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Abstract

Cognitive control requires choosing contextual information to update into working memory (input 

gating), maintaining it there (maintenance) stable against distraction, and then choosing which 

subset of maintained information to use in guiding action (output gating). Recent work has raised 

the possibility that the development of rule-guided behavior, in the transition from childhood to 

adolescence, is linked specifically to changes in the gating components of working memory 

(Amso, Haas, McShane, & Badre, 2014). Given the importance of effective rule-guided behavior 

for decision making in this developmental transition, we used hierarchical rule tasks to probe the 

precise developmental dynamics of working memory gating. This mechanistic precision informs 

ongoing efforts to train cognitive control and working memory operations across typical and 

atypical development. The results of Experiment 1 verified that the development of rule-guided 

behavior is uniquely linked to increasing hierarchical complexity but not to increasing 

maintenance demands across 1st, 2nd, and 3rd order rule tasks. Experiment 2 then investigated 

whether this developmental trajectory in rule-guided behavior is best explained by change in input 
gating or output gating. Further, as input versus output gating also tend to correlate with a more 

proactive versus reactive control strategy in these tasks, we assessed developmental change in the 

degree to which these two processes were deployed efficiently given the task. Experiment 2 shows 

that the developmental change observed in Experiment 1 and in Amso et al. (2014) is likely a 

result of increased efficacy of output gating processes, as well as greater strategic efficiency in that 

adolescents opt for this costly process less often than children.
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1. Introduction

An important factor in human cognitive development is the emergence of rule-guided action 

selection. Every situation confronting a child is associated with appropriate and 

inappropriate behaviors. Flexible and adaptive function requires being able to use rules to 

plan and execute appropriate action. This ability depends on cognitive control and permits 
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appropriate actions to be selected based on goals, plans, or a particular context. In the 

simplest instance, rules can be concrete in that they map a given context directly to action. 

For example, the common household rule “when going outside, wear sunblock” directly 

relates a context (being outside) to an action routine (apply sunblock).

However, in the complexity of the real world, rules are rarely so direct. Rather, they become 

nested hierarchically to the extent that they relate increasingly higher order contexts and 

contingencies to classes of simpler rules (Badre, 2008; Barto & Mahadevan, 2003; Frank & 

Badre, 2012). Hierarchical rules can be assigned a rule order based on the number of 

contingency levels they include. Thus, to extend our example from above, the validity of the 

described rule for wearing sunblock might further depend on whether it is sunny (valid) or 

cloudy (invalid). This defines a new, second order rule signifying appropriate first order 

rules (i.e., “when going outside, wear sunblock”) in a given context (i.e., sunny day). And, 

of course, all of these contextual relationships may change if the child is currently with a 

caregiver or with their friends. From this example, it is easy to see how the ability to 

contingently relate contexts to one another in order to specify a rule is crucial for everyday 

planning and adaptive behavior. Thus, hierarchical rule use of this type supports complex 

contingent action selection (Badre & D’Esposito, 2007; Badre, Hoffman, Cooney, & 

D’Esposito, 2009; Chatham, Frank, & Badre, 2014), learning and generalization (Badre & 

Frank, 2012; Badre, Kayser, & D’Esposito, 2010; Botvinick, 2008; Collins & Frank, 2013; 

Frank & Badre, 2012), planning (Koechlin, Corrado, Pietrini, & Grafman, 2000), decision 

making (Badre, Doll, Long, & Frank, 2012), and fluid reasoning (Bunge, 2004; Speed, 

2010). It follows that successfully developing this ability is important for flexible function, 

especially as children become increasingly self-directed and less dependent on caregivers in 

the transition from childhood to adolescence.

Developmental improvements in rule-guided behavior are evident in early childhood 

(Munakata, Snyder, & Chatham, 2012; Zelazo, 2004), continue into adolescence (Crone, 

Bunge, Van der Molen, & Ridderinkhof, 2006; Huizenga, Crone, & Jansen, 2007), and relate 

to the maturation of the prefrontal cortex (Bunge & Zelazo, 2006; Crone, Donohue, 

Honomichl, Wendelken, & Bunge, 2006; Wendelken, Munakata, Baym, Souza, & Bunge, 

2012). Most of the developmental evidence on rule-guided behavior comes from task-

switching studies (Best & Miller, 2010; Chevalier & Blaye, 2009; for review, see Diamond, 

2013). For example, children 3- and 4-years old are able to successfully shift between two 

independent rules, such as “in the color game, red ones go on the left and blue ones go on 

the right” (e.g., Moriguchi & Hiraki, 2011; Zelazo, 2004). This is a 1st order rule in that the 

context (color) directly governs action selection (red/left, blue/right). However, young 

children typically show perseverative errors on tasks where two or more rules or contexts 

can govern state-action mappings. For example, the 2nd order context specifying which 

sorting game to play can be hierarchically layered on top of the lower (1st) order color or 

shape rules. In this case, if we are playing the color game, the previously described state-

action mappings apply (red/left, blue/right), but if we are playing the shape game alternative 

mappings apply, namely “trucks go on the left and stars go on the right”. Since color and 

shape games are associated with conflicting mappings for red stars or blue trucks, some 

additional, higher order context is required to determine which game to play. Similar designs 

in older children have shown that lower order, concrete rule use matures prior to higher order 
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rule use. Indeed, this latter ability is still developing beyond late childhood and into 

adolescence (Bunge & Zelazo, 2006).

What mechanisms might underlie younger children’s difficulties following rules with a 

complex hierarchical structure? Research on hierarchical rule use in adults indicates that 

behaving according to higher order rules places increasing demands on working memory 

gating (Chatham & Badre, 2015). In particular, there is emerging evidence that execution 

and learning of complex, hierarchical rules relies on gating mechanisms controlling the 

output of working memory—as opposed to gating mechanisms controlling its input.

Prevailing models of cognitive control require a working memory that maintains contextual 

information robust to interference (Desimone & Duncan, 1995; Miller & Cohen, 2001; 

O’Reilly & Frank, 2006). Once maintained, this information can provide a top-down signal 

to bias response choices and attentional systems (working memory output). However, 

working memory is also capacity limited, and so it must be selective about what it maintains. 

One way to conceptualize such a process is as a gate that is selective about what information 

is permitted access to working memory (Braver & Cohen, 2000; Chatham et al., 2014; 

Frank, Loughry, & O’Reilly, 2001; Gruber, Dayan, Gutkin, & Solla, 2006; Hochreiter & 

Schmidhuber, 1997). When the gate is open, information flows into working memory where 

it can serve as a context that guides action selection. When the gate is closed, irrelevant 

information is kept out. For instance, if you are listening to the local traffic report on the 

radio while driving to work, you will probably update only those road incidents that are 

relevant to your current route into working memory. This regulation of the input to working 

memory or input gating has received considerable attention in cognitive neuroscience and is 

thought to be mediated by the basal ganglia via cortico-striatal-thalamo-cortical loops (e.g., 

Cools, Miyakawa, Sheridan, & D’Esposito, 2010; Kühn et al., 2013; McNab & Klingberg, 

2008; Moustafa, Cohen, Sherman, & Frank, 2008; Murty et al., 2011; Nee & Brown, 2013; 

O’Reilly & Frank, 2006).

However, not all information maintained in working memory is necessarily behaviorally 

relevant at any given point in time. Recent evidence in adults indicates that a second gate 

could operate on the output of working memory by controlling what subset of the currently 

maintained information is selected to exert an influence on behavior (Chatham et al., 2014). 

Only when the output gate is open, relevant working memory representations are capable of 

providing a top-down contextual signal to bias action selection. When the output gate for a 

given working memory representation is closed, that representation remains in an accessible 

but inert state.

Output gating may be particularly important for behaving according to complex, hierarchical 

rules because the child must choose which of the various contexts held in working memory 

should govern behavior based on a higher order, prevailing context. One such example is the 

sorting game described above that requires children to maintain the rules for both color (red/

left, blue/right) and shape (trucks/left, stars/right) while only one of these contexts will be 

relevant on a given trial. The higher-order context (color game vs. shape game) determines 

whether shape or color context need to be output gated to guide action selection. While 

output gating (relative to input gating) has been shown to be particularly crucial in the 
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execution and learning of higher order rules in adults (e.g., Badre & Frank, 2012; Badre et 

al., 2010; Chatham et al., 2014; Frank & Badre, 2012), it has not been demonstrated that 

changes in output gating underlie developmental changes in rule-guided behavior observed 

in the transition from childhood to adolescence.

Beyond increased demands on working memory gating with higher order rules, there is also 

often a concomitant increase in the fan of alternatives competing for action. For example, 

consider a 1st order rule task in which only a single context, such as color, governs response 

selection (e.g., red/left, blue/right). Here, there are two alternatives for action that need to be 

maintained in working memory. However, a 2nd order rule may require responding based on 

either color rules or shape rules (e.g., truck/up, star/down) depending on some other element 

of context (like an instruction). In this case, not only has the rule order increased, there are 

also four rule alternatives to be maintained in working memory, namely the rules relating to 

red, blue, truck, or star. Thus, tasks involving hierarchical rule use and more gating are 

typically accompanied by a correlated increase in demands on working memory 

maintenance.

Initial evidence suggests that when working memory load is controlled, the additional 

contingency or selection step (i.e., the putative output gating demand) entailed by the higher 

order rule drives developmental change more so than working memory capacity limitations. 

