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Abstract

Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease associated with exposure 

to repetitive head impacts. CTE has been linked to disruptions in cognition, mood, and behavior. 

Unfortunately, the diagnosis of CTE can only be made post-mortem. Neuropathological evidence 

suggests limbic structures may provide an opportunity to characterize CTE in the living. Using 3T 

magnetic resonance imaging, we compared select limbic brain regional volumes – the amygdala, 

hippocampus, and cingulate gyrus – between symptomatic former National Football League 

(NFL) players and controls. Moreover, within the group of former NFL players, we examined the 

relationship between those limbic structures and neurobehavioral functioning. The former NFL 

group comprised eighty-six men (mean age=55.2±8.0 years) with at least 12 years of organized 

football experience, at least 2 years of active participation in the NFL, and self-reported declines in 

cognition, mood, and behavior within the last 6 months. The control group consisted of men (mean 

age=57.0±6.6 years) with no history of contact-sport involvement or traumatic brain injury. 

Compared to controls, former NFL players exhibited reduced volumes of the amygdala, 

hippocampus, and cingulate gyrus. Within the NFL group, reduced bilateral cingulate gyrus 
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volume was associated with worse attention and psychomotor speed (r=0.4 (right), r=0.42 (left); 

both p<0.001), while decreased right hippocampal volume was associated with worse visual 

memory (r=0.25, p=0.027). Reduced volumes of limbic system structures in former NFL players 

are associated with neurocognitive features of CTE. Volume reductions in the amygdala, 

hippocampus, and cingulate gyrus may be potential biomarkers of neurodegeneration in those at 

risk for CTE.

Keywords

Volumetric MRI; Chronic Traumatic Encephalopathy; Hippocampus; Limbic System; Repetitive 
Head Impacts

Introduction

Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease associated with 

repetitive head impacts (RHI) (McKee et al. 2013). It is often observed among American 

football players, boxers, and other contact-sport athletes (for reviews, see (Montenigro et al. 

2014)). CTE can currently only be diagnosed at postmortem where the pathognomonic 

lesion of CTE is a perivascular accumulation of hyperphosphorylated tau (p-tau) protein in 

neurons and astrocytes, most prominent at the depths of the cortical sulci (McKee et al. 

2016). As the disease progresses, neuronal loss and atrophy are observed in both frontal and 

medial temporal regions, including limbic system structures such as the amygdala, 

hippocampus, and cingulate gyrus (McKee et al. 2016; McKee et al. 2009; McKee et al. 

2013).

The clinical features of CTE are not well understood (McKee et al. 2013; Montenigro et al. 

2014; Stern et al. 2013). Next-of-kin interviews and medical record reviews of deceased 

males with neuropathologically-confirmed CTE suggest impaired behavior (e.g., impulsivity, 

aggression), mood (e.g., depression, hopelessness, apathy), and cognition (e.g., memory and 

executive dysfunction, eventual dementia) (Stern et al. 2013). The development of 

biomarkers and criteria that can support a CTE diagnosis during life is critical for the early 

detection of disease, which can facilitate timely interventions, as they become available 

(Montenigro et al. 2014).

To date, all cases with neuropathologically-confirmed CTE have had a history of exposure to 

RHI, making RHI exposure necessary (but not sufficient) for CTE (for review see (Baugh et 

al. 2012)). A small number of neuroimaging studies of individuals at high risk for CTE 

(based on extensive exposure to RHI) have shown structure-specific (e.g., cavum septum 

pellucidum (Koerte et al. 2016)), region-specific (e.g., hippocampus (Singh et al. 2014)), 

and/or whole brain disruption (for review see (Koerte et al. 2015b)). However, despite 

postmortem evidence of CTE-related atrophy in amygdala, hippocampus, and cingulate 

gyrus, there have been few in vivo studies that have examined these structures. One study 

reported reduced amygdala volumes in boxers and mixed martial arts fighters (Bernick et al. 

2015). Similarly, hippocampus atrophy has been described in boxers and martial arts fighters 

(Orrison et al. 2009), in collegiate American football players (Singh et al. 2014), and in 

former National Football League (NFL) players (Strain et al. 2015). Finally, although 
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atrophy in the cingulate gyrus has been related to severity of brain injury (Yount et al. 2002), 

it has yet to be investigated in symptomatic individuals with a history of exposure to RHI 

who are, therefore, at high risk for CTE. Moreover, across existing RHI studies, there have 

been only a limited number of studies investigating the association of volumes of limbic 

system structures with neurobehavioral function assessments (Bernick et al. 2015; Singh et 

al. 2014; Strain et al. 2015).

