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1. Introduction

Colorectal cancer is one of the leading causes of death worldwide 
and is one of the most common malignancies in the digestive tract 
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ABSTRACT

Colorectal cancer (CRC) is distinguished by epigenetic elements like DNA methylation, histone modifica-
tion, histone acetylation and RNA remodeling which is related with genomic instability and tumor initiation. 
Correspondingly, as a main epigenetic regulation, DNA methylation has an impressive ability in order to 
be used in CRC targeted therapy.  Meaningly, DNA methylation is identified as one of most important  epi-
genetic regulators in gene expression and is considered  as a notable potential driver in tumorigenesis and 
carcinogenesis through gene-silencing of tumor suppressors genes.  Abnormal methylation situation, even 
in the level of promoter regions, does not essentially change the gene expression levels, particularly if the 
gene was become silenced, leaving the mechanisms of methylation without any response.  According to the 
methylation situation which has a strong eagerness to be highly altered on CpG islands in carcinogenesis 
and tumorigenesis, considering its epigenetic fluctuations in finding new biomarkers is of great importance.
Modifications in DNA methylation pattern and also enrichment of methylated histone signs in the promoter 
regions of some certain genes like MUTYH, KLF4/6 and WNT1 in different signaling pathways could be a 
notable key contributors to the upregulation of tumor initiation in CRC.  These epigenetic alterations could 
be employed as a practical diagnostic biomarkers for colorectal cancer.  In this review, we will be discuss 
these fluctuations of MUTYH, KLF4/6 and WNT1 genes in CRC.

[1].  More than 600,000 deaths per year occur due to the effects 
of various types of cancer [2].  Approximately, 98% of colorec-
tal cancers are adenocarcinoma and often occur in adenomatous 
polyps [3].  The key factor in colorectal cancer is genetic varia-
tion (gene mutation) and also epigenetic.  In this case, the normal 
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into two categories of hypomethylation and hypermethylation 
[35].  Methylation occurs through a stable change on the DNA 
molecule, and mainly on certain CpG islands, in association with 
the promoter of tumor suppressor genes, while mutations often 
appear in distinct tumors in different places in a particular gene. 
Importantly, most CpG islands within the promoter of genes are 
in nonmethyl normal tissues [36].  Genetically, tumorgenesis 
in CRC is divided into a multistage process involving mutation 
activation in proto- oncogenes and loss of function of tumor 
suppressor genes.  In contrast, DNA repair and recovery genes 
play an important role in anti-tumor activity by maintaining the 
integrity of the genome.  Conclusively, because of the different 
mechanism of different genes in different pathways, we selected 
MUTYH, KLF6, KLF4 and WNT1genes in order to discuss their 
importance in carcinogenesis and also tumorigenesis in CRC.In-
trestingly, all these mentioned genes have a noticeable impression 
in cancer progression.

3. Involvement of certain genes

Many genes are involved in different molecular mechanisms in 
the carcinogenic pathway, including the MUTYH, KLF6, KLF4 
and WNT1.  Base Excision Repair (BER) is a DNA repair path-
way that eliminates mutations and modifies the genome mainly 
through successive responses, including the diagnosis and pro-
cessing of damaged nucleotides [37].  The interruption of BER 
leads to cancer through accumulation of oxidative DNA damage 
caused that has been observed in MUTYH-related polyposis 
(MAP). MAP is a hereditary colorectal cancer syndrome that is 
caused by adenoma and cancers with a cumulative 8-Oxo guanine 
(8-OxoG), which causes mutation in the mutY homolog E. coli 
(MUTYH) gene (Figure 2) [38].  The MUTYH gene is located on 
the short arm of chromosome 1, and its map is P34.3_P32.11 and 
is about 2.11 kilobases long and consists of 16 exons.  This gene 
encodes a protein containing 535 amino acids, which is a kind of 
glycosylase.  This protein, which is one of the components in-
volved in the recovery of DNA through BER, Was identified in 
humans in 1995 and contributes to the repair of oxidation damage 
[39].  During DNA replication, A is paired with T and C with G. 
During aerobic metabolism of normal cells or in a position that 
increases the production of ROS, guanine oxidation results in the 
formation of 8-oxoG which is rapidly and incorrectly coupled to 
adenosine instead of cytosine.  MUTYH Glycosylase removes 
adenine bases that are weakly coupled with 8-oxoG. This enzyme 
corrects this error, so increasing these mutations by G: C> T: A 
would interfere with the control of the cell cycle, leading to the 
formation of a tumor.  The importance of MUTYH gene mutation 
in colorectal cancer was confirmed by AL-Tassan et al. for the 
first time, people from a family who have two-allelic mutation in 
the MUTYH gene have a autosomal form of adenomatous famil-
ial polyposis,when analyzing the cancerous tissues of these pa-
tients, there was a strong indication of the conversion of G: C> T: 
A into commonly mutated genes of CRC (APC, K-RAS). Later 
on, other authors emphasized that these findings show MUTYH 
gene mutation that reduces the effect of the BER system and the 
emergence of CRC [40-42].  The level of MUTYH gene expres-
sion is related to tumor location, tumor size, degree of cell differ-
entiation and depth of invasion to the intestinal wall, angiolym-
phatic infiltration, and lymph node involvement.  In fact, 
MUTYH is less pronounced in large tumors with invasive lym-
phatic vessels (malignant stages of colorectal cancer) [43].  In the 

