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Key Points

•DNA replication timing
of .100 pediatric
leukemic samples iden-
tified BCP-ALL
subtype-specific ge-
nome alteration
signatures.

•Comparative analyses
identified features of
specific stages of B-cell
differentiation and po-
tential associations with
clinical outcome.

Human B-cell precursor acute lymphoid leukemias (BCP-ALLs) comprise a group of

genetically and clinically distinct disease entities with features of differentiation arrest at

known stages of normal B-lineage differentiation. We previously showed that BCP-ALL cells

display unique and clonally heritable, stable DNA replication timing (RT) programs (ie,

programs describing the variable order of replication and subnuclear 3D architecture of

megabase-scale chromosomal units of DNA in different cell types). To determine the extent

to which BCP-ALL RT programs mirror or deviate from specific stages of normal human

B-cell differentiation, we transplanted immunodeficient mice with quiescent normal human

CD341 cord blood cells and obtained RT signatures of the regenerating B-lineage

populations. We then compared these with RT signatures for leukemic cells from a large

cohort of BCP-ALL patients with varied genetic subtypes and outcomes. The results identify

BCP-ALL subtype-specific features that resemble specific stages of B-cell differentiation and

features that seem to be associated with relapse. These results suggest that the genesis of

BCP-ALL involves alterations in RT that reflect biologically significant and potentially

clinically relevant leukemia-specific epigenetic changes.

Introduction

DNA replication timing (RT) refers to the temporal order in which defined units of chromosomes replicate
during the course of S phase. The regulatory units of RT correspond to units of structural organization
and are organized into higher-order 3D spatial compartments in the nucleus that replicate at distinct
times during S phase.1,2 Changes in RT affect at least half the genome during normal development and
differentiation,1,3,4 and RT profiles are characteristic of a given cell type.5-8 Early RT correlates with
transcriptional activity, but there are many exceptions,9,10 and RT signatures can identify differences
between diseased and normal tissue that are not identified by standard transcriptome analyses.11,12 RT
signatures may therefore provide a novel genre of clinical biomarkers that reflect large-scale genome
architecture. We previously described disease- and patient-specific features in the RT profiles of B-cell
precursor acute lymphoid leukemia (BCP-ALL) cells2,13 and showed that they remained stable in serially
passed patient-derived xenografts in immunodeficient mice.14 Here, we investigated the biological
relevance of RT alterations to BCP-ALL by examining the relationship of BCP-ALL RT profiles to specific
stages of normal B-cell differentiation from which this class of leukemias derive and their potential
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prognostic significance. Results establish the existence of
leukemia-specific RT signatures that suggest previously unknown
associations with specific BCP-ALL subtypes and their responses
to therapy.

Methods

Patient samples

Primary BCP-ALL patient samples were obtained with informed
consent according to protocols approved by the Institutional
Review Board of the Oregon Health & Science University and St.
Jude Children’s Research Hospital. Mononuclear cells were
obtained from bone marrow aspirates by Ficoll density gradient
centrifugation, and viably frozen cells were stored in 90% fetal
bovine serum (FBS) and 10% dimethyl sulfoxide.

Normal cells

Human cord blood (CB) samples were obtained with informed
consent, anonymized, and used according to procedures approved
by the Research Ethics Board of the University of British Columbia.
Low-density CD3–CD19–CD11b– cells depleted of neutrophils and
red blood cells were isolated on Lymphoprep using RosetteSep,
and the .90% pure CD341 cells were isolated using EasySep
(STEMCELL Technologies). Cells were stored frozen at 2176°C
in dimethyl sulfoxide with 90% FBS. Before transplanting the cells
into mice, they were thawed in Iscove modified Dulbecco medium
with 10% FBS (STEMCELL Technologies) and 10 mg/mL DNase I
(Sigma Aldrich), centrifuged, and resuspended in Hanks balanced
salt solution (STEMCELL Technologies) with 2% FBS.