Recent work (Amso, Haas, McShane, & Badre, 2014) used 1st and 2nd order rule tasks to 

show that developmental improvements in rule-guided behavior in the transition from late 

childhood to adolescence were linked to the ability to update rules in working memory, 

rather than arbitrate between multiple rule alternatives as such. Each increment of the rule 

order from 0 to 1st order or 1st to 2nd order rules was associated with a cost in performance, 

and this cost diminished with development from late childhood (7–10 years) to adolescence 

(12–15). However, there was no additional developmental cost to maintenance of more 

lower order items, as manipulated by increasing the number of 1st and 2nd order rule sets. In 

a similar vein, Zelazo, Muller, Frye, and Marcovitch (2003) demonstrated that most 3- and 4 

year old children were able to flexibly use as many as four lower order rules, as long as these 

rules were not in conflict. These observations support the hypothesis that working memory 

gating, and output gating in particular, may be a core mechanism that undergoes 

developmental change and drives the maturation of cognitive control.

Importantly, however, the 1st and 2nd order rules used in Amso et al. (2014) might not have 

been sufficiently challenging to maintain in working memory. It is possible that even higher 

order rules, involving more contingencies, will expose developmental differences in the 

ability to arbitrate between multiple alternatives for action. Thus, the first aim of the present 

study is to replicate and extend the original findings from the 1st and 2nd order tasks to a 3rd 

order task. In Experiment 1, children (7–11 years), adolescents (12–16 years), and young 

adults (19–27 years) completed three tasks that involved action selection in the context of 

increasingly higher order rules (adapted from Badre & D’Esposito, 2007): Rule order 

increased from the response task (0 order and 1st order rules), to the feature task (1st and 

2nd order rules) to the dimension task (2nd and 3rd order rules). Working memory load was 

manipulated parametrically across different trial blocks within each task by varying the 

number of rules participants had to choose from at (1, 2, or 4 rules). In the 3rd order task, if 
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participants were to maintain all the rules in working memory at once, then this would 

require adjudicating among 8 or 16 different lower order rules depending on the condition: a 

demand that exceeds the putative working memory capacity limits of all age groups. As 

such, this supra-capacity working memory demand should expose any developmental 

change in the working memory maintenance component of these rule tasks. If, however, the 

ability to manage higher order contingencies undergoes the most pronounced developmental 

change then children should show a greater cost when confronted with rules of increasing 

hierarchical complexity, relative to costs incurred by increasing numbers of alternatives for 

action in working memory.

A second aim of the present study is to test the hypothesis that output gating is specifically 

at the root of the developmental change in higher order rule use. As already noted, many 

neurocomputational models of working memory updating assume separate mechanisms for 

gating task-relevant information to be maintained in working memory (input gating) and 

gating which of the currently maintained working memory representations can exert an 

influence over behavior (output gating) (Frank & Badre, 2012; Hazy, Frank, & O’Reilly, 

2007; Huang, Hazy, Herd, & O’Reilly, 2013; Kriete & Noelle, 2011). Importantly, however, 

the tests of higher order rule use in children to this point have presented all the relevant 

contextual elements at the same time. Thus, it is equally plausible that the demand to update 

working memory (input gating) is driving developmental change, as selecting which rule is 

relevant from within working memory (output gating). In order to distinguish these 

alternatives, it is necessary to manipulate when information is available in the environment 

and in working memory, thereby controlling for the opportunity to input versus output gate 

working memory.

In Experiment 2, we manipulated the order of presentation of contextual information during 

a second order rule task in order to bias use of an input or output gating strategy. In this way, 

we investigated both the mode of control strategy (i.e., input versus output gating) that 

children (7–11 years) and adolescents (12–17 years) prefer using during rule-guided 

behavior and also the efficacy of the input and output gating mechanisms themselves across 

this developmental period. Understanding the precise mechanisms underlying these 

developmental challenges in hierarchical rule use is particularly important given their broad 

relevance for managing the explosion in rich decision making opportunities faced by 

children transitioning into adolescence. Here we ask whether developmental improvements 

in rule-guided behavior are a function of the ability to use existing information in working 

memory to guide action (output gating) or the ability to better update information offered by 

the environment (input gating).

2. Experiment 1

2.1. Methods

2.1.1. Participants—Thirty children (7–11 years, M = 9.4, SD = 1.4; 17 females), 30 

adolescents (12–16 years, M = 14.2 SD = 1.4; 15 females), and 30 young adults (19–27 

years, M = 22.9, SD = 2.6; 15 females) participated in two separate testing sessions. 

Participants were recruited from local public schools as well as from the community using 

flyers and brochures. Adults gave written informed consent consistent with the Brown 

Unger et al. Page 5

Cognition. Author manuscript; available in PMC 2019 November 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



University Institutional Review Board (IRB) rules and guidelines. For children and 

adolescents, caretakers’ consent and participants’ assent were obtained in accord with the 

IRB requirements. According to self-report or caregivers’ report, all had normal or 

corrected-to-normal visual and auditory abilities and no history of diagnosed neurological or 

psychiatric disorders. Intact color vision was confirmed using the Ishihara test for color 

deficiency.

2.1.2. Materials and task

2.1.2.1. Response task: On each trial, a colored square appeared in the middle of the 

computer screen on a black background for a maximum of 2 s until participants made a 

response. Trials were separated by a randomly jittered fixation interval of 0–2 s. Within a 

given block of trials, the response key was chosen based on the color of the square according 

to an instructed set of rules. There were three different block types, each of which included 

four colors that mapped onto one (R1 block), two (R2 block), or four (R4 block) different 

keys (see Fig. 1). On R1 blocks, each of the four colors was assigned to the same response 

key (e.g., “If the square is red/green/blue/yellow, press button 1.”). Since participants were 

not faced with a choice, this defined a 0 order rule with no competition between response 

alternatives. R1 blocks thus provided a control condition for baseline RT differences. During 

R2 blocks, two colors mapped onto one response key, while the other two colors mapped 

onto a second response key (e.g., “If the square is red/green, press button 1. If the square is 

orange/grey, press button 2.”). Hence, in order to select the correct response, participants had 

to use a 1st order rule that involved a single-level decision over two response alternatives (0 

order rules). On R4 blocks, the four colors mapped onto four different keys such that 

participants were required to choose between four response alternatives (e.g., “If the square 

is blue, press button 1. If the square is orange, press button 2. If the square is purple, press 

button 3. If the square is white, press button 4.”). Note that only working memory load but 

not rule order increased from R2 to R4 as both block types comprised 1st order rules.

2.1.2.2. Feature task: Participants saw a colored square with a white arrow inside that 

pointed in one of four directions (up, down, left, right). Trials followed the same procedure 

as in the response task, except that stimuli were presented for a maximum of 4 s. The task 

required participants to decide whether the arrow pointed in a given target direction by 

pressing one of two response keys. The target direction was indicated by the color of the 

square. Analogous to the experimental logic of the response task, trials were grouped into 

three alternate block types, each of which included four color-direction mappings that 

defined one (F1 block), two (F2 block), or four (F4 block) different target directions (see 

Fig. 1). On F1 blocks, each color mapped onto the same target direction. Hence, similar to 

R2 blocks, participants had to follow a 1st order rule by making single-level decisions over 

two response alternatives (match vs. non-match; e.g., “If the square is red/green/ blue/

yellow, press the match button if the arrow is pointing up but if the arrow is pointing in a 

different direction, press the nonmatch button.”). By contrast, F2 and F4 blocks involved 2nd 

order rules requiring a two-level decision over two (F2) vs. four (F4) 1st order rules (first 

level) that mapped a given direction onto a match vs. non-match response (second level; e.g., 

“If the square is red/green, press the match button if the arrow is pointing up but if the arrow 

is pointing in a different direction, press the nonmatch button. If the square is orange/grey, 
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press the match button if the arrow is pointing to the right but if the arrow is pointing in a 

different direction, press the nonmatch button.”).

2.1.2.3. Dimension task: On each trial, two objects were displayed inside a colored square. 

Participants were asked to press one of two response keys to indicate whether the objects 

match along a certain dimension (shape, size, orientation, or shading). The object pairs were 

selected such that there were always two matching and two nonmatching dimensions. The 

relevant dimension was cued by the color of the square. The general trial procedure was the 

same as in the feature task. Following the experimental design of response and feature tasks, 

working memory load was manipulated across three types of blocks, in which four colors 

were mapped onto one (D1 blocks), two (D2 blocks), and four (D4 blocks) different 

dimensions (Fig. 1). On D1 blocks, each of the four colors were assigned to the same 

dimension (e.g., direction), so participants had to use a 2nd order rule that requires a 

decision on relationships between features corresponding to the relevant dimension (e.g., “Is 

the first object pointing in the same direction as the second object?”). Note that this decision 

involves an additional selection step compared to F1 blocks, where participants make 

responses based on a simple stimulus feature (e.g., “Is this arrow pointing down?”). D1 

blocks thus contained the same rule structure as F2 blocks. On D2 and D4 blocks, 

participants followed 3rd order rules that required them to arbitrate between two (D2) vs. 

four (D4) dimensions in order to select the correct 2nd order rule to make a match/nonmatch 

decision.

2.1.3. General procedures—Participants completed two experimental sessions on two 

different days, separated by one to four weeks. In one session, they performed the response 

and the feature task, in the other session, the dimension task. The order of sessions was 

counterbalanced across participants, as was the order of response and feature tasks within a 

session. Each task included six training blocks (two blocks for each load condition) that 

were followed by six experimental blocks. Training and experimental blocks were fully 

counterbalanced for order across participants.

At the beginning of the training, the experimenter explained the task and then taught the 

participant the first set of rules. The corresponding color-rule mappings were shown on the 

computer screen and participants were given as much time as they needed to memorize 

them. Before the start of the first practice block, the experimenter covered the computer 

screen and quizzed the participant on the rule set. If the participant failed to correctly and 

promptly recall all four mappings, they were given additional time to learn the rule. After 

successful completion of the quiz, participants started the first training block. Training 

blocks were identical to experimental blocks except that during the initial block (easy 

practice) there was no response time limit. Moreover, participants were asked to speak out 

loud their response along with pressing the button and were reminded of the correct 

mappings whenever necessary. During the second training block (hard practice), all settings 

were identical to the experimental blocks. Participants repeated both easy and hard practice 

as needed until their performance was above chance level.