The aim of this study was to compare the volumes of the amygdala, hippocampus, and 

cingulate gyrus in symptomatic former NFL players, relative to asymptomatic controls 

without a history of RHI or brain trauma. Within the NFL group, we also examined 

associations between regions of volume reduction and neurocognitive and behavioral 

functioning.

Methods

This study is part of Diagnosing and Evaluating Traumatic Encephalopathy using Clinical 
Tests (DETECT; R01NS078337; R56NS078337). The goal of DETECT is to develop 

methods to characterize the clinical features of CTE, and to develop in vivo biomarkers 

(further details are provided elsewhere (Stamm et al. 2015a; Alosco et al. 2016; Koerte et al. 

2016; Stern et al. 2016; Stamm et al. 2015b)).

Participants and procedure

Participants were recruited via social media, flyers, and word of mouth. Former NFL players 

met the following inclusion criteria: male, 40 to 69 years of age, at least 12 years of 

organized football experience with 2 or more years of active participation in the NFL, and 

self-reported declines in cognition, mood, and behavior within 6 months of study 

commencement.

Participants in the control group met the following inclusion criteria: male, 40 to 69 years of 

age, no participation in organized contact sports (e.g., boxing, rugby, football, martial arts, 

ice hockey) and no previous traumatic brain injury. Exclusion criteria for all subjects 

included contraindications for MR imaging and lumbar puncture, history or diagnosis of any 

CNS disease, and English as a second language.

Ninety-six former NFL players were enrolled in DETECT. Neuroimaging data were 

available for 87 of the 96 NFL players. We excluded one NFL player due to poor data 

quality. Thus, the final sample size for imaging analyses was 86 (mean age = 55.2 ± 8.0 
years). Neurobehavioral data were available for 75 of the 86 players. There were 28 

participants enrolled in the control group, with three excluded for poor data quality. We 

further excluded three controls due to Meniere’s disease, history of sports performance 

where repetitive mTBI was likely (with new history provided after enrollment), and 

confirmed history of mTBI (again provided after enrollment), respectively. Thus, the final 
sample size for controls was 22 (mean age = 57.0 ± 6.6 years).

All participants underwent a comprehensive assessment that included a neurological 

examination, a structured psychiatric interview, neuropsychological testing, neuroimaging, 
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blood and cerebrospinal fluid sampling, and genetic testing. The present study focused on 

neuroimaging and neuropsychological testing.

MRI data acquisition

We acquired neuroimaging data on a 3-Tesla MRI Scanner (Verio, Siemens Healthcare, 

Erlangen, Germany) with a 32-channel head array and the Syngo MR-B17 software suite. 

T1-weighted images were acquired with a 3D magnetization-prepared-rapid-gradient-echo 

sequence (MPRAGE): TR=1800 ms, TE=3.36 ms, voxel size=1×1×1mm3, acquisition 

matrix=256×256, flip angle=7°.

Image processing

We reviewed the quality of the raw T1-weighted images by visually inspecting them for 

artifacts and intrascan misalignments. We then automatically segmented the volumes of 

anatomical regions of interest (ROI) from the T1-weighted images using FreeSurfer version 

5.3 (http://surfer.nmr.mgh.harvard.edu; Athinoula A. Martinos Center for Biomedical 

Imaging, Charlestown, MA, USA). This segmentation resulted in an automated Talairach 

transformation, segmentation of deep gray matter structures (including hippocampus and 

amygdala), and parcellation of the cerebral cortex (including the cingulate gyrus), based on 

gyral and sulcal structures (Fischl et al. 2004). Following the automated volumetric 

segmentation, we conducted a visual quality assessment to ensure the fit and completeness 

of the obtained FreeSurfer parcellations. For each participant, we obtained an estimated total 

intracranial volume using the automated method in FreeSurfer. Next, we extracted bilateral 

ROIs from the automatically created FreeSurfer label maps of the cingulate gyrus, 

amygdala, and hippocampus.