epithelial cells become malignant in colon cells [4].  Often, these 
changes are caused in oncogene, tumor suppressor and DNA 
repair genes.  Correspondingly, the tumor suppressor genes are 
silent and the oncogenes that play a key role in the invasion pro-
cess are activated.  Remarkably, Gene mutations can make small 
or large changes in the genome [5].  Colorectal cancer is seen in 
forms including: Sporadic form which is the most common type 
of disease.  This disease occurs without hereditary or familial 
background and usually occurs after 50 years of age.  The Ade-
nomatous polyposis coli (APC) gene mutation is seen in the early 
stages of the formation of a sporadic form of cancer.  Here can be 
mentioned other genes such as the inactivation of the p53 tumor 
suppressor gene seen in the late stages of adenocarcinoma, which 
also contributes to the metastasis process.  Another form is family 
one which is about 25% of the patients are in this group and also 
is considered as hereditary form which is often familial adenoma-
tous polyposis (FAP) and hereditary non-polyposis colorectal 
cancer (HNPCC).

2. Epigenetic and cancer

Epigenetics consist of DNA methylation, histone modification, 
histone acetylation, histone phosphorylation and also RNA re-
modeling which DNA methylation is the most important element 
[6-12].  Meanwhile, alongside with the investigation of epige-
netics fluctuation in GI cancers, gene expression study must be 
added in order to have a better comparison and result [13-20].

Remarkably, epigenetic agents play a very important role 
in carcinogenesis.  In this way, besides the genetic factors, epi-
genetic one is of great importance.  Meaningly, epigenetic is a 
controlled reversible process that causes inherited changes in the 
expression of genes independent of changes in the nucleotide 
sequence of DNA [21, 22].  Today, epigenetic mechanisms are 
known to be a factor in cancer development [23].  Studies have 
shown that colorectal cancer, like other cancers, is associated with 
epigenetic changes that make these changes without changing 
the initial DNA sequence [24, 25], It causes changes in abnormal 
regulation of transcription factors, followed by changes in cell 
proliferation, cell survival, as well as cell differentiation (Figure 
1) [25-28].  In cells transformed into cancerous cells, epigenetic
changes occur at the chromosomal level, including DNA methyla-
tion, histone changes, and alterations in function and expression 
of factors involved in regulating the processes of assembly and 
nucleosome rearrangement [23, 27, 29, 30].  DNA methylation 
is one of the three epigenetic layers controlling the expression 
of genes involved in germ cells and also the specific genes of 
the tissue [31].  About 3 to 6 percent of the cytosine bases in the 
DNA of mammals are methylated.  This methylation affects the 
expression of the gene, especially when these dinucleotides are 
located on the CpG islands. These islands are often located in the 
promoter regions of the genes [32-34].  DNA methylation is the 
only epigenetic change directly affecting DNA, which is the re-
sult of the transfer of a methyl group of 5 adenosylmethionine to 
C5 of Cytosine base.  In mammals, cytosine methylation occurs 
in the CpG position of the DNA sequence.  CpG islands, which 
are rich in CpG dinucleotides, are a hallmark of the promoter 
regions of the genes [34].  The complexity of setting DNA methy-
lation patterns is revealed through the diverse function of DNA 
methyltransferase (DNMTs) and reactive proteins with 5-methyl 
cytosine.  Changes in the pattern of methylation can lead to tu-
morgenesis and also carcinogenesis.  These changes are divided 
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Western countries, MUTYH is the second leading cause of APC 
variants in patients with polyposis. Although few studies have 
been conducted on the study of MUTYH variants in Asian poly-
posis patients [44].  Changes in disease progression may also be 
due to accumulation of epithelial mutations or MUTYH hyperm-
ethylation [45].  In fact, hypermethylation of the promoter region 
of the genes involved in the production of BER system is found in 