Training and experimental blocks contained 33 trials for the response task, 32 trials for the 

feature task, and 25 trials for the dimension task, resulting in a total of 198 trials, 192 trials, 
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and 150 trials, respectively, across the entire experiment. At the beginning of each 

experimental block, participants had the chance to review the mappings they would 

encounter during that block. Responses were given on a standard computer keyboard. 

During feature and dimension tasks, participants used index and middle finger of their 

dominant hand to make a response, while for the response task, each finger of the dominant 

hand was assigned to one response key. Each of the two experimental sessions lasted 

between 1 h and 1.5 h. All participants were tested individually.

2.1.4. Data analyses—The first trial of each experimental block was excluded from 

analyses, as were RTs for incorrect responses, and trials with latencies faster than 200 ms or 

slower than the outlier criterion determined on the basis of individual RT distributions 

(Tukey, 1977). Since mean response latencies differed between the three age groups, F(2,87) 

= 83.49, p < 0.001, ηp
2 = 0.66, we included R1 baseline RT as a covariate in the analyses of 

data from feature and dimension tasks. R1 RT was mean centered prior to running the 

ANCOVAs (Delaney & Maxwell, 1981). For analyses that included R1 RT as dependent 

variable (feature task, cross-tasks comparison), we applied a square root transformation to 

each subject’s mean response latencies per block type in order to increase the homogeneity 

of variance.

RT and accuracy data were subjected to separate ANOVAs (response task) and ANCOVAs 

(feature and dimension tasks) including the between-subject factor age group (children, 

adolescents, adults) and the within-subject factor load (1, 2, vs. 4 alternatives for action). 

Whenever necessary, the Geisser-Greenhouse correction was applied (Geisser & 

Greenhouse, 1958) and corrected p-values are reported. Significant interactions were 

examined further using planned contrasts including pairwise comparisons between age 

groups specifically regarding their performance differences on load 1 vs. load 2 (combined 

effect of increasing rule order and maintenance demands) and load 2 vs. 4 (effect of 

increasing maintenance demands alone). Any developmental change observed in the rule 

order + working memory load contrast that is associated with maintenance demands should 

be evident and measurable when rule order is held constant and only the number of 

alternatives for action in working memory (load 2 to load 4) increases (Amso et al., 2014; 

Badre & D’Esposito, 2007).

2.2. Results

2.2.1. Response and feature tasks—We first sought to replicate the findings of Amso 

et al. (2014) on the 1st order (response task) and 2nd order (feature task) rule tasks. 

Accuracy was high in all age groups for the response task (children: M = 0.95, SD = 0.06; 

adolescents: M = 0.98, SD = 0.02; adults: M = 0.98, SD = 0.01) as well as the feature task 

(children: M = 0.92, SD = 0.07; adolescents: M = 0.95, SD = 0.04; adults: M = 0.96, SD = 

0.03). Fig. 2 presents mean RTs as a function of load (R1, R2, R4 and F1, F2, F4, 

respectively) and age group (children, adolescents, adults) for response (A) and feature (B) 

tasks.

The results are largely consistent with the findings of Amso et al. (2014). For the response 

task, an omnibus analysis of the RT data revealed a significant main effect of load, F(2,174) 
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= 623.38, p < 0.001, ηp
2 = 0.88, that was qualified by an age group × load interaction, 

F(4,174) = 10.03, p < 0.001, ηp
2 = 0.19. Similarly, for the feature task, there was a significant 

main effect of load, F(2,172) = 377.02, p < 0.001, ηp
2 = 0.82, and an age group × load 

interaction, F(4,172) = 7.65, p < 0.001, ηp
2 = 0.15.

We first addressed developmental change in the combined effect of increasing rule-order + 

working memory load by comparing RTs on R1 blocks (0 order) vs. R2 blocks (1st order) 

and F1 blocks (1st order) vs. F2 blocks (2nd order) across age groups. Analyses revealed 

that going from 0 order to 1st order in the response task was associated with an increase in 

RT, F(1,87) = 644.32, p < 0.001, ηp
2 = 0.88. Performance costs were greater for children 

compared to both adolescents, F(1,87) = 11.32, p = 0.001, ηp
2 = 0.12, and adults, F(1,87) = 

12.07, p = 0.001, ηp
2 = 0.12 (Fig. 2A). Correspondingly, RTs increased when going from 1st 

order to 2nd order in the feature task, F(1,86) = 422.01, p < 0.001, ηp
2 = 0.83. Again, this 

effect was greater for children compared to both adolescents, F (1,86) = 6.40, p = 0.013, 

ηp
2 = 0.07, and adults, F(1,86) = 18.72, p < 0.001, ηp

2 = 0.18 (Fig. 2B). These developmental 

effects could be a consequence of increases in rule order, increases in working memory load, 

or both. We thus isolated the RT costs between loads 2 and 4 that are specific to increasing 

maintenance demands, while holding rule order constant. We compared R2 vs. R4 blocks 

and F2 vs. F4 blocks, respectively. RTs were slower on R4 than R2 blocks, F (1,87) = 47.03, 

p < 0.001, ηp
2 = 0.35. This effect was significantly larger in children than adults, F(1,87) = 

6.89, p = 0.010, ηp
2 = 0.07, but did not reliably differ between either children and adolescents 

or adolescents and adults (ps > 0.13). By contrast, adding competing choices in 2nd order 

rule use i.e., from F2 to F4 blocks, resulted in a main effect of load, F(1,87) = 13.59, p < 

0.001, ηp
2 = 0.14, that did not differ across age groups (ps > 0.32).

2.2.2. Dimension task—Next, we asked whether developmental cost due to working 

memory capacity limitations is evident when participants have to use 3rd order rules in the 

dimension task. As was the case for response and feature tasks, the omnibus ANCOVA on 

RTs yielded a main effect of load, F(2,172) = 195.29, p < 0.001, ηp
2 = 0.69, that was qualified 

by an age group by load interaction, F(4,172) = 3.56, p = 0.022, ηp
2 = 0.08. Follow-up 

comparisons of D1 blocks vs. D2 blocks showed that children had greater RT cost due to the 

combined effect of increasing rule order and working memory load (D1 vs. D2) than did 

either adolescents, F(1,86) = 6.82, p = 0.011, ηp
2 = 0.07, or adults, F(1,86) = 5.98, p = 0.016, 

ηp
2 = 0.07, whereas costs did not differ between the latter two age groups (p = 0.64) (Fig. 2C). 

In addition, increasing the number of 3rd order rule sets from D2 to D4 blocks was 

associated with a general RT cost, F(1,86) = 19.21, p < 0.001, ηp
2 = 0.18, but there was no 

evidence for developmental change in the effect of higher maintenance demands (all ps > 

0.23).
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Accuracy was high on D1 blocks for all age groups, but markedly dropped on D2 and D4 

blocks in children. Accordingly, the omnibus ANOVA revealed main effects of age group, 

F(2,87) = 30.03, p < 0.001, ηp
2 = 0.39 (children: M = 0.82, SD = 0.12; adolescents: M = 0.93, 

SD = 0.12; adults: M = 0.96, SD = 0.12), and load F (2,174) = 33.94, p < 0.001, ηp
2 = 0.28

(D1: M = 0.96, SD = 0.06; D2: M = 0.87, SD = 0.02; D4: M = 0.88, SD = 0.02), and an age 

group by load interaction, F(4,174) = 12.43, p < 0.001, ηp
2 = 0.22. When comparing the 

combined effect of rule order and working memory load (D1 vs. D2) across the three age 

groups, we found significantly greater performance costs in children (MD1-D2 = 0.12) 

compared to both adolescents (MD1-D2 = 0.06), F(1,87) = 20.46, p < 0.001, ηp
2 = 0.19, and 

adults (MD1-D2 = 0.01), F(1,87) = 41.06, p < 0.001, ηp
2 = 0.32, as well as a trend towards 

higher cost in adolescents compared to adults, F(1,87) = 3.55, p = 0.063, ηp
2 = 0.04. However, 

once again, we did not find evidence for age differences in maintenance-specific cost (D2 vs. 

D4; children: MD4-D2 = 0.01, adolescents: MD4-D2 = 0.00, adults: MD4-D2 = 0.01) (all ps > 

0.81).

2.2.3. Cross-task comparison—The single-task analyses did not answer the question of 

whether the observed age differences in performance cost were due to an interaction of rule 

order and maintenance demands or were specific to improvements in managing higher rule 

order. Therefore, were ran a task comparison that orthogonally crossed the two factors by 

including only loads 2 and 4 of each task. RTs were subjected to an ANCOVA with the 

between-subject factor age group, the within-subject factors rule order (1st [response task], 

2nd [feature task], 3rd [dimension task]) and load (2 vs. 4) and R1 baseline RT as covariate. 

The analysis yielded significant main effects of rule order, F(2,172) = 247.94, p < 0.001, 

ηp
2 = 0.74, and an interaction of age group and rule order, F(4,172) = 6.14, p = 0.002, 

ηp
2 = 0.13. Pairwise comparisons showed that children had greater response cost than did 

either adolescents or adults when going from 1st to 2nd order rules [F(1,86) = 8.19, p = 

0.005, ηp
2 = 0.09 and F(1,86) = 18.78, p < 0.001, ηp

2 = 0.18, for the comparison of children 

with adolescents and adults, respectively] as well as from 2nd order to 3rd order rules 

[F(1,86) = 6.60, p = 0.012, ηp
2 = 0.07 and F(1,86) = 5.70, p = 0.019, ηp

2 = 0.06, respectively]. 