Manual adjustment of regions of interest

Since the automated FreeSurfer segmentation often provides incomplete ROIs of limbic 

system structures, ROIs were manually adjusted (see below). Two investigators, trained in 

neuroanatomy, manually adjusted ROIs using Slicer 4.1 (http://www.slicer.org) (Fedorov et 

al. 2012). The first investigator adjusted ROIs from 78 participants, while the second 

investigator adjusted ROIs from 30 participants. A neuroanatomist (N.M.) reviewed, and, 

when necessary, adjusted the ROIs. Investigators were blind to group membership.

Amygdala and hippocampus—To correct amygdala and hippocampus volumes, we 

employed an approach described by Gurvits et al. (1996). Briefly, we corrected ROIs on 

coronal slices, from anterior to posterior, using sagittal slices for verification. The anterior 

border of the amygdala was often improperly identified by the automated segmentation. 

Consequently, our manual adjustment focused on including the anterior parts of the 

amygdala at the height of the frontotemporal junction. We then located the posterior 

boundary of the amygdala, defined as the last coronal slice before the appearance of the 

mammillary bodies. Next, we located the anterior border of the hippocampus, defined as the 

slice where the mammillary bodies first appeared. We identified the posterior boundary of 

the hippocampus as the coronal slice where the crux of the fornix was seen last. We then 

extracted volumes from the labels of the left and right amygdalae and hippocampi.
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Cingulate gyrus—With a sagittal view, we located the cingulate gyrus by identifying the 

callosomarginal fissure on a paramidsagittal slice. Working from mesial to lateral sections of 

the brain, we excluded voxels extending into the corpus callosum and paracingulate gyrus. 

We also eliminated voxels when they extended beyond the rostrum of the corpus callosum 

into Brodmann’s Area 25. We verified our work by scrolling through coronal slices, working 

anteriorly to posteriorly. Next, we extracted volumes from the labels of the left and right 

cingulate gyri. Fig. 1 displays a three-dimensional reconstruction of the ROIs in left 

hemisphere superimposed on a T1-weighted image.

Neurobehavioral measures: cognition, mood, and behavior

Cognitive function—As part of DETECT, participants completed the following measures 

of cognition: Trail Making Test Parts A and B (TMT); Digit Span from the Wechsler Adult 

Intelligence Scale - Revised (WAIS-R); Digit Symbol Coding from the WAIS-R; Wisconsin 

Card Sorting Test (WCST); Controlled Oral Word Association Test (COWAT); Animal 

Fluency; Color-Word Interference subtest from the Delis-Kaplan Executive Function System 

(DKEFS); Boston Qualitative Scoring System (BQSS) for the Rey-Osterrieth Complex 

Figure; and Story Learning, List Learning, Naming, and Map Reading, from the 

Neuropsychological Assessment Battery (NAB).

Mood and behavior—Self-report and interview-based measures of mood and behavior 

were administered to all participants and included: Apathy Evaluation Scale (AES), Barratt 

Impulsivity Scale (BIS-11), Beck Depression Inventory II (BDI-II), Beck Hopelessness 

Scale (BHS), Behavior Rating Inventory of Executive Functioning - Adult Version (BRIEF-

A), Brown-Goodwin Lifetime History of Aggression (LHA), Center for Epidemiologic 

Studies - Depression Scale (CES-D), Buss-Durkee Inventory, Hamilton Depression Rating 

Scale (HDRS), and the Modified Scale for Suicidal Ideation (MSSI).

For all cognitive measures and the BRIEF-A, raw scores were converted to age-, gender-, 

and education-standardized scores. Next, to reduce the number of analyses and risk of Type I 

error, a principal components analysis was performed to generate four factors (Alosco et al. 

2016): Factor 1 - Mood and Behavior (including AES, BDI-II, BHS, BIS-11, BRIEF-A 

Behavioral Regulation Index, CES-D, HDRS, LHA); Factor 2 - Attention and Psychomotor 

Speed (including COWAT, DKEFS Color Word Inhibition/Switching, TMT Parts A and B, 

Digit Symbol); Factor 3 - Verbal Memory (including NAB Story Learning Phrase Unit 

Immediate and Delayed Recall, NAB List Learning Short and Long Delayed Recall); and 

Factor 4: Visual Memory (including BQSS Immediate Copy, Presence and Accuracy, and 

Delayed Presence and Accuracy).