Xenografts

Two 3 104 to 10 3 104 normal human CD341 CB cells (2
biological replicates consisting of pooled CB cells from 3
individuals) were IV injected into 8- to 12-week-old adult female
NRG mice within a few hours of being exposed to 8.5 cGy of 137Cs
g-rays delivered over 3 hours. Mice were bred in the Animal
Resource Centre of the British Columbia Cancer Research Centre
and treated using procedures approved by the Animal Care
Committee of the University of British Columbia. Ten to 15 weeks
later, pelvic, femoral, and tibial bone marrow and spleen cells were
isolated and sorted for subsets by fluorescence-activated cell
sorting (FACS).15

Simultaneous sorting for surface markers and DAPI

Red blood cell lysis was performed by using ammonium chloride
solution (STEMCELL Technologies) for 10 minutes on ice. A crude
enrichment for human cells was performed using an EasySep
Mouse/Human Chimera Isolation Kit (STEMCELL Technologies).
Cells were spun down and resuspended in Iscove modified
Dulbecco medium supplemented with 10% FBS (both from
STEMCELL Technologies) and 100 mM bromodeoxyuridine (BrdU;
BD Pharmingen) and placed in a humidified 37°C (5% CO2 in air)
environment for 2 hours. Cells were washed once with Dulbecco
phosphate-buffered saline and 2% FBS and stained with 1:25 anti-
human CD45 fluorescein isothiocyanate (clone 2D1; STEMCELL
Technologies), 1:50 anti-human CD45 allophycocyanin-ef780
(clone HI30; eBiosciences), 1:100 anti-human CD34 AlexaFluor
647 (clone 581), 1:50 anti-human CD19 phycoerythrin-Cy7 (clone
HIB19), and 1:800 anti-human ROR1 phycoerythrin (clone 2A2, all
from BioLegend) for 30 minutes on ice. Cells were once again

washed, then resuspended in 8 mg/mL 49,6-diamidino-2-phenyl-
indole (DAPI) (Sigma) plus 200 mg/mL Digitonin (Sigma) in
phosphate-buffered saline plus 2% FBS. Cells were sorted on
a BD FACSAria Fusion sorter directly into QIAGEN Buffer AL for
downstream processing.

Repli-ChIP, Repli-seq, and RT signatures

Repli-ChIP16 and Repli-seq17 were performed as detailed else-
where. Genome-wide RT profiles were constructed, scaled, and
pooled for analysis as previously described.16,17 RT signatures were
identified by unsupervised clustering as described.7,18,19

Repli-capture-seq

Roche SeqCap EZ Developer Library (cat #06471684001; IRN/
Design Name:4000016400) was designed to tile a 250-bp capture
region within the central 4-kb target region from each 10-kb window
of hg19 avoiding nonspecific sequences so that the maximum
distance between 2 capture regions was 14 kb, with a 6-kb minimum
distance between 2 capture regions. For Repli-capture-seq, G1

and S phase total genomic DNA libraries (average 150-bp insert
size) were made from cells isolated by FACS from each patient
sample using NEBNext Ultra DNA Library Prep Kit (NEB E7370;
Illumina) and single indexed using NEB E7335 or NEB E7500. Up
to 12 indexed libraries were pooled, and representative 250-bp
regions from each 10-kb window throughout the genome were
captured by using the Roche SeqCap EZ Developer Library (cat
#06471684001; IRN/Design Name:4000016400), the SeqCap
EZ Pure Capture Bead Kit (cat #06 977 952 001), and the
SEQCAP EZ Reagent Kit Plus (cat #06 953 212 001), according
to the manufacturer’s instructions. After capture, target enrich-
ment was confirmed by quantitative polymerase chain reaction.
Target regions were enriched 51 to 221 times compared with
the precapture library, and nontarget regions were reduced by 0.02
to 0.16 times.

RT profiles from deep WGS

Paired-end whole-genome sequencing (WGS) on diagnostic
leukemic blasts and matched germ line DNA samples from TCF3-
PBX1 patients treated at St. Jude Children’s Research Hospital
was performed using the Illumina sequencing platform (Illumina Inc.,
San Diego, CA). The leukemic genomes had an average haploid
coverage of 283. RT was inferred from DNA copy number as
previously described.20

TCF3-PBX1 siRNA transfection

Cell lines were transfected using the Lonza Amaxa Nucleofector kit
CA 137 program with 6 mg each of 2 separate E2A-PBX1–specific
short interfering RNAs (siRNAs) (Eurofins/Operon): CUC CUA
CAG UGU UUU GAG U and CAG UGU UUU GAG UAU CCG.
These siRNAs were tagged at the 39end with Cyanine-3 NHS Ester
(Cy-3) and Cyanine-5 NHS Ester (Cy-5), respectively, to monitor
transfection efficiency by fluorescence microscopy.

Data sharing

Data from the RT data set are available at the National Center
for Biotechnology Information Gene Expression Omnibus
database (https://www.ncbi.nlm.nih.gov/geo/) under series number
GSE130374.
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Results

Normal human hematopoietic cell types display

distinct RT signatures

We transplanted normal human CD341 CB cells into sublethally
irradiated nonobese diabetic Rag12/2IL2Rgc2/2 (NRG) mice and
isolated human CD341CD382, CD341CD191, CD342CD191,
and total CD341 (mixed progenitors) cells by FACS from their
bone marrow and spleens 2 to 3 months later (Figure 1A).
Biological replicates consisted of cells regenerated from different
pooled CB cells. The CD341CD191 and CD342CD191 cells
obtained in 1 of the replicate experiments were also sorted for
the presence or absence of ROR1 expression. As expected,21

CD341CD191ROR11 cells were rare, which allowed purification
of only 300 cells from the early and late S phase fractions,
simultaneously sorted for surface marker expression and DNA
content, from which good-quality Repli-seq profiles were then
also obtained.

RT profiles were generated by Repli-ChIP16 or Repli-seq17 as de-
scribed in “Methods” and illustrated in Figure 1B-C. RT signatures
specific to differentiating B cells were derived by comparisons with
similarly generated RT profiles obtained for other normal human
hematopoietic cells, including our previously reported data for
granulopoietic and erythroid cells generated from adult mobilized
peripheral blood cells, stimulated adult T cells, and a series of
Epstein Barr virus–immortalized B-cell lines7 with a stringent quality
control cutoff.16,17

We then derived RT signatures by using a pipeline that identifies
regions of the genome that replicate at times unique to each of
26 normal human cell types.7 In brief, after removing reads from the
sex chromosomes, remaining mappable reads for each cell type
were first divided into 55 940 50-kb segments, each of which was
then assigned an RT value (supplemental Figure 1A). We then
applied an unsupervised k-means clustering analysis to all 50-kb
genomic segments that changed RT from a log2 ratio of $0.5
to –0.5 or less (or vice versa)7 to identify 10 350 features (18.5%
of the genome) that replicate significantly differently between cell
types (P , 2 3 10216 using Student t tests). Correlation matrix
(supplemental Figure 1B) and dendrogram (Figure 1D) analyses
of all samples using only these RT-variable regions confirmed
the close matching of data from separately analyzed biological
replicates (cells generated from different donor pools) and the
clustering of samples by hematopoietic cell type to yield 8 RT
signatures (Figure 1D; supplemental Figure 1C-D). Interestingly,
some RT-variable regions displayed multiple RT switches between
sequential early stages of normal human B-cell differentiation. Gene
expression changes for the top 10% of highly variable genes
derived from published transcriptome data for multiple human
hematopoietic cell types22 were generally coordinated with their
RT changes (Figure 1D-F). Moreover, multiple known hematopoi-
esis key regulators were found in each signature: for example,
HMGA2, KIT, and HOX genes that are required for self-renewal
activity in hematopoietic stem cells23,24; CREB5 linked to early
precursor’s quiescence; RUNX2 required for hematopoietic stem
cell differentiation25; and CD79B required for the pro-B/pre-B
transition26 (Figure 1D-F; supplemental Table 2). These results
indicate that RT features can discriminate phenotypically different
hematopoietic cell types.

Identification of BCP-ALL–specific RT signatures

Genome-wide RT profiles were generated on a panel of 97 BCP-
ALL patient samples and cell lines, with a small number of pediatric
acute myeloid leukemia (AML) and T-cell acute lymphoid leukemia
patient samples and cell lines to serve as comparators (supple-
mental Table 1). Although our standard early/late (E/L) RT method
(Figure 2A) performs well on directly analyzed patients samples13

or transplanted mice,14 the numbers of viable cells or cells able
to incorporate BrdU that we obtained from many previously
frozen banked samples of patients’ cells were very low, consistent
with S phase–specific replication fork collapse.27 Therefore, such
samples were first isolated as unlabeled S and G1 phase cells
by FACS according to their DNA content (Figure 2A). We then
used microarray or WGS to obtain the relative copy numbers of
each 50-kb sequence in the S and G1 phase cells and derived
RT profiles based on the fact that earlier-replicating sequences
are higher in copy number than late-replicating sequences in S
phase, but are at equal copy number in the G1 phase (Figure 2A;
S/G1 Repli-seq).

14,28 Because the dynamic range of G1/S data are
inherently less than twofold, a large number of sequencing reads
is needed to quantify copy numbers (160 million per sample),
making it expensive as a routine assay. Thus, we designed a set of
capture oligonucleotides spaced evenly throughout the genome
(see “Methods”). This significantly reduced the sequence depth
required to cover the breadth of the genome (107 mappable reads)
and enabled high-resolution RT profiles to be obtained, scaled,
and normalized with all other samples (Figure 2B). Clustering
analysis and correlation analysis of constitutive regions of the
autosomal genome demonstrated a high concordance between
replicate data sets (correlation values .0.95) and confirmed
a lack of bias from the use of these different methods (Figure 2C;
supplemental Figure 2).

Comparison of RT programs from leukemia patient samples and cell
lines with one another using the same pipeline revealed 3540 50-kb
variable segments (6.3% of the autosomal genome) that showed
significant differences and generated 14 RT signatures (Figure 3A).
Six signatures were linked to patients and cell lines containing the
t(1;19) translocation that encodes the TCF3-PBX1 fusion protein
(1 to 6 in Figure 3A-B). TCF3 (also known as E2A) is a transcrip-
tion factor required for normal B- (and T-) cell differentiation and
has been implicated in many lymphoid malignancies.29,30 PBX1 is a
proto-oncogene with a critical role in hematopoiesis and lympho-
poiesis.31 The TCF3-PBX1 fusion gene is believed to be a driver
mutation in the BCP-ALLs in which it is found.32 RT signatures 1
and 2 were early replicating and 6 was late replicating uniquely
in the TCF3-PBX1–positive samples. The fact that all 3 TCF3-
PBX1–positive cell lines shared the same RT signatures as the
patients’ TCF3-PBX1–positive leukemic cells underscores the
epigenetic stability of their identified RT signatures. RT signatures
3, 4, and 5 substratified the TCF3-PBX1–positive samples. RT
signature 8 was early replicating in a group of BCP-ALL samples of
unknown genotype. Interestingly, RT signatures 7 and 9 were
shared between BCP-ALL and certain AML samples and contained
features of early myeloid differentiation (supplemental Figure 3). RT
signatures 10, 11, and 12 identified subsets of BCP-ALL samples.
Signature 13 was late in 1 case and 14 was late in 2 others. The
exclusivity of these RT signatures for specific subsets of patients
can be further probed by clustering all patient samples using only
the 50-kb chromosomal segments (features) found in each of the
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RT signatures. For example, clustering analysis of patient samples
using the chromosomal segments from RT signature 1 identified the
patients carrying the TCF3-PBX1 translocation (Figure 3C). Heat
maps and dendrograms for each RT signature from Figure 3A are
shown in supplemental Figure 4.