Furthermore, we obtained a main effect of load, F(1,86) = 41.55, p < 0.001, ηp
2 = 0.33. There 

was, however, no significant interaction of age group and load (p = 0.28) or age group, load, 

and rule order (p = 0.58), indicating that the effect of rule complexity on response speed was 

specifically related to increasing rule order as opposed to working memory load or their 

interaction.

One potential caveat of the cross-task analysis is that it might be confounded by differences 

between the three tasks that are unrelated to the experimental manipulations of rule order 

and working memory load, such as physical properties of the stimuli, instructions, or task-

specific cognitive operations. In order to rule out this possibility, we capitalized on the fact 

that both rule order and total number of contingencies are identical for R2 and F1 conditions 

as well as for F2 and D1 conditions. Specifically, R2 and F1 conditions involve 1st order 
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rules and require choices between two response alternatives (i.e., 2 contingencies). 

Correspondingly, F2 and D1 conditions involve 2nd order rules and choices between two 

contexts (2nd order) and two response alternatives (1st order; i.e., 4 contingencies). Thus, 

any age-related variations in RT differences between (a) R2 and F1 blocks and (b) F2 and 

D1 blocks would be due to differences between feature, and dimension tasks other than rule 

order and maintenance demands.

To address this possibility, we ran separate ANCOVAs with the factors age group and task, 

and R1 baseline RT as covariate to compare R2 vs. F1 conditions and F2 vs. D1 conditions. 

Neither of the two analyses yielded a significant age group × task interaction [F (2,86) = 

0.36, ns, and F(2,86) = 0.13, ns, respectively]. Thus, we did not find evidence that age 

differences in RT were modulated by differences between the response vs. feature tasks or 

feature vs. dimension tasks when these tasks involved the same rule order.

2.3. Discussion

Experiment 1 shows that developmental change in rule-guided behavior can best be 

explained by improvements in hierarchical rule use and not in the ability to manage an 

increasing number of alternatives for action in working memory. Across three tasks using 

both RT and accuracy measures, only one contrast of working memory load showed any 

age-related difference, and this was a difference between children and adults for the lowest 

order response task. Given the specificity of this effect to RT and the absence of this effect in 

the other higher order rule tasks, we suspect that this outlier effect may derive from the 

unique motor demands of the response experiment, namely that four finger responses are 

required versus two. Overall, the present results confirm and extend the findings of Amso et 

al. (2014) and demonstrate that the pattern of developmental differences does not change 

even when using a more complex, supra-capacity task involving 3rd order rules. Thus, 

developmental benefit is linked to factors related to higher-order contextual contingencies, 

but there is no evident developmental cost to the need to maintain multiple rule sets. Lucenet 

and Blaye (2014) similarly found that increasing working memory load did not impact the 

dynamics of cognitive control operations in 5- and 6-year-olds.

While Experiment 1 rules out working memory capacity limitations as an explanation for 

developmental differences in higher order rule use, it does not answer the question what 

specific mechanisms may underlie the observed effects of rule order. As introduced 

previously, research in adults has demonstrated that hierarchical rule use strongly relies on 

efficient working memory gating. Importantly, recent neurocomputational models 

distinguish two gating functions: an input gate for updating task-relevant information into 

working memory and an output gate for selecting which of the currently maintained 

representations exerts a top-down influence on attention and behavior (reviewed in Chatham 

& Badre, 2015). Modeling and empirical work in adults has highlighted output gating, in 

particular, as potentially important for higher order rules (Badre & Frank, 2012; Chatham et 

al., 2014). This motivates the hypothesis that developmental change in the output gating 

component may be particularly important for changes in hierarchical cognitive control. To 

test this hypothesis, we next asked to which degree working memory updating in the 

transition from childhood to adolescence is constrained by inefficiencies in selective input 
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and/or output gating mechanisms. Since Experiment 1 showed that the most pronounced 

developmental change in higher order rule use occurs between late childhood and 

adolescence, the second experiment exclusively focused on these two age groups.

3. Experiment 2

In Experiment 2, we capitalized on an established paradigm that independently manipulates 

demands on input vs. output gating using a 2nd order conditional rule task (Chatham & 

Badre, 2013; Chatham et al., 2014). We collected data from children and adolescents within 

the same age range as in Experiment 1 (7–17 years). On each trial, participants were shown 

sequences of three items: a digit, a letter, and a symbol. The digit cued whether responses 

should be made on the basis of the letter, the symbol, or both (Fig. 3A). So, the digit was a 

2nd order context that specified which items (letters, symbols, or both) would provide the 

1st order context for the motor response. Importantly, the presentation order of the digit, 

letter, and symbol was unpredictable. Thus, on context first trials, the 2nd order context (i.e., 

the digit) appeared prior to the lower-order items (letters or symbols), permitting participants 

to update only the relevant upcoming item into working memory. Thus, an input gating 

strategy could be used on context first trials. When the context appeared last (context last) 
participants had to input both of the items into working memory, as they did not know which 

would be relevant. Then, at the final context presentation, they selected an item from 

working memory to guide their response. Thus, context last trials required output gating.

Notably, using the input gating strategy on context first trials would require holding only one 

lower order item in working memory. Whereas on context last trials, two lower order items 

must be maintained because participants do not know which will be relevant until the 

context appears. As such, working memory load would always be lower on context first than 

context last trials and would confound the input vs. output gating difference between these 

conditions. Thus, to control for working memory load, we also included a global context cue 

(the digit “3” in Fig. 3A) that specified that a conjunction of both lower-level items 

determined the correct response (Fig. 3D & E). So, in contrast to the selective context cues 

(the digits “1” or “2” in Fig. 3A), a global context cue always required holding two items in 

working memory. Context first and context last were crossed with selective/global to 

produce four conditions: context first-selective, context first-global, context last-selective, 

and context last-global.

Beyond controlling for working memory load, the selective-global distinction also provides 

a purer measure of output gating than the more general comparison of context first and 

context last conditions, which is likely to reflect other process differences between the two 

conditions besides output gating demands. One such factor is that in the context last 

conditions, the higher order context cannot be updated until the end of the trial, i.e., the 

appropriate rule needs to be set and maintained before selection from working memory can 

begin. Thus, the additional time required for input gating of the context contributes to the RT 

differences between context first and context last conditions. By contrast, context last-

selective and context last-global conditions differ only in terms of the higher output gating 

demand associated with singling out one of the two maintained items on context last-
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selective trials— as opposed to uniformly output gating all working memory representations 

on context last-global trials.

In a similar vein, the comparison of context first-selective and context first-global conditions 

provides a measure of the efficiency of selective input gating. As stated above, successful 

use of a selective input gating strategy on context first-selective trials is associated with 

reduced working memory load. Consequently, the more efficiently participants use a 

selective input gating strategy in the context first-selective condition, the more their 

performance should benefit compared to the context first-global condition, where this 

strategy is not applicable.

A final point to consider is that when the context appears last (context last conditions), one 

must use an output gating strategy, as it is not possible to know which of the preceding items 

will be relevant to the response. However, when the digit (higher order rule/context) appears 

first (context first conditions), participants can use either a selective input gating strategy or 
an output gating strategy, as they could choose to wait until both items are presented to 

select one for responding. So, in Fig. 3B, a child might update the “1”, “ ”, and “A” into 

working memory and then select the “ ” from working memory based on the “1”. 

Employing an input gating strategy in this task is a form of proactive control or preparedness 

(Braver, 2012) and can reduce working memory load when only one lower order item needs 

to be maintained (i.e., in the selective condition). By contrast, the output gating strategy is 

reactive and may be more costly both in terms of working memory load and the demands on 

gating. Despite these potential disadvantages to reactive control, previous work suggests 

younger children mix modes of control—acting at times proactively and at other times 

reactively—even when contextual information is available in advance (Blackwell & 

Munakata, 2014; Chatham, Frank, & Munakata, 2009; Lorsbach & Reimer, 2010; Lucenet 

& Blaye, 2014).

Thus, one must control for developmental change in reactive and proactive control in order 

to isolate developmental changes in the efficiency of input and output gating mechanisms. 

That is, we must first isolate context first trials where participants are using a proactive 

versus reactive strategy, and then compare RTs separately for these two trial types across our 

age range. We applied a hierarchical Bayesian mixture model to identify two mixture 

components: one representing a fast or proactive RT distribution, characterizing trials on 

which subjects select the appropriate rule upon presentation of the context stimulus, and the 

other representing a slow or reactive RT distribution, characterizing trials on which subjects 

select the appropriate rule only upon presentation of the response prompt at the end of the 

trial.

3.1. Methods

3.1.1. Participants—The sample included a total of 37 typically developing children (N = 

18; ages 7–11, M = 9.2, SD= 1.0; 8 females) and adolescents (N = 19; ages 12–17, M = 

14.2, SD = 1.6; 11 females). One further adolescent and three further children were tested 

but excluded from analyses because performance was at chance level in at least two out of 

the four experimental conditions. All consenting and screening procedures were as in 

Experiment 1.
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3.1.2. Materials and task—As illustrated in Fig. 3, each trial consisted of a sequence of a 

three stimuli (digit, letter, and symbol) appearing in random order. Stimuli were drawn from 

three possible digits (“1”, “2”, “3”), two possible letters (“A”, “B”) and two possible 

wingdings ( , ❄). Simultaneously with the last stimulus in each sequence, two probes 

(each consisting of a letter and a symbol) were displayed at the bottom left and right of the 

screen. Participants pressed a button (“F” and “J” on a standard computer keyboard) 

corresponding to the side (left or right) where the relevant item appeared (Fig. 3B–E). Target 

and distractors positions were unpredictable, that is, the individual letters and symbols could 

appear in each of the four probe locations.