Statistical Analyses

We used Statistical Analysis System (SAS version 9.4; SAS Institute Inc., North Carolina, 

USA) for all statistical analyses. We considered results significant when the p-value of our 

inferential tests was below 0.05. When between-group variances were significant, we used a 

Satterthwaite approximation(Satterthwaite 1946). We conducted independent samples t-tests 

for between-group comparisons of age, years of education, and body mass index (BMI). For 

between-group comparisons of the volumes of the cingulate gyri, amygdalae, and 
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hippocampi, we used mixed effects regression models, controlling for age, BMI, estimated 

total intracranial volume, and years of education. To minimize variance, we employed a 

bootstrapping method (Efron and Tibshirani 1994). Specifically, we resampled 500 

replicates with replacement, each with a size equal to the original sample, and we re-ran the 

mixed effect-regression model across all replicates. The resulting confidence intervals were 

calculated using bias-adjustment correction (Efron 1987). Similarly, we compared 

standardized neurobehavioral factors between groups using mixed effects regression models. 

Partial correlations adjusting for age, BMI, estimated total intracranial volume, and years of 

education examined associations between volume and standardized neurobehavioral factors 

within the NFL group.

Results

NFL players did not differ from controls in age. However, controls had lower BMI (Table 1). 

Table 2 displays the standardized mean differences between the groups on the 

neurobehavioral measures. As expected, based on the inclusion and exclusion criteria, 

former NFL players had significantly greater dysfunction in mood/behavior (Factor 1) and 

decreased verbal memory (Factor 3) compared to controls. There were no statistically 

significant between-group differences in psychomotor speed/executive function (Factor 2) or 

visual memory (Factor 4). Table 3 summarizes the results of the volumetric analyses. 

Compared to controls, the NFL group had reduced volumes, bilaterally, in amygdala, 

hippocampus, and cingulate gyrus. Further, within the NFL group there were statistically 

significant correlations between select regional volumes and neurobehavioral factor scores 

(Fig. 2). Specifically, reduced volumes of the left and right cingulate gyrus were associated 

with worse psychomotor speed/executive function (Factor 2). Additionally, reduced right 

hippocampus volume was associated with worse visual memory (Factor 4). There were no 

statistically significant associations between the bilateral amygdalae nor left hippocampus 

for any of the factor scores.

Discussion

This study evaluated the volumes of the amygdala, hippocampus, and cingulate gyrus in a 

cohort of symptomatic former NFL players and a same-age control group. Relative to 

controls, former NFL players exhibited reduced volumes in bilateral amygdalae, 

hippocampi, and cingulate gyri. The structural changes in the limbic system in symptomatic 

former NFL players may be due to either RHI (i.e., microgliosis (Robinson et al. 2016)), 

neuropathological processes (i.e., tau-related neurodegeneration (McKee et al. 2013)), or a 

combination of both. Secondary findings from this study indicate that, within the NFL 

group, reduced volumes of the left and right cingulate gyri were associated with worse 

psychomotor speed/executive function, whereas reduced volume of the right hippocampus 

was associated with worse visual memory. The diversity of symptoms reported in CTE may 

be potentially related to the involvement of limbic system structures.

Cingulate Gyrus

In neuropathologically confirmed cases of CTE, cingulate gyrus atrophy has been observed 

(McKee et al. 2009; McKee et al. 2013). In vivo studies of former contact-sport athletes with 
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a history of extensive RHI have demonstrated abnormal neurochemistry (Koerte et al. 2015a; 

Lin et al. 2015) and glucose metabolism (Provenzano et al. 2010) in the posterior cingulate 

gyrus. Cingulate gyrus atrophy has also been positively associated with severity of a single 

TBI (Yount et al. 2002). Given the history of RHI in our cohort of former NFL players, our 

results suggest that RHI, and not just injury severity, may impact the volume of the cingulate 

gyrus.

