through the unmeasured
confounding could not be ruled out. Previous observa-
tional analyses have considered physicians prescribing
preference, calendar time and genetic variables as instru-
ments but these were not available in the real COPD data
[9]. All potential instruments require careful scrutiny with
regard to their validity.

Whilst invalid instruments have previously been shown
to lead to bias in small sample sizes [15], this analysis
shows that larger sample sizes do not alleviate this issue
with bias apparent even for the largest sample size (N =
200,000) considered. An important message is that an IV
approach should not be used if the IV cannot be ad-
equately justified, even if unmeasured confounding is sus-
pected, or the results could be more unreliable than those
obtained from a method that ignores the problem and re-
lies on more credible assumptions [11]. IV approaches
add an additional layer of assumptions, on top of the rele-
vant modelling assumptions, which are mainly unverifi-
able from the data. Use of these methods is increasingly
being recommended and applied in the medical literature
[17, 18, 39] but the analyses are often conducted without
checking the relevant assumptions [40]. Moreover, pro-
pensity scoring and IV methods are sometimes both
employed for the same problem even though they rely on
very different assumptions. This can lead to misleading
conclusions as discrepancies in the results from the differ-
ent analysis methods are common [39]. It is therefore cru-
cial that researchers consider the underlying assumptions
of all the relevant analysis methods and choose the ap-
proach for which these appear to be most plausible.

As is standard in epidemiology, model checking and
sensitivity of the conclusions under different model
selection and specification should be conducted to assess
the robustness of any observed association to various
sources of bias [41]. Typically, this requires being able to
make an informed judgement about the size of such biases
and how to model them. If similar results are observed
under several different analysis methods then the conclu-
sions of the study can be viewed as being more robust.
When there are discrepancies, understanding the main
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sources of bias in the different approaches can help to de-
termine what is required in order to answer the causal
question. Integrating results from different approaches,
relying on different assumptions, is popularly referred to
as ‘triangulation’ [42]. When the IV assumptions cannot
be justified, but unmeasured confounding is suspected,
sensitivity analysis to the results of non-causal analyses
should be conducted. One form of sensitivity, or thresh-
old, analysis considers how strongly an unmeasured con-
founder would have to be related to both the exposure
and the outcome, on the risk ratio scale, in order to ex-
plain the observed association without the need for so
many assumptions about the unmeasured confounding
[43]. An E-value can be reported which summarises the
minimum strength of association that the unmeasured
confounder would need to have with both the exposure
and outcome to negate the observational result [43]. The
researcher can then consider whether an unobserved con-
founder of such magnitude is plausible. The smaller the E-
value, the less likely it is that the observed association is
causal since very little unmeasured confounding would
change the result. These approaches can be extended to
other scales including continuous outcomes [44, 45]. Sen-
sitivity analyses do not establish existence or absence of a
causal effect but they help to clarify how conclusions have
been drawn.

This paper focused on a continuous outcome for
which instrumental variable methods have been well
developed. Issues with non-collapsibility have compli-
cated the generalisation of IV methods to binary and
time-to-event outcomes [46, 47]. Further work is re-
quired to assess how the issues highlighted above with
translate to other outcomes. The problems with bias due
to weak IVs, sample size and violations of the assump-
tions, which arose even in the above simple scenario are
likely to be amplified in more complex settings. A
perceived limitation of this study is that the simulation
only considered a small number of confounding vari-
ables. High-dimensional confounding would be more
realistic but the relevant effects would also be more
complicated and harder to assess. In addition, we did
not consider selection bias in this paper. IV analyses are
also affected by selection bias. The extent of the bias in
IV estimates from non-random samples depends on the
selection mechanism. This has been noted in the meth-
odological literature but is not widely acknowledged in
practice. Directed acyclic graphs have been recently
proposed to depict assumptions about selection and
inform sensitivity analyses to determine whether an ana-
lysis is biased due to a particular mechanism [48].

Conclusions
As is evident from our simulation study, the original
COPD dataset, with less than 100 patients across both
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treatment groups, was hugely underpowered to reliably
detect a causal treatment effect. Larger sample sizes
(such as those derived from EHR data) are becoming
more commonplace so issues specifically associated with
small samples will not be such a problem in the future.
However, a large data set does not necessarily protect
from the effects of very weak or invalid IVs even when
all the underlying assumptions are satisfied. In particu-
lar, it is not always obvious how ‘large’ it has to be to
prevent ‘small’ sample bias for any particular applica-
tion. Health services and health technology assessment
researchers should think carefully about choice and val-
idation of their instrument before conducting or trusting
the results from an IV analysis. In particular, the large
sample sizes required for weak IVs have implications for
rarer outcomes even in large EHR data sets. In the ab-
sence of randomisation, strong assumptions are always
required to draw causal, rather than associational, con-
clusions. Regression and propensity score approaches as-
sume that there is no unmeasured confounding of the
treatment-outcome association. IV analyses replace this
with equally unverifiable assumptions concerning un-
measured confounding [12]. All methods work well
when their assumptions are met. Hence, it is important
to consider all analysis methods and adopt the approach
for which the assumptions are most plausible for any
given application. An IV analysis should never be a
default analysis: other methods are better when there is
no unmeasured confounding. Furthermore, researchers
should consider whether their research question actually
requires a causal analysis in the first place, as the results
from an inappropriate analysis could be misleading.
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