The digit acted as higher order context such that depending on its identity, participants chose 

one of three lower order response rules. Digits 1 and 2 were selective conditions and 

indicated that only the letter or only the symbol was response-relevant, respectively. The 

digit 3 was the global condition and indicated that both the letter and symbol in that 

sequence was the target. In order to make sure that participants process all relevant lower 

order items, one of the presented items (either symbol or letter) appeared as distractor on the 

incorrect side of the screen on 50% of trials in both selective and global conditions (Fig. 3C 

and D). Thus, for example, if participants paid attention to only one of the two items in the 

global condition, they would not be able to make a decision on trials where both response 

probes contain this item.

To dissociate input and output gating mechanisms, the context digit was presented either 

before (context first) or after (context last) the remembered items. For instance, in Fig. 3B, 

seeing the “1” first, meant a participant need only input the “ ” into working memory and 

ignore the “A” (selective input gating). In Fig. 3C, in contrast, the “ ” and “A” were first 

input to working memory and then the “ ” was selected from working memory when “1” 

was presented (selective output gating). Context first and context last were crossed with 

selective/global to produce four conditions: context last-selective, context first-selective, 

context last-global, and context first-global.

In order to make the position of the context cue within a sequence less predictable, the task 

also included trials on which the digit context cue appeared between the two lower level 

items. Though of theoretical interest (see Chatham & Badre, 2013; Chatham & Badre, 

2015), these context middle events will not be considered further in the present work that is 

focused on gating mechanisms.

3.1.3. Procedure—Participants were presented with white digits, letters, and symbols 

displayed in the center of a computer screen on a black background. Each stimulus within a 

sequence was shown for 500 ms. The fixation interval between the presentation of the first 

and second stimulus as well as the second and third stimulus was jittered between 1000 ms 

(~60%), 3000 ms (~30%), and 5000 ms (~10%). Simultaneously with the onset of the last 

item in a sequence, the probes appeared on the screen for a maximum of 4000 ms until a 

response was made. The inter-trial-interval was jittered between 700 ms (~75%), 1400 ms 

(~25%), and 2300 ms (~5%). There were 30 sequences for each of the four experimental 

conditions (context first-selective, context first-global, context last-selective, context last-

global), resulting in a total of 120 trials. Different trial types were presented in random order 
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throughout the experiment. Participants were tested individually in a single test session that 

took about 45 min to complete.

Before the start of the experiment, participants were taught the use of global and selective 

rules in the different conditions. After a detailed explanation of task procedure and response 

requirements, the experimenter walked the participant trough a series of demo trials—one 

for each experimental condition. The participant then performed the demo trials by 

themselves, verbalizing their decisions at each step. The experimenter provided feedback 

after each trial and reminded the participant of the correct rules if necessary. There was no 

response time limit and training was continued until the participant responded correctly to 

all trial types. Participants then completed a practice block of 30 trials under experimental 

settings. Practice was repeated until performance was above chance level.

3.1.4. Analysis of accuracy and RTs—The first ten experimental trials were excluded 

from analysis, as were responses with latencies faster than 200 ms or slower than the outlier 

criterion (Tukey, 1977). Since overall means and variances of response latencies differed 

between the age groups, F (1,35) = 18.89, p < 0.001 and F(1,35) = 6.10, p = 0.019, 

respectively, mean RTs were square-root transformed prior to analysis as in Experiment 1. 

All Figures depict raw means, as is the proper convention. Accuracy rates and RTs for 

correct responses were analyzed by separate ANOVAs with the between-subject factor age 
group (children, adolescents) and the within-subject factors context order (context first vs. 

context last) and selection demand (selective vs. global).

3.1.5. Mixture model of reaction time distributions—As noted above, the context 

first-selective condition can either be performed using a proactive input gating strategy or a 

reactive output gating strategy. Thus, in order to test estimate the proportion of proactive 

versus reactive context first trials across the two age groups, we fitted a hierarchical 

Bayesian Gaussian mixture model (adapted from Almond, 2014) to individual RT 

distributions. Hierarchical Bayesian techniques assume that individual parameter values are 

drawn from group-level distribution and take into account similarity between individuals to 

obtain more reliable subject-specific parameters, which are estimated simultaneously with 

the group distribution. This approach is particularly suited for developmental studies 

because it efficiently pools information across individuals and thus requires fewer numbers 

of trials per subject and condition (e.g., Kruschke, 2010; Lee & Wagenmakers, 2013). The 

model included two mixture components that represent a fast and a slow RT distribution. For 

context first-selective trials, we reasoned that the fast distribution was more likely to include 

trials on which a proactive input gating strategy was used, whereas the slow distribution was 

more likely to include trials on which a reactive output gating strategy was employed.

It should be noted that the RT distribution analysis by itself cannot tell whether participants 

actually used an input or output gating strategy; it just estimates whether the RTs come from 

two different distributions (slow vs. fast). Theoretically, many factors, such as inattention, 

forgetting, or fatigue, could cause this kind of mixture distribution. Those factors, however, 

should affect the experimental conditions in a uniform manner. As a result, their effects 

should not systematically differ across context first and context last conditions. Instead, we 

expected age differences in the proportion of trials from the slow distribution vs. fast 
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distribution to be greater in the context first condition than in the context last condition. 

Context last trials thus served as an important control to make sure that the age-differential 

effects in the mixture distribution analysis do not simply due to children being generally 

more inattentive or forgetful than adolescents.

Model fitting yielded estimates of three Level 1 (subject-specific) parameters for each of the 

two components, representing mean (μi), precision (τi),2 and a mixing probability πi, that 

determines the likelihood that a given trial will be drawn from the fast or slow distribution. 

On context first-selective trials, then, the mixing probability corresponds to the proportions 

of proactive and reactive trials. Components were identified by placing an ordering 

constraint on the parameter vector μ0. The proactive distribution was identified as the 

component with the faster mean RT. Note that since the proportions of fast and slow trials 

add to one, the corresponding parameters were not estimated independently. The prior 

distributions for Level 1 parameters were given by

μi, fast[slow] 𝒩(μ0, fast[slow], β0, fast[slow])
log (τi, fast[slow]) 𝒩( log (τ0, fast[slow]), γ0, fast[slow])
πi Dirichlet(α fast, αslow)

where i ∈ {1,…,N} is the subject index, while fast and slow indicate the fast (proactive) and 

slow (reactive) distributions, respectively. The script  denotes the normal distribution. 

These subject-specific parameters were assumed to be drawn from group distributions, 

specified by Level 2 (across-subject) parameters α, μ0, β0, η0, and γ0 with the following 

hyperpriors

α0 Dirichlet(0.5, 0.5)
μ0, fast[slow] 𝒩(0, 1000)
log (β0, fast[slow]) 𝒩(0, 1)
log (τ0, fast[slow]) 𝒩(0, 1)
log (γ0, fast[slow]) 𝒩(0, 1)

The joint posterior distribution of all model parameters was obtained using Markov chain 

Monte Carlo (MCMC) sampling (Gamerman & Lopes, 2006). The results represent averages 

across 30 Markov chains, each of which was run 10,000 iterations (the first 1000 iterations 

were discarded as burn-in). In order to test for pseudo-convergence of the chains, the 

Gelman-Rubin R̂ statistic (Gelman & Rubin, 1992; Gelman & Shirley, 2011) was computed. 

This statistic will be close to 1 if the samples of the different chains are indistinguishable, 

i.e., if the chains mix well. All R̂ coefficients were less than 1.02, indicating proper 

convergence. Model fit was evaluated by calculating the Watanabe-Akaike information 

criterion (WAIC; Watanabe, 2010) and the deviance information criterion (DIC; 

Spiegelhalter, Best, Carlin, & van der Linde, 2002). In both cases, lower values indicate 

better fit. We also tested whether the two-component mixture model fits the observed data 

2Precision is defined as the inverse of the standard deviation.
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better than a single component (i.e., non-mixture) or a three-component mixture model. All 

Bayesian analyses were performed using RStan (Stan Development Team, 2014).

3.2. Results

3.2.1. Accuracy and reaction time—As plotted in Fig. 4A, accuracy in both groups was 

higher in the context first than context last conditions (F(1,35) = 15.24, p < 0.001, ηp
2 = 0.30) 

and for global than selective conditions (F (1,35) = 14.39, p = 0.001, ηp
2 = 0.29), largely 

mirroring prior observations in adults (Chatham et al., 2014). Adolescents were more 

accurate overall than children F(1,35) = 17.30, p < 0.001, ηp
2 = 0.33. No interactions with age 

group reached significance (all ps > 0.28).

The ANOVA on mean RT revealed a main effect of context order, F(1,35) = 56.81, p < 

0.001, ηp
2 = 0.62, indicating that responses were slower in context last conditions relative to 

context first conditions (Fig. 4B). This difference was also evident when comparing RTs in 

context last conditions only to the load-matched context first-global condition, F(1,35) = 

45.89, p < 0.001, ηp
2 = 0.57. These results are consistent previous findings in adults (Chatham 

et al., 2014) showing that the additional output gating demand in context last conditions 

(compared to context first conditions) is associated with an increase in RT independent of 

working memory load. However, since other factors than output gating may contribute to 

performance differences between context first and context last conditions, it was important 

to determine whether higher output gating demands also resulted in slower RTs in the 

context last-selective compared to context last-global conditions. This was confirmed by a 

context order × selection demand interaction, F(1,35) = 58.55, p < 0.001, ηp
2 = 0.63. While 

the context first-selective condition benefitted performance relative to the context first-global 

condition (by reducing working memory load), t(36) = −3.04, p = 0.004, the context last-

selective condition was associated with greater RT cost, even relative to the context last-

global condition, t (36) = 5.27, p < 0.001.