The NFL group demonstrated significantly reduced psychomotor speed/executive function 

relative to controls, and reduced performance in this domain was associated with reduced 

bilateral cingulate gyrus volumes. The cingulate gyrus is associated with diverse cognitive 

processes, including psychomotor speed/executive function (Davis et al. 2000; Drummond et 

al. 2005). Moreover, the cingulate gyrus is an important component of the default mode 

network (DMN) (Greicius et al. 2003). Abnormal DMN connectivity has been revealed in 

the acute post-injury phase after mild TBI, which was observed to resolve within five 

months (Mayer et al. 2011). Taken together, evidence of RHI vulnerability of the cingulate 

gyrus, along with its neurobehavioral correlates and neuropathology in confirmed CTE 

(Stein et al. 2014), suggest that the volume of this brain region is a potential neuroimaging 

marker for those at risk of CTE.

Amygdala

In advanced stages of CTE, the medial temporal regions are marked by extensive 

neurofibrillary pathology and regional atrophy (Stein et al. 2014; McKee et al. 2009; McKee 

et al. 2013). In our sample of former NFL players, bilateral amygdalae were significantly 

reduced in volume, compared to controls. Previous studies of combat-sport athletes have 

reported amygdala atrophy associated with RHI (Banks et al. 2014; Bernick et al. 2015). The 

amygdala presumably subserves many important neurobehavioral processes, including fear 

conditioning and memory modulation, and it has a role in regulating social behavior 

(Kilpatrick and Cahill 2003; Amaral et al. 2003; Rogan et al. 1997). Yet, in RHI studies, 

amygdala volume is both understudied and infrequently associated with cognitive 

dysfunction (Banks et al. 2014; Bernick et al. 2015). To our knowledge, in the context of 

RHI, amygdala volume has only been associated with processing speed, which was also 

associated with other brain regions, including limbic and basal ganglia structures (Bernick et 

al. 2015). In the present study, reduced amygdala volumes in the NFL group were not 

associated with neurobehavioral function. Given the limited evidence of association between 

RHI-related amygdala atrophy and neurobehavioral dysfunction, future work is needed to 

understand better the implications of amygdala atrophy following RHI.

Hippocampus

In in vivo studies of RHI, the hippocampus is emerging as a structure that may be 

particularly vulnerable to RHI (Bernick et al. 2015; Singh et al. 2014; Strain et al. 2015; 

Mannix et al. 2016). Neuropathological studies of CTE highlight the medial temporal lobe, 

including the hippocampus, as a region that is atrophied in later stages of the disease 

(McKee et al. 2013). Compared to controls, the NFL group exhibited reduced bilateral 

hippocampal volumes. Furthermore, volume reduction in the right hippocampus was 

associated with impaired visual memory, consistent with expected brain-behavior 
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relationships. In the context of RHI studies, hippocampal atrophy has been associated with 

information processing speed and verbal memory (Bernick et al. 2015; Strain et al. 2015).

Limitations

There are limitations that need to be considered when interpreting our results. For example, 

the size of the NFL group was larger than the size of the control group. This may have 

diminished our power to detect effects among controls. Our findings also may not generalize 

to other groups frequently exposed to RHI, including former American football players who 

only played through high school or college. Future studies also need to investigate the 

effects of RHI in both sexes and across different sports. Further, although less likely, it 

cannot be ruled out that the observed smaller size of the limbic system structures in former 

NFL players (even after correction for BMI and intracranial volume) was present prior to 

their football careers. Longitudinal studies are thus needed to determine changes in volume 

over time. This is also important in following the trajectory of changes that may inform 

more the subgroup of players who develop neurodegenerative diseases such as CTE. Finally, 

not all athletes participating in contact sports experience CTE (Hazrati et al. 2013); thus, 

without postmortem analysis, it is not possible to state that our findings are specific to CTE. 

Nonetheless, our findings of disrupted limbic system structures, given their associated 

neurocognitive disturbances, may be candidate biomarkers of CTE in individuals who are at 

risk for CTE. Future research is needed to confirm these findings and refine their 

implications.

Conclusion

Symptomatic former NFL players, who are at high risk to develop CTE, exhibited reduced 

volumes of the amygdala, hippocampus, and cingulate gyrus, compared to controls. Within 

the NFL group, reduced volumes of limbic system structures were associated with worse 

neurocognitive function. Our findings suggest the diversity of symptoms reported in CTE 

may potentially be related to the involvement of limbic system structures, and the 

neurodegeneration of those structures may be a potential biomarker of CTE.
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Fig. 1. 
A three-dimensional reconstruction of left hemisphere regions of interest. The model was 

created from one randomly selected dataset using the model maker module of Slicer 4.1. 