a variety of tumors of thyroid, bladder, ovarian, brain, CRC [46].  
In molecular genetics, the Krüppel-like family of transcription 
factors (KLFs) are a set of zinc finger DNA-binding proteins that 
regulate gene expression. One of the members of this family is 
the Krüppel-like factor 6 gene (KLF6), Changing the expression 
of this tumor suppressor gene plays a role in the incidence of can-
cer.  KLF6 is located on the chromosome (10p15).  The mutation 
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testicles, skin, thymus, vascular endothelial cells, epithelial cells 
of the skin, the eyes, the kidneys, the bone and the digestive tract, 
including the colon [56].  KLF4 is considered to be genes that 
have dual performance, due to the presence of different domains 
in this structure.  t can act as a tumor suppressor and also an on-
cogene, which also depends on the type of tumor, tissue or tumor 
stage, that These changes are done with the help of molecules 
such as p53 and p21 and p27 through changes in processing or 
post-translational modifications [58].  This gene plays its role by 
inhibiting the cell cycle or by anti-apoptotic effect.  The expres-
sion and activity of KLF4 in human cancers are different.  Genetic 
changes in the gene in cancer are also unusual [59].  Basically, 
KLF4 in the intestine plays several important roles in the regula-
tion of hemostasis.  As, it has a significant effect on the develop-
ment and final differentiation of Goblet cells involved in mucosal 
secretion. However, subsequent studies on mice showed that inhi-
bition of this gene prevented the differentiation of enterocytes in 
the intestine, which also inhibited the expression of carbonic an-
hydrase in the colon. So in the intestine, KLF4 involves in post-
birth maturity, differentiation and proliferation, migration and 
placement of intestinal epithelial cells, as well as in maintaining 
the hemostasis of intestinal cells [58-60].  Now, in the case of 
cancer, there is evidence that promoter hypermethylation and de-
letion mutation in KLF4 gene can reduce or eliminate the expres-
sion of this gene [60]. The KLF4 decreases in cancers such as co-
lon and esophagus, the brain, kidneys, prostate, bladder, and 
leukemia in advanced stage of the disease. KLF4 has been proven 
to be one of the few genes that have been reported to be at the on-
set of Gastrointestinal cancer [56, 59].  KLF is associated with the 
transmembrane protein E-cadherin, and if KLF4 is not expressed, 
cellular tissue passes through the epithelial stage to mesenchymal 
development and invasion of the disease [60, 61].  Conversely, 
KLF4 increases in breast, nasal Head and neck cancer [59, 60].  