In order to make sure that the latter finding did not reflect a differential impact of distractor 

items on response selection in context last-selective vs. context last-global conditions, we 

compared RTs on trials containing a distractor in the probe display to those without 

distractors. As expected, RTs were slower on trials with distractors than those without 

distractors, F(1,35) = 8.16, p = 0.009, ηp
2 = 0.19. However, there was no evidence for a 

distractor × selection demand interaction in either children or adolescents (ps > 0.35) nor 

was there a significant age group × distractor × selection demand interaction (p = 0.61). 

Responses to context last-selective trials (children: MNoDistractor = 1846 ms vs. MDistractor = 

2026 ms; adolescents: MNoDistractor = 1418ms vs. MDistractor = 1471 ms) were always slower 

than to context last-global trials (children: MNoDistractor = 1783 ms vs. MDistractor = 1859 ms; 

adolescents: MNoDistractor = 1164ms vs. MDistractor = 1200 ms). Thus, even when both target 

and irrelevant item are associated with the same response (no distractor), the context last-

selective condition imposes an additional performance cost.3
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Furthermore, performance differed by age group. The ANOVA on mean RT revealed a main 

effect of age group, F(1,35) = 18.37, p < 0.001, ηp
2 = 0.34, reflecting overall slower responses 

in children (Fig. 4B). Moreover, there was context order × selection demand × age group 

interaction, F(1,35) = 21.49, p < 0.001, ηp
2 = 0.38, indicating that the effects of context order 

and selection demand differed across age groups. We followed this final interaction with 

separate analyses of the context first and context last conditions. We begin with a 

comparison of the context last-selective and context last-global conditions, which is a purer 

measure of output gating performance than the comparison of context first and context last 

conditions. This is because the context last-selective condition differs from the context last-

global condition primarily in terms of the higher output gating demands associated with 

selecting only one item – as opposed to all information – maintained in working memory, 

while nuisance factors are mostly identical for the two conditions.

When context information was presented last, we found a selection demand × age group 

interaction, F(1,35) = 8.41, p = 0.004, ηp
2 = 0.19. Both groups were faster on global than 

selective trials (ps < 0.022), and adolescents overall outperformed children in both context 

last-selective and context last-global conditions (ps < 0.010). This benefit, however, was 

greater on context last-global than context last-selective trials. In line with findings in adults 

(Chatham et al., 2014), these data suggest that singling out only one working memory 

representation (instead of simply output gating everything from working memory) is more 

challenging to both age groups, and adolescents benefit more from lower selection demands 

in the global condition. Nevertheless, adolescents performed better than children in both 

context last-selective and context last-global conditions.

While RT differences between context last-selective and context last global conditions were 

smaller in children compared to adolescents, accuracy rates showed the opposite pattern 

(Fig. 4A). This indicates that children might have responded faster at the cost of higher error 

rates in context last-selective condition. In order to account for this speed-accuracy trade-off, 

we ran an additional analysis that combined the two measures. For each participant, we 

calculated the inverse efficiency score by dividing mean RT for a given condition by the 

corresponding accuracy rate. An ANOVA with the factors context order (first vs. last) and 

selection demand (global vs. selective) yielded a marginally significant age group × 

selection demand interaction, F(1,35) = 3.42, p = 0.07, ηp
2 = 0.09, indicating that age 

differences in performance were relatively larger for selective 

( Mcontext first‐selective
diff = 1258, Mcontext last‐selective

diff = 1346) compared to global conditions 

( Mcontext first‐global
diff = 896, Mcontext last‐global

diff = 1090). Thus, when considering RT and 

3Another possible alternative explanation for the behavioral difference between global and selective conditions is that participants’ 
performance in the context last-global condition benefits from the fact that there is more evidence (2 items) for the correct response 
than in the context last-selective condition (1 item). If this were the case, however, the beneficial effect of the additional item should 
vanish when it is presented as a distractor. Thus, RT differences between context last-selective and context last-global conditions 
should be reduced when a distractor is present and hence only one item unambiguously indicates the correct response. The lack of 
significant interactions of distractor and selection demand and age group, distractor, and selection demand argues against this 
possibility. Thus, while it is plausible that there might be some performance benefit due to the second item in the context first-global 
condition, it cannot account for the large RT difference between context last-selective and context last-global conditions.
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accuracy simultaneously, children show greater performance costs in the conditions that 

require selective (output) gating.

Furthermore, we hypothesized that children’s disproportionally low accuracy rates in the 

context last-selective condition would reflect a relatively higher proportion of fast guesses. 

This might have reduced children’s mean RT in the context last-selective condition. In order 

to test this hypothesis, we calculated accuracy rates separately for each quartile of the RT 

distribution (including both correct and incorrect responses) for all four conditions in both 

age groups. As expected, this analysis revealed that accuracy for the fastest responses (first 

quartile) in the context last-selective condition was at chance level in children (M = 0.52, SE 
= 0.21) but well above chance in adolescents (M = 0.83, SE = 0.16). In all other conditions, 

performance for the fastest responses was above chance in both children (M > 0.63) and 

adolescents (M > 0.87). Thus, a relatively higher proportion of correct responses resulting 

from fast guesses in children might have diminished age-related RT differences in context 

last-selective condition.

The comparison of context first-selective and context first-global conditions provides a 

measure of how efficiently participants used selective input gating to reduce working 

memory load on context first-selective trials. This analysis also resulted in a selection 

demand × age group interaction, F(1,35) = 6.37, p = 0.016, ηp
2 = 0.14, reflecting that only 

adolescents, t(18) = −3.45, p = 0.003, but not children, t(17) = −0.61, p = 0.55, were faster in 

context first-selective than context first-global conditions. Thus, adolescents appeared to be 

taking advantage of context information when it is presented first to constrain input gating of 

information needed for action selection. By contrast, children showed no benefit from 

having received contextual information when it allowed reducing working memory load 

(context first-selective condition) as compared to when it did not (context first-global 

condition). However, as noted above, performance in the context first condition can be 

driven by the use of a proactive control strategy, a reactive control strategy, or a mixture. We 

address these alternatives next using a hierarchical mixture distribution modeling approach.

3.2.2. Developmental dissociations in control strategy and gating efficiency—
The observed lack of RT benefits on context first-selective trials in children could result 

from a failure of input gating or be due to the greater use of reactive control. Predominant 

use of a reactive control strategy would slow children’s RTs to approximate those of the 

output gating conditions (context last). Age-related differences in performance might be 

thereby diminished. To test this possibility, we first established differences in the dynamics 

of control across groups by fitting a hierarchical mixture model with two components – one 

representing the slower (reactive) distribution and the other one representing the faster 

(proactive) distribution – to each participant’s RT data in the context first-selective and 

context last-selective conditions.4 Importantly, while mixing a proactive and reactive 

strategy could occur in the context first condition, participants could use only one strategy 

4There were two reasons to fit the mixture model to context first-selective (and context last-selective) condition only: First, age 
differences were greater for context first-selective compared to the context first-global conditions. Second, in many participants, the 
low trial numbers in context first-global and context last-global conditions did not allow for reliable estimates of the mixture 
proportions.
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(output gating) on context last trials. The context last condition thus served as a control to 

test the validity of the premise that the two components of the mixture model reflect 

proactive vs. reactive strategy use rather than other, non-specific factors that could result in a 

mixture of slow and fast distributions. General variables, such as children’s greater 

susceptibility to distraction or fatigue, should have similar effects on the proportion of slow 

trials in context first-selective and context last-selective conditions and hence should result 

in similar mixing probabilities and model fit. By contrast, if the components reflect proactive 

vs. reactive strategy use, the mixture model should not fit as well or show as large a 

difference in mixing between age groups for context last-selective compared to context first-

selective.

The estimated group-level mixing probabilities (α) and the corresponding estimates of mean 

RTs for the fast (μ0,fast) and slow(μ0,slow) distributions are given in Table 1. In the context 

first-selective condition, children drew more often from the reactive (slow) distribution than 

adolescents (0.46 vs. 0.26), while age differences in mixing probabilities were strongly 

reduced in the context last-selective condition (0.42 vs. 0.43).

We used Bayesian parameter estimation to determine whether the across-condition changes 

in the mixing probabilities differed significantly between the two age groups. Specifically, 

we computed the 2.5 and 97.5 percentiles of the posterior of a group-level variable ( αslow
(diff )) 

that models the difference between mixing probabilities for the slow distribution in context 

first-selective vs. context last-selective conditions (i.e., αslow
(diff ) = αslow

(c f ) − αslow
(cl) ), separately for 

children and adolescents. A significant difference is detected when the Bayesian 95% 

credible intervals of the posterior distributions for children and adolescents do not overlap. 

Results showed that this was indeed the case; the 95% credible interval for αslow
(diff ) extended 

from −0.15 to 0.08 in children and from 0.10 to 0.30 in adolescents. Both WAIC and DIC 

values indicated that the 2-component mixture model fitted the observed data in the context 

first-selective condition better than models with either 1 or 3 components (Table 2). In 

contrast, for the context last-selective condition, neither WAIC nor DIC clearly favored the 

2- component model over the 1-component or 3-component models.

The finding that children showed a higher proportion of trials from the slow distribution 

selectively in the context first-selective condition and the fact that only the context first-

selective condition was fit well by the mixture model suggest that children are indeed using 

a mixture of reactive and proactive control modes when context information is presented 

first.

The critical question then is whether, when RTs are confined to those trials in which 

participants do use a proactive (selective input gating) vs. reactive (selective output gating) 

strategy, there are developmental differences in performance that would indicate 

developmental change in efficiency of input gating or output gating. If children are 

inefficient input gaters, then they should be particularly slow compared to adolescents when 

using a proactive input gating strategy. That is, age difference should be relatively greater for 

trials from the fast distribution compared to trials from the slow distribution in the context 

first-selective condition. However, if children are disproportionally slower when using a 
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reactive output gating strategy in the context first-selective condition, this would indicate 

that they are inefficient output gaters. In the latter case, age differences should be relatively 

greater for the slow compared to the fast distribution. Again, we expected to find age-

specific effects in mean RT differences for the two distributions specifically in the context 

first-selective condition—where both proactive and reactive strategies are available—rather 

than in the context last-selective condition.