Yellow = cingulate gyrus (CG), blue = hippocampus (H), terracotta = amygdala (A) The 

model is shown on a paramidsagittal slice and is superimposed on the individual T1-

weighted images.
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Fig. 2. 
Significant associations between neurobehavioral factors and cingulate gyrus and 

hippocampus in the NFL group. A displays the association between volume in the right 

cingulate and Factor 2 (attention and psychomotor speed). B displays the association 

between the volume of the left cingulate gyrus and Factor 2. C displays the association 

between the right hippocampus and Factor 4 (visual memory). All analyses are based on 

partial correlations, adjusting for age, body-mass index, estimated total intracranial volume, 

and years of education.

Lepage et al. Page 14

Brain Imaging Behav. Author manuscript; available in PMC 2020 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lepage et al. Page 15

Ta
b

le
 1

.

D
em

og
ra

ph
ic

 D
at

a 
C

om
pa

ri
so

ns

N
F

L
(n

 =
 8

6)
C

on
tr

ol
s

(n
 =

 2
2)

m
ea

n 
(s

d)
m

ea
n 

(s
d)

t-
va

lu
e

p-
va

lu
e

95
%

 C
I

A
ge

54
.8

6 
(7

.9
)

57
.3

 (
7.

0)
1.

30
0.

19
55

(−
1.

26
, 6

.0
8)

Y
ea

rs
 o

f 
ed

uc
at

io
n

16
.4

 (
0.

96
)

17
.4

 (
2.

2)
1.

97
.0

61
31

(−
0.

05
, 1

.9
1)

B
od

y 
m

as
s 

in
de

x
32

.9
 (

5.
0)

28
.5

 (
3.

8)
−

3.
92

.0
00

2
(−

6.
70

, −
2.

20
)

N
o.

 o
f 

co
nc

us
si

on
s2

12
3.

1 
(5

80
.0

)
-

-
-

-

N
o.

 ti
m

es
 lo

st
 c

on
sc

io
us

ne
ss

4.
5 

(1
6.

5)
-

-
-

-

N
ot

es
: N

FL
 =

 N
at

io
na

l F
oo

tb
al

l L
ea

gu
e.

1 Sa
tte

rt
hw

ai
te

 a
pp

ro
xi

m
at

io
n 

du
e 

to
 u

ne
qu

al
 v

ar
ia

nc
es

.

2 B
as

ed
 o

n 
se

lf
-r

ep
or

t a
ft

er
 b

ei
ng

 p
ro

vi
de

d 
a 

cu
rr

en
t d

ef
in

iti
on

 o
f 

co
nc

us
si

on
 (

R
ob

bi
ns

 e
t a

l. 
20

14
)

Brain Imaging Behav. Author manuscript; available in PMC 2020 June 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lepage et al. Page 16

Ta
b

le
 2

.

St
an

da
rd

iz
ed

 g
ro

up
 d

if
fe

re
nc

es
 a

cr
os

s 
ne

ur
ob

eh
av

io
ra

l F
ac

to
r 

Sc
or

es

A
dj

us
te

d
 

M
ea

n
D

if
fe

re
nc

e:
C

on
tr

ol
s 

- 
N

F
L

St
an

da
rd

E
rr

or
t-

va
lu

e
p-

va
lu

e
95

%
 C

I

Fa
ct

or
 1

: m
oo

d 
an

d 
be

ha
vi

or
−

1.
12

25
0.

20
49

−
5.

48
< 

.0
01

(−
1.

52
9,

 −
0.

71
6)

Fa
ct

or
 2

: a
tte

nt
io

n/
ps

yc
ho

m
ot

or
 s

pe
ed

0.
08

83
0.

19
58

0.
45

.6
53

1
(−

0.
30

0,
 0

.4
79

)

Fa
ct

or
 3

: v
er

ba
l m

em
or

y
0.

50
85

0.
23

84
2.

13
.0

35
5

(0
.0

35
, 0

.9
82

)

Fa
ct

or
 4

: v
is

ua
l m

em
or

y
0.

31
53

0.
21

86
1.

44
.1

52
4

(−
0.

11
9,

 0
.7

49
)

N
ot

es
: N

FL
 =

 N
at

io
na

l F
oo

tb
al

l L
ea

gu
e.

1 Sa
tte

rt
hw

ai
te

 a
pp

ro
xi

m
at

io
n 

du
e 

to
 u

ne
qu

al
 v

ar
ia

nc
es

. R
es

ul
ts

 o
f 

m
ix

ed
 e

ff
ec

ts
 r

eg
re

ss
io

n 
m

od
el

s,
 c

on
tr

ol
lin

g 
fo

r 
ag

e,
 b

od
y-

m
as

s 
in

de
x,

 e
st

im
at

ed
 to

ta
l i

nt
ra

cr
an

ia
l v

ol
um

e,
 a

nd
 y

ea
rs

 o
f 

ed
uc

at
io

n.
 

C
om

pa
re

d 
to

 c
on

tr
ol

s,
 f

or
m

er
 N

FL
 p

la
ye

rs
 e

xh
ib

ite
d 

m
or

e 
m

oo
d/

be
ha

vi
or

 s
ym

pt
om

s 
an

d 
w

or
se

 v
er

ba
l m

em
or

y.
 N

ot
e 

th
at

 in
cl

us
io

n 
cr

ite
ri

a 
fo

r 
th

e 
fo

rm
er

 N
FL

 p
la

ye
rs

 r
eq

ui
re

d 
se

lf
-r

ep
or

te
d 

co
gn

iti
ve

, 
m

oo
d,

 a
nd

 b
eh

av
io

ra
l d

ys
fu

nc
tio

n.

Brain Imaging Behav. Author manuscript; available in PMC 2020 June 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lepage et al. Page 17

Ta
b

le
 3

.

V
ol

um
et

ri
c 

gr
ou

p 
di

ff
er

en
ce

s

A
dj

us
te

d 
M

ea
n

D
if

fe
re

nc
e:

C
on

tr
ol

s 
–

N
F

L
(m

m
3 )

95
%

 c
on

fi
de

nc
e

in
te

rv
al

 (
bi

as
ad

ju
st

ed
)

p-
va

lu
e

L
ef

t c
in

gu
la

te
 g

yr
us

57
5.

01
4

29
.6

80
6

12
89

.0
2

0.
03

6

R
ig

ht
 c

in
gu

la
te

 g
yr

us
47

5.
28

2
21

.5
68

2
11

92
.0

7
0.

03
2

L
ef

t a
m

yg
da

la
17

6.
21

6
86

.0
59

31
3.

24
<.

00
5

R
ig

ht
 a

m
yg

da
la

15
7.

42
5

49
.7

23
4

30
5.

24
0.

01
2

L
ef

t h
ip

po
ca

m
pu

s
15

8.
43

9
21

.6
43

34
9.

7
0.

02
4

R
ig

ht
 h

ip
po

ca
m

pu
s

14
6.

09
1

5.
27

48
34

3.
66

0.
03

2

N
ot

es
: N

FL
 =

 N
at

io
na

l F
oo

tb
al

l L
ea

gu
e.

 R
es

ul
ts

 o
f 

m
ix

ed
 e

ff
ec

ts
 r

eg
re

ss
io

n 
m

od
el

s,
 c

on
tr

ol
lin

g 
fo

r 
ag

e,
 b

od
y-

m
as

s 
in

de
x,

 e
st

im
at

ed
 to

ta
l i

nt
ra

cr
an

ia
l v

ol
um

e,
 a

nd
 y

ea
rs

 o
f 

ed
uc

at
io

n.
 F

or
m

er
 N

FL
 p

la
ye

rs
 

ex
hi

bi
te

d 
lo

w
er

 v
ol

um
es

 o
f 

lim
bi

c 
sy

st
em

 s
tr

uc
tu

re
s.

Brain Imaging Behav. Author manuscript; available in PMC 2020 June 01.


	Abstract
	Introduction
	Methods
	Participants and procedure
	MRI data acquisition
	Image processing
	Manual adjustment of regions of interest
	Amygdala and hippocampus
	Cingulate gyrus

	Neurobehavioral measures: cognition, mood, and behavior
	Cognitive function
	Mood and behavior

	Statistical Analyses

	Results
	Discussion
	Cingulate Gyrus
	Amygdala
	Hippocampus
	Limitations
	Conclusion

	References
	Fig. 1
	Fig. 2
	Table 1.
	Table 2.
	Table 3.

