Skip to main content
. 2019 Nov 7;12:267. doi: 10.3389/fnmol.2019.00267

Figure 5.

Figure 5

Inhibitory chains in the cerebellar cortex. The scheme shows the main excitatory and inhibitory connections in the cerebellar cortical circuit. Note that feed-forward (FFI) and feed-back (FBI) inhibitory loops are integrated in a complex inhibitory chain. FFI: (a) A PC may be both directly excited and then inhibited with disynaptic delay via ML interneurons (MLIs) activated by the same set of active PFs. (b) MLIs receive feed-forward inhibition (FFI) from each other. (c) MLIs, activated by PFs, inhibit Golgi cells (GoCs) in the same manner as PCs. This issue is somewhat controversial (see main text, dashed line). (d) Granule cells (GrCs) receive excitatory inputs from MFs. MFs also excite GoCs which provide FFI to GrCs. FBI: (e) through the PFs, GrCs activate GoCs that, in turn, inhibited GrCs in a feedback loop. (f) PC collaterals are known to inhibit LCs, which in turn inhibit MLIs. Activation of LCs by excitatory MF or monoaminergic inputs would lead to enhanced PC activity through disinhibition. In gray, non-cortical circuits involving DCN and IO. Traces show the activity of MF, granule cells, ML interneurons and PCs during tactile sensory stimulation in rodents. Adapted from Rancz et al. (2007) and Ramakrishnan et al. (2016). Noteworthy, the complex regulatory mechanisms brought about by the inhibitory interneuron chain remain to be investigated during dynamic signal processing.