Skip to main content
. 2019 Oct 20;2019:7401235. doi: 10.1155/2019/7401235

Table 2.

Architecture of CNN-1 and CNN-2 in this study.

Layer Input size CNN-1 Input size CNN-2
Conv_1 256 × 256 × 1 3 × 3, 32 256 × 256 × 1 3 × 3, 32
Dense-block_1 256 × 256 × 32 1×1×1,1283×3,32concatenate 256 × 256 × 32 1×1×1,1283×3,32concatenate
Max-pooling_1 256 × 256 × 64 2 × 2, stride 2 256 × 256 × 64 2 × 2, stride 2
Dense-block_2 128 × 128 × 64 2×1×1,1283×3,32concatenate 128 × 128 × 64 2×1×1,1283×3,32concatenate
Max-pooling_2 128 × 128 × 128 2 × 2, stride 2 128 × 128 × 128 2 × 2, stride 2
Dense-block_3 64 × 64 × 128 4×1×1,1283×3,32concatenate 64 × 64 × 128 4×1×1,1283×3,32concatenate
Max-pooling_3 64 × 64 × 256 2 × 2, stride 2 64 × 64 × 256 2 × 2, stride 2
Dense-block_4 32 × 32 × 256 8×1×1,1283×3,32concatenate 32 × 32 × 256 4×1×1,1283×3,32concatenate
Max-pooling_4 32 × 32 × 512 2 × 2, stride 2 32 × 32 × 384 2 × 2, stride 2
Dense-block_5 16 × 16 × 512 16×1×1,1283×3,32concatenate 16 × 16 × 384 4×1×1,1283×3,32concatenate
Average-pooling 16 × 16 × 1024 16 × 16 16 × 16 × 512 16 × 16
Fully connected layer 1024 2 512 2
Output 2 2

Here, “conv” denotes convolutional layer. Number formats of CNN-1 and CNN-2 are all: convolution kernel size, number of convolution kernels.