For each participant, each trial of the context first-selective and context last-selective 

conditions was assigned to either the fast or slow distribution by calculating the posterior 

probability that the RT was drawn from either of the two components, using Bayes’ theorem

pi, j, k
(c, r) ∝ πi, k

(c, r)ϕ
Yi, j − μi, k

(c, r)

σi, k
(c, r) ,

where ϕ(·) denotes the unit normal density and pi, j, k
(c, r) is the posterior probability of the 

component k (fast vs. slow) for draw r of chain c given the data (RT) observed on trial j in 

subject i. The estimate for pi,j,k is then calculated as the average over all MCMC draws of 

pi, j, k
(c, r)

1
CR ∑

C
∑
R

pi, j, k
(c, r) .

A trial was assumed to be sampled from the fast distribution if pi,j,fast > pi,j,slow and 

otherwise from the slow distribution.

Fig. 5 shows mean RTs for trials from the fast vs. slow distribution in context first-selective 

and context last-selective conditions, separately for the two age groups. An ANOVA with the 

factors age group, component (fast vs. slow), and context order (context first vs. context last) 

revealed a significant three-way interaction, F(1,34) = 11.13, p = 0.002, ηp
2 = 0.25. We 

followed this interaction with separate analyses for context first and context last conditions. 

For the context first condition, the analysis yielded a significant age group by component 

interaction, F(1,34) = 36.99, p < 0.001, ηp
2 = 0.52, indicating that the difference between 

children and adolescents was much greater when children adopted a reactive strategy (slow 

distribution). While a reactive strategy was unsurprisingly costly for both groups on context 

first trials, children showed a greater decrease in RT on trials from the fast relative to the 

slow distribution than adolescents (1134 ms vs. 651 ms). In contrast, there was no significant 

age group by component interaction in the context last condition (p > 0.25), confirming the 

specificity of the developmental differences in the context first condition. In sum, these 

findings indicate that children use a selective input gating strategy less often. However, when 

they do engage in a selective input gating strategy, they approximate adolescent performance 

more closely than when they rely on more slowly developing output gating mechanisms.
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4. General discussion

In two experiments, we examined potential mechanisms underlying developmental 

improvements in rule-guided behavior from late childhood through adolescence. In 

particular, we tested the hypothesis that hierarchically organized gating mechanisms that 

control information flow into and out of working memory provide a key to understanding 

this developmental trajectory. Experiment 1 verified that age-related improvements in the 

capacity to manage increasingly higher order rules cannot be explained by working memory 

maintenance limitations alone. The results of Experiment 2 then provided evidence for more 

pronounced developmental change in output gating mechanisms that select which of the 

currently maintained working memory representations can exert an influence over behavior, 

above and beyond those that select task-relevant information to be updated into working 

memory (input gating). Further, we found that despite being more inefficient at output 

gating, younger children tended to rely more on output gating than input gating when given 

the option, showing a preference for reactive rather proactive control.

The results of Experiment 1 replicated and extended prior work (Amso et al., 2014) by 

demonstrating that the development of rule-guided behavior is uniquely linked to the 

hierarchical complexity of the rule (i.e., rule order) not only in 1st and 2nd order, but also in 

3rd order rule tasks. By contrast, we found no clear evidence to suggest that increasing 

working memory demands, in the form of a larger number of alternatives for action at any 

single level of the hierarchy, affected performance differentially across the three age groups. 

These results are consistent with arguments that preschool-aged children’s difficulties with 

flexible rule switching on the Dimensional Change Card Sort cannot be explained by 

constraints on working memory capacity alone. In a series of studies, Zelazo et al. (2003) 

also showed that 3- and 4 year old children are able to flexibly use four lower order rules, as 

long as these rules are not in conflict. The authors interpreted their findings as indicating that 

children’s performance is limited by the degree to which lower order rules need to be 

embedded under higher order rules, rather than the number of parallel rules at a given level 

of the hierarchy (as formulated in the framework of the Cognitive Complexity and Control 

theory; e.g., Zelazo & Frye, 1998). Along with the work by Amso et al. (2014), the present 

study provided a stringent test of this hypothesis by using a paradigm that orthogonally 

manipulates increases in hierarchical rule order vs. increases in the number of rule 

alternatives at each hierarchical level.

With respect to working memory gating, Experiment 2 was motivated by emerging evidence 

that separate mechanisms control input gating of information to be maintained in working 

memory and output gating of information from working memory to bias thought and action 

(Chatham & Badre, 2015). Specifically, output gating has been shown to be particularly 

important, relative to input gating, for the execution and learning of abstract, higher order 

rules in adults (Badre & Frank, 2012; Chatham et al., 2014; Frank & Badre, 2012). However, 

selecting items from within working memory (output gating) can be more resource 

demanding than the selection of items to update working memory (input gating). And 

further, selecting specific items from working memory (i.e., selective output gating) is more 

resource demanding than having to gate out all the presented information (i.e., global output 

gating). We observed similar patterns here and further saw differences in age groups, 
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suggesting that selective output gating may undergo a more protracted developmental 

change, possibly extending beyond childhood and adolescence into young adulthood. While 

it seems somewhat surprising that we found larger age-related RT differences for global 

relative to selective output gating, accuracy rates showed the opposite pattern. Indeed, 

combined analysis of RT and accuracy data revealed disproportionally larger performance 

costs for selective compared to global (output) gating in children. Moreover, a more detailed 

inspection of accuracy rates across quartiles of the RT distribution suggested that children’s 

responses in the context last-selective condition were more likely to reflect fast guesses than 

their responses in all other conditions. Taken together, these findings support the notion that 

children’s mean RTs in the context last-selective condition do not fully reflect the true 

efficacy of the underlying gating mechanisms.

There are at least two possible explanations of why selection of subsets of information from 

working memory is more demanding than allowing all information to jointly influence 

response selection. First, faster RTs in the context last-global condition might reflect a 

congruency effect on gating. Note that on global trials, the output gates for both working 

memory representations should be opened in order to allow the two maintained items to 

jointly bias attention towards the conjunction match (congruent gating policy). By contrast, 

in the context last-selective condition only the gate on the relevant item should be opened, 

whereas the gate on the irrelevant item must remain closed (incongruent gating policy). The 

current findings suggest that adolescents may benefit more from the congruent gating policy 

in the context last-global condition than children. Second, some computational models of 

working memory gating assume that the closure of the output gate for one of the two items 

in the context last-selective condition requires an inhibitory pathway (e.g., the NoGo 

pathway in the basal ganglia, Frank & Badre, 2012). Activation of an inhibitory pathway 

could account for the behavioral slowing in this condition. From our results, it appears that 

children and adolescents are similarly affected by such an inhibitory effect.

Our findings from the context first condition further revealed that the costs of output gating 

in childhood might be compounded by a strategic tendency toward reactive control. 

Specifically, the results indicate that while both age groups use a mixture of reactive and 

proactive control when provided with context first, adolescents are more likely than children 

to engage proactive control and the more efficient selective input gating strategy. This notion 

is consistent with previous work in younger children demonstrating that there is a shift in the 

temporal dynamics of control from a purely reactive control mode to a more mixed reactive/

proactive control mode by early childhood, with proactive control continuing to improve 

throughout adolescence (Andrews-Hanna et al., 2011; Blackwell & Munakata, 2014; 

Chatham et al., 2009; Lorsbach & Reimer, 2010; Lucenet & Blaye, 2014). However, the 

present findings also suggest that children can and do use a proactive input gating strategy, 

and when they do so, they approximated adolescents’ performance. Thus, in context first 

conditions, differences in performance between children and adolescents might be due to the 

use of an inefficient strategy (output gating) rather than inefficiency of the input gating 

strategy itself.

Though the present results do not provide evidence for developmental change in the 

efficiency of the input gating, we also cannot fully rule out that such inefficiency might be 
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evident if probed differently. For example, it is possible that initial costs in updating working 

memory with the higher order context can be made up during the slack period of the trial. 

On this view, the higher proportion of reactive (or unprepared) context first trials could 

reflect input gating failures, i.e., trials where children failed to update proactively and so had 

to output gate. Nevertheless, the present data indicate that (1) output gating is less efficient 

in children than in adolescents and (2) children preferentially adopt a reactive control 

strategy, thereby utilizing less efficient mechanism more often.

Given that the output gating strategy is less efficient across all age groups—and especially 

so in children—one might ask why children nonetheless opt for this less efficient option 

more often? One answer to this question was provided in the preceding discussion: children 

are simply forced to engage in output gating more often because of a higher frequency of 

input gating failures. However, another possibility relates to deficiencies in stable meta-task 

control, such as the sustained maintenance of the meta-task-set or task instructions. This 

kind of sustained control may be supported by a different and relatively later maturing 

functional brain network than adaptive trial-to-trial control (Fair et al., 2008; Power, Fair, 

Schlaggar, & Petersen, 2010), and/or could depend on an additional super-ordinate 3rd order 

rule or across-trial context (cf. Herd et al., 2014). Indirect evidence for this possibility comes 

from previous research indicating that children’s deficits in flexible rule use largely derive 

from their difficulties to translate higher order task cues into rule representations (Chevalier 

& Blaye, 2009; Lorsbach & Reimer, 2010). The effort in anticipation of an outcome may 

also play a role in less proactive control, regardless of its relative efficiency. It is notable, in 

this regard, that elderly populations also tend to use a reactive control strategy more often 

than young adults (Braver, Paxton, Locke, & Barch, 2009). Accounts of this difference 

similarly depend on how older adults weigh the relative costs and benefits of a sustained 

proactive mode versus a periodic reactive strategy (Braver, 2012). Children and adolescents 

might, correctly or not, differ regarding in the anticipated cost of proactively updating higher 

order rules versus the benefit to performance of using this strategy.

