Skip to main content
. 2019 Nov 7;10:1106. doi: 10.3389/fgene.2019.01106

Table 3.

Compare with widely used machine learning models.

Method Acc. (%) Sen. (%) Spec. (%) Prec. (%) MCC (%) AUC (%)
MAN-HOPE-LR 83.75 ± 0.11 83.21 ± 0.47 84.30 ± 0.32 84.13 ± 0.20 67.52 ± 0.22 91.58 ± 0.13
MAN-HOPE-Ada 84.73 ± 0.18 85.53 ± 0.29 83.93 ± 0.22 84.19 ± 0.18 69.48 ± 0.36 92.07 ± 0.13
MAN-HOPE-RF 92.66 ± 0.12 92.03 ± 0.15 93.29 ± 0.22 93.21 ± 0.20 85.33 ± 0.24 97.12 ± 0.05
MAN-HOPE-XGB 89.56 ± 0.41 90.60 ± 0.28 88.51 ± 0.95 88.75 ± 0.81 79.13 ± 0.79 96.02 ± 0.24
Proposed method 93.30 ± 0.12 91.50 ± 0.14 95.10 ± 0.11 94.91 ± 0.11 86.66 ± 0.24 97.93 ± 0.08

The boldface indicates this measure performance is the best in this item among the compared methods.