Interestingly, RT signatures 1, 2, and 6 (Figure 3A) identified 2 BCP-
ALLs exhibiting an RT signature of TCF3-PBX1–positive cells
despite the samples being designated as not otherwise speci-
fied (NOS; cannot be classified into typical genetic subtypes,
including those with a t[1;19] karyotype). To determine whether
these samples might have an undetected TCF3-PBX1 fusion, we
performed reverse transcription polymerase chain reaction on
messenger RNA isolated from these samples. Interestingly, this
revealed a TCF3-PBX1 fusion messenger RNA in sample PALCRG
but not in sample 10-795 (Figure 3D), which also did not contain
a TCF3-TFPT fusion gene (supplemental Table 1).33 Next, we
analyzed the gene expression patterns within these RT signatures

using transcriptome data from 508 B-cell ALL (B-ALL) samples
generated by the Therapeutically Applicable Research to Generate
Effective Treatments (TARGET) program from patients enrolled in
Children’s Oncology Group (COG) clinical trials.34 This analysis
identified genes with coordinated changes in transcriptional activity
and RT (Figure 3E; supplemental Figure 5). Among the genes
overexpressed in RT signature 1, we identified WNT16, GLT1D1,
ROR1, and others (Figure 3E). WNT16 has been shown to be
a target of the TCF3-PBX1 fusion protein and is associated with
the leukemogenesis of this BCP-ALL subtype.35 GLT1D is also
upregulated in TCF3-PBX1–positive cells but not in patients with
TCF3-HLF translocation.36 ROR1 encodes for the receptor orphan
tyrosine kinase receptor 1, and it enhances the viability of TCF3-
PBX1–positive cells.37,38 Supplemental Table 3 contains the
complete gene list for all B-ALL RT signatures shown in Figure 3C.

To investigate the possible role of the TCF3-PBX1 fusion protein in
determining the RT signatures of TCF3-PBX1–positive leukemic
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cells, we transfected 2 TCF3-PBX1–positive cell lines (Kasumi and
RCH-ACV) with a pair of TCF3-PBX1 siRNA oligonucleotides.39

Despite evidence of significant reduction of the TCF3-PBX1 RNA in
both lines (Figure 4A-B), very strong genome-wide correlations in
RT ($0.85) were observed after downregulation of TCF3-PBX1
(Figure 4C-D), and no significant changes were observed in their

RT profiles (Figure 4E-F). However, TCF3-PBX1 knockdown
also leads to apoptosis39, precluding analysis of longer-term
effects. In addition, we overexpressed a TCF3-PBX1 comple-
mentary DNA in the mature GM12878 B-cell line (Figure 4G) and
detected no change in its original RT profile (Figure 4H-I). Together,
these results argue against a direct or continuing action of the
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TCF3-PBX1 protein on the RT features unique to TCF3-PBX1–
positive leukemic cells.

RT signatures of TCF3-PBX1–positive BCP-ALL cells

suggest associations with central nervous

system relapse

Although most TCF3-PBX1–positive BCP-ALL patients are cured
with current therapies, ;10% currently relapse with a high

incidence of central nervous system (CNS) relapse.40-42 We
analyzed WGS data (283 coverage) derived from 21 TCF3-
PBX1–positive BCP-ALL patients at diagnosis by the St. Jude
Children’s Research Hospital–Washington University Pediatric
Cancer Genome Project. First, we identified differences in copy
number variation and detected multiple amplified loci in all TCF3-
PBX1–positive patients, but we did not detected differences that
distinguished patients with CNS relapse (supplemental Figure 6).
Next we exploited the deep coverage of this WGS data to generate
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RT profiles based on the fact that earlier-replicating sequences are
higher in copy number than late-replicating sequences (Figure 5A),
even without prior purification of S and G1 cells.20 RT data sets
were derived from the 16 highest quality WGS data based on the
correlation values between each other (supplemental Figure 6).
RT profiles across all patient samples confirmed the high concor-
dance of the RT programs derived fromWGS data (Figure 5B). This
group of TCF3-PBX1–positive patients included 2 patients who
had an isolated CNS relapse and 1 who developed an unrelated
secondary AML. Clustering analysis of variable chromosomal
segments revealed 2 RT signatures shared by the 2 CNS relapse
samples (Figure 5C) but not the nonrelapse or AML relapse
samples (Figure 5C-D).

RT signature #1 contained features that were early replicating in the
cells from the CNS relapse samples but late replicating in all other
TCF3-PBX1–positive BCP-ALL patients. Gene ontology (GO)
analysis of these chromosomal segments indicated that genes
within this signature are associated with neurologic regulation
(Figure 5E); specifically, this ontology term is linked to genes from
the opiorphin family (SMR3A, SMR3B, and OPRPN), which are

upregulated in head and neck squamous cell carcinoma.43 In
addition, odontogenesis regulation was also associated with this RT
signature, derived from genes AMBN, AMTN, ODAM, and ENAM,
which are evolutionarily related genes all located within 500 kb of
each other on chromosome 4.44 RT signature 2 contained features
that were late replicating in samples from patients who developed
CNS relapse but early replicating in samples derived from patients
in remission. GO analysis indicated that genes within this signa-
ture were associated with glial cell fate determination (CTNNB1),
neural plate development (CTNNB1), establishment of endothelial
blood-brain barrier (CTNNB1), and regulation of neuron migration
(ULK4) (Figure 5E). CTNNB1 and ULK4 are located within 500 kb
of each other on chromosome 3 (Figure 5D). CTNNB1 encodes
for b-catenin, is among the most frequently mutated genes in
human cancer,45 and has the highest mutation frequency within RT
signatures 1 and 2 (Figure 5F). Importantly, other genes reside in
the domains with these GO term-driving genes. However, given the
limited scope of this preliminary study, further studies will be
required to establish the significance of a potential link between
these genes and cellular phenotypes. Supplemental Table 4 contains
the complete gene list of these RT signatures.
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RT signatures of NOS BCP-ALL also suggest

associations with clinical relapse

A total of 120 NOS patients’ samples were obtained from the COG
bank. Sixty of these were from patients classified as high risk, 30
were from patients who relapsed within 3 years, and 30 were from
patients who were still in remission after at least 3 years. Because
most of these samples had too few cells to support the generation
of high-quality RT profiles, we selected the 5 highest quality data
sets each from paired sets of relapse and remission samples and
generated RT signatures (Figure 6A). This analysis revealed 4 RT
relapse-specific signatures, one of which was found in all relapses,
one in 3 relapse samples, and 2 in 2 relapse samples (Figure 6B).
For all 4 signatures, all remission samples were identical. Thus,
despite the high degree of heterogeneity of the small number of
NOS patients’ samples analyzed, their relapse RT signatures
showed several interesting features. GO analysis identified genes
in their RT signatures associated with interleukin-5 signaling and
B-cell activation for RT signature 1; leukocyte tethering, interleukin-
35, and interleukin-21 signaling for RT signature 3 (Figure 6C); and
GO terms derived from IL5RA and ITPR1 genes, which are
required for B-cell development and have the highest mutation
frequency within the NOS RT signatures (Figure 6D). A complete
list is provided in supplemental Table 5.

Leukemia-specific RT signatures match in part to RT

profiles of normal human hematopoietic cell types

Comparison of BCP-ALL RT signatures with the RT changes during
normal hematopoiesis revealed similarities with specific stages of
B-cell development (supplemental Figure 3). To identify features of
the leukemic cell RT signatures that might match those of normal

hematopoietic cells and/or subsets of them at different stages
of differentiation, we performed a hierarchical clustering analysis
of the RT data for the subsets of genomic segments from the RT
signature 1 that distinguish the TCF3-PBX1–positive samples, in-
cluding the normal blood cell types (Figure 3A). The genomic
regions from this RT signature display heterogeneous patterns
of RT in mature B cells and T cells (Figure 7A). Further division of
this subset of genomic regions by k-means clustering analysis
(Figure 7B) revealed 3 groups of features within signature 1, 1 shared
with normal pre-B cells (late B-precursors) but not normal pro-B or
mature B cell lines (1A in Figure 7A-B), a second set shared with
mature B-cell lines but not normal pre- or pro-B cells (1B in Figure
7A-B), and a third set not shared with any of the nonleukemic B cells
analyzed (1C in Figure 7A-B). When these 3 sets of features were
then used to subdivide signature 1, the TCF3-PBX1–positive
patients’ cells and cell lines and related patient samples continued
to form a closely related cohort. In addition, TCF3-PBX1–positive
patient samples also clustered tightly with the RT features of the
pre-B-cell samples using signature 1A and with the B-cell lines
using signature 1B (Figure 7B). Importantly, signature 1A includes
the gene for ROR1 (Figure 3B; supplemental Table 2). ROR1
replicates early in TCF3-PBX1–positive patients’ cells but late in all
other BCP-ALL subtypes as well as in normal B cells (Figure 3C).
ROR1 is highly expressed in t(1;19) BCP-ALL blasts and is required
for their viability, even though ROR1 is not directly regulated by
either the TCF3-PBX1 fusion protein or the pre-B-cell receptor.37,38

Moreover, ROR1 switches transiently to early replication in late B-cell
progenitors (CD191CD34–) before changing back to late replication
in mature B cells during normal B-cell differentiation (Figure 3C),
suggesting that TCF3-PBX1–positive patients’ cells retain the early
RT program of normal pre-B cells (late B-precursors).
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Discussion

Our results demonstrate the potential of RT profiles to identify
markers characteristic of BCP-ALL subtypes and to substratify
patient samples by outcome. This included the identification of
several groups of domains that replicate together uniquely and
consistently in TCF3-PBX1–positive leukemic cells compared with
other BCP-ALL subsets (RT signatures). Evidence that these reflect
a retained epigenetic state of the normal cells they resemble is
provided by the demonstration of a subset of individual domains
(RT features) with correlates in normal CD191CD34– pre-B cells,
but not more primitive normal CD191CD341 pro-B cells or more
mature B cells. Thus, additional RT analysis of lymphoid progenitors
present in fetal liver or adult sources would be of interest to extend
these comparisons to other developmental stages of human
hematopoiesis. Correlates shown here for CB-derived cells
included ROR1, a gene that is uniquely expressed in the TCF3-
PBX1–positive subtype of BCP-ALL where it is a therapeutic
target.37 We also discovered signatures that substratify TCF3-
PBX1–positive patient samples and RT signatures specific to and
shared by TCF3-PBX1–positive as well as NOS BCP-ALL relapse
cells. Other subtypes of BCP-ALL cells also contain distinguish-
ing features. We conclude that RT profiles of BCP-ALL cells
have stable prevalent clonotypic features operative in the normal
phenotypes they resemble as well as others with potential
prognostic import.

We also report several methodologies for analyzing and compar-
ing normalized patterns of RT in normal differentiating human
hematopoietic cells and leukemic samples from BCP-ALL patients.
When possible, the method of choice is E/L Repli-seq,17 which
yields consistently high-quality data from small numbers of cells.
Samples with low viability can either be expanded as PDXs to
regenerate their viability14 or RT profiles can be generated by
a copy number comparison of reads in S vs G1 phase cells. Finally,
when sufficiently deepWGS is available, RT profiles can be derived
from total read copy number.20

RT often correlates with transcription but can clearly detect
abnormalities not revealed by transcriptome analysis.11 The recent
identification of cis-elements of RT control known as early replica-
tion control elements reveals that RT, 3D architecture, and subnu-
clear positioning are coregulated.46 Moreover, RT changes seen
in leukemia reflect changes seen during normal development13

that are coordinated with changes in genome architecture.47 Thus,
RT signatures that reflect alterations in epigenetic regulation of
large-scale genome structure and function and are relatively easy
to generate, may offer a novel genre of prognostic biomarkers in
human leukemia.
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