Connecting the development of rule-guided behavior to output gating also holds intriguing 

implications for the specific neural systems that might undergo developmental change, as 

research in adults has begun to elaborate the neurobiological mechanisms that support 

output gating. Selective input and output gating of higher and lower order information is 

thought to be controlled by dynamic gating signals from the basal ganglia that are connected 

with prefrontal cortex via parallel, hierarchically organized corticostriatal loops (reviewed in 

Chatham & Badre, 2015). Chatham et al. (2014) used the same task as in Experiment 2 and 

showed that frontostriatal connectivity correlates with the reliability of selective output 

gating mechanisms in adults. Likewise, there is growing evidence from functional 

neuroimaging studies for experience-dependent developmental plasticity of connectivity 

patterns in widespread cognitive control networks in general and corticostriatal circuits in 

particular (e.g., Fair et al., 2008; Gianaros et al., 2011; Kelly et al., 2009; van den Bos, 

Cohen, Kahnt, & Crone, 2011). Accordingly, developmental improvements in output gating 

could be indicative of experience-dependent changes in corticostriatal dynamics that 

determine the efficiency of hierarchical gating (Chatham et al., 2014). This hypothesis will 

be important to test in future research.
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Finally, it should be acknowledged that our interpretation of the developmental differences 

we observed in terms of output gating is necessarily indirect and so need to be confirmed by 

future studies. There are, however, several reasons why we believe our results can be most 

parsimoniously explained by developmental differences in output gating. First, Experiment 2 

used an established paradigm that has been specifically designed to dissociate frontostrial 

input an output gating mechanisms as inspired by neurocomputational modeling of the 

relevant pathways (Frank & Badre, 2012). Using this paradigm, Chatham et al. (2014) found 

that frontostriatal structures supporting output gating are selectively recruited when context 

is presented last as compared to first and this effect was stronger on context last-selective 

than on context last-global trials (Chatham et al., 2014). Further, these frontostriatal 

dynamics predicted individual differences in behavioral measures exclusively in the context 

last-selective condition. Second, while alternative explanations for the observed age 

differences in the mixture of slow and fast distributions in the context first-selective 

condition are possible, it is not easy to see how they account for the differential pattern in 

context first and context last conditions. By contrast, the results of the mixture model 

analysis exactly matched the predictions deriving from the assumption that the participants 

used two strategies (proactive and reactive) in the context first condition but only one 

strategy (output gating) in the context last condition. Importantly, the notion that children 

opt more often for a reactive rather than a reactive strategy in the context first condition is 

also consistent with previous work on the development of the two control strategies (e.g., 

Andrews-Hanna et al., 2011; Blackwell & Munakata, 2014; Chatham et al., 2009).

Our findings, along with other recent work (e.g., Blackwell, Chatham, Wiseheart, & 

Munakata, 2014; Blackwell & Munakata, 2014), have important implications for programs 

that aim to improve executive functions across development. As cognitive control is 

multifaceted, it is important to characterize the specific mechanisms that are undergoing 

developmental change in order to direct interventions accordingly. As one example, results 

from training studies in developmental populations suggest that transfer depends on the 

engagement of working memory updating—as opposed to mere maintenance—during 

training (Pereg, Shahar, & Meiran, 2013; von Bastian & Oberauer, 2013; Zinke et al., 2014). 

Moreover, robust transfer effects have been consistently found for interventions that used 

task-switching paradigms as training tasks, especially in children and older adults (e.g., 

Karbach & Kray, 2009; Karbach & Unger, 2014; Zinke, Einert, Pfennig, & Kliegel, 2012). 

We suggest that this training-induced increase in cognitive flexibility is largely mediated by 

more efficient output gating of abstract rule representations that support generalization, 

learning and fluid reasoning. Training programs in children should be determined with 

respect to the goal they are intending to fulfill, but in any case are unlikely to be successful if 

the focus is on strengthening working memory from a maintenance capacity only 

perspective. If the goal is to improve behavioral regulation in children, an effective 

intervention might focus on shifting children to a more dominantly proactive mode of 

control, thereby engaging relatively more efficient input gating mechanisms. Braver et al. 

(2009), for example, showed that specific instruction was a powerful tool in shifting control 

dynamics from predominantly reactive to proactive in elderly populations. By contrast, 

interventions targeted at improving rapid generalization of learning might instead emphasize 

practice with reactive control, thereby taking advantage of the greater efficiency of output 
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gating mechanisms and the benefits they may confer to generalization (Kriete & Noelle, 

2011).
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Fig. 1. 
Schematic depicting trial events (left) and rule mappings (right) across working memory 

load conditions for the response, feature, and dimension tasks. In the response task (top 

row), participants respond by pressing one of four keys (1–4) that was cued by the color of 

the square. Across three, blocked working memory load levels, four color cues to be 

encountered during a block could map to either one (R1), two (R2), or four (R4) potential 

responses. The example trials on the left use the R2 rule mappings shown on the right. In the 

feature task (middle row), participants respond by pressing one of two keys (“match” vs. 

“nonmatch”) depending on whether or not an arrow pointed in the target direction, as cued 

by color. Across three, blocked working memory load levels, four color cues could map to 

one (F1), two (F2), or four (F4) potential target directions. The example trials on the left use 

the F2 rule mappings shown on the right. In the dimension task (bottom row), participants 

responded by pressing “match” or “nonmatch” depending on whether the presented objects 

match along a certain dimension (shape, size, orientation, or shading) as cued by color. 

Across three, blocked working memory load levels, four color cues could map to one (D1), 

two (D2), or four (D4) candidate dimensions for a given block. The example trials on the left 

use the D2 rule mappings shown on the right. Thus, across the three tasks, rule order 

increases from response task (0 order [R1] and 1st order [R2/R4]), to feature task (1st [F1] 

and 2nd order [F2/F4]), to dimension task (2nd [D1] and 3rd order [D2/D4]). Note that 

moving from load 1 to load 2 within each task is associated with an increase in both rule 

order and maintenance demands, whereas rule order is kept constant and only maintenance 
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demands increase when moving from load 2 to load 4. (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 2. 
Response times from Experiment 1. Plotted are mean RTs (in ms) across loads 1, 2, and 4, 

separately for the three age groups. RT is plotted separately for the (A) Response task, (B) 

Feature task, and (C) Dimension task. Error bars plot standard error of the mean.
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Fig. 3. 
Task rules (A) and example trial events for the four different conditions (B–E). (A) A second 

order rule related three contextual elements, a digit (1, 2, 3), a letter (A, B), and a symbol 

( ,❄), to a response. As depicted, the digit acts as higher order context such that its identity 

determines whether the symbol (digit = 1), the letter (digit = 2), or both (digit = 3) 

determines the response. (B–E) On each trial of the experiment, a digit, letter, and symbol 

are presented in an unpredictable order. At the end of each trial, participants use response 

mappings presented at the bottom of the screen to indicate whether the target item, as 

specified by the rule, is shown on the left or right side of the screen. Left or right is indicated 

by a button press. The correct response in all example trials is “left”. (B) When the “1” 

appears first (context first-selective), participants know that they need only input the “ ” 

into working memory and can ignore the “A”. Thus, an input gating strategy is available. (C) 

When the “1” appears last, (context last-selective), participants have to input both “ ” and 

“A” into working memory, as they do not know which will be relevant. Then, at the final 

context presentation, they select the “ ” from working memory to guide their response. 

Hence, they must use an output gating strategy. (D and E) In order to control for differences 

in working memory load in context first vs. context last conditions, a global context cue (the 

digit “3”) specifies that a conjunction of both lower-level items determines the correct 

response. In contrast to the selective context cues (the digits “1” or “2”), a global context cue 

always requires holding two items in working memory, irrespective of whether it appears 

first (D) or last (E).
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Fig. 4. 
Behavioral results from Experiment 2. Bars plot mean accuracy rates (A) and mean RT (B) 

for children and adolescents across context first-selective (CF-S), context first-global (CF-

G), context last-selective (CL-S), and context last-global (CL-G) conditions. Error bars plot 

standard error of the mean.
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Fig. 5. 
Bars plot mean RT for the proactive vs. reactive distributions as a function of condition 

(context first-selective [CF-S]/context last-selective [CL-S]) and age group (children/

adolescents). Greater slowing for children relative to adolescents is evident for reactive 

versus proactive distributions in context first-selective relative to context last-selective. Error 

bars plot standard error of the mean.
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Table 1

Estimated group-level mixing probabilities (α) and mean RTs (μ0) for the fast and slow distributions in context 

first-selective and context last-selective conditions.

Parameter Context first-selective Context last-selective

Fast Slow Fast Slow

Children

α 0.54 0.46 0.58 0.42

μ0 1202 2375 1707 2410

Adolescents

α 0.74 0.26 0.57 0.43

μ0 788 1490 1199 1813

Note. The α parameters correspond to the probability that a given trial draws its RT from mutually exclusive fast or slow RT distributions, 
respectively. For context first-selective only, these two distributions can reflect the use of a proactive input gating strategy versus a reactive output 
gating strategy.
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Table 2

WAIC and DIC values indicating model fit for models with 1 component (non-mixture), 2, or 3 mixture 

components. Lower values indicate better fit.

Number of components WAIC DIC

Context first-selective Context last-selective Context first-selective Context last-selective

1 429 557 531 589

2 421 559 518 588

3 456 555 625 612
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