occurrence in this gene is involved in the formation of some types 
of tumors, so that mutation in the gene can be related to cancers 
such as colorectal [47], malignant glioma [48], nasopharyngeal 
[49], breast [50], Stomach and Prostate Cancer [51, 52].  The 
KLF family is extensively involved in signal transduction depen-
dent on growth, cell proliferation, development, apoptosis and an-
giogenesis (Figure 3). In normal cells, KLF6 increases the P21 in-
hibitor in an independent TP53 type and inhibits growth.  It 
actually breaks the function of kinase dependent on cyclin D1 and 
causes the cell cycle to stop in the G1 stage.  Furthermore, KLF6 
acts as an inhibitor of cell proliferation against C-Jun oncoprotein 
[53, 54].  Down-regulation of KLF6 may contribute to the devel-
opment of solid human cancers, and inactivating it may result in 
the development of colorectal cancer as a primary or common oc-
currence.  In general, the inactivation of tumor suppressor genes 
with their lack of expression results from genetic or epigenetic 
changes such as mutation, loss of allele, or hypermethylation of 
the promoter region of the gene [53].  Notably, KLF6 is proposed 
to be a methylation gene in esophageal squamous cell carcinoma 
[55].  Correspondingly, KLF4 is another member of the family of 
transcription factors that regulate various cellular functions, such 
as growth, development, cell proliferation, differentiation, apop-
tosis and transcription.  The gene is located on chromosome 9 at 
position q31.29, and the length of this gene is 5.6 kB. The gene 
contains 5 exons, and the protein encoded by this gene is 470 
amino acids.  As a transcription factor, binds the CACCC-rich or 
GC-rich region in the promoter the genes that involved in many 
cellular processes and suppresses or stimulates the expression of 
the desired genes.  The classification of transcription factors is 
mainly based on the DNA-binding motif, which contains a highly 
protected zinc finger motif in its structure [56, 57].  The gene be-
longs to the SP/KLFs family, of which 17 have been identified in 
humans (Figure 4) [58].  KLF4 is expressed naturally in the lungs, 
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Epigenetic changes, including hypermethylation of the promoter 
of the KLF4 gene in the colon, reduce the expression of this gene 
and induction of tumorigenicity [56].  When cells are exposed to 
gamma rays and free radicals, various mechanisms, including ef-
fects on cell cycle, induction of apoptosis, as well as DNA repair 
processes, are activated [60, 62].  KLF4 is an important regulator 
for the cell cycle, and cells with excessive expression of KLF4 in-
hibit the cycle at the G1 / S stage.  The cell cycle is controlled by 
cyclin kinases, the activity of these kinases being regulated by ac-
tivators or cyclins and inhibitors (CKIs).  The KLF4 protein acti-
vates inhibitors such as P21, p27 and prevents DNA synthesis.  
Expression of inhibitors such as p21, which inhibits the cell cycle 
at the G1 / S stage, is followed by DNA damage.  It has been 
shown that P21- dependent expression of p53 and inhibition of 
cell cycle is mediated through KLF4 [60].  In cases where the ex-
pression of the KLF4 gene is inhibited, such as hypermethylation, 
other signaling pathways such as WNT that contribute to the in-
testinal stem cell self-renewing.  The KLF4 is also associated to 
cateninβ and thus effects itself.  Both in the familial heredity and 
sporadic, there is a decrease or no expression of KLF4, and the 
cancer progresses from the first stage to the fourth stage.  The ex-
pression level of KLF4 has an inverse relationship with the size 
of the tumor [56].  These studies have been conducted in coun-
tries such as South Africa [56], United States [63], Japan [61], 
Europe [64], and concluded that the expression of this gene in co-
lon cancer has decreased.  In this way, another responsibility that 
contributes to cancer, is WNT signaling pathways.  The mutation 
in the gene that changes its products is one of the most prominent 
cases in the development of tumors, and the WNT signaling path-
way has not been the exception (Figure 5) [31, 32].  Activating 
this pathway is important not only at the onset of the carcinogen-
esis of colorectal cancer but may also control the malignancy po-
tential of the cells in more advanced stages and may be an objec-

tive to develop new therapies for this type of cancer.  These cells 
originate from stem cells that are located at the base of the crypt 
and migrate to the luminal surface of the cavity [65].  Cells that 
result from the splitting of primary stem cells or as stem cells re-
main or are differentiated, which is controlled by the WNT signal-
ing pathway.  The WNT signaling pathway is a highly regulated 
pathway from the sponge-to-human species that plays a role in 
the proliferation, differentiation, and determining the fate of the 
cell.  The WNTs family is part of the glycoproteins and has 19 
known members [66-68].  WNT genes secrete cysteine-rich pro-
teins that apply their biological functions through the autocrine or 
paracrine system [65, 67].  These proteins have between 23-24 
subunits of cysteine.  This pathway is involved in maintaining he-
mostasis in many tissues including the digestive tract, skin, bone, 
hematopoietic system, hair follicle, muscle, liver and brain [66].  
During the studies, WNT proteins activate 3 pathways: 1.canoni-
cal pathway 2.  The planer cell polarity pathway 3.WNT/Ca path-
way.  Which canonical pathway is importance to us.  Increasing 
the activity of the WNT signaling pathway has been seen in many 
malignancies, including colon cancer, liver and breast cancer.  
WNT proteins are produced by mesenchymal fibroblast cells lo-
cated near the basal lamina [65].  On the membrane of epithelial 
crypt cells, there is a receptor called Frrizled (Fz), a protein that 
passes through the membrane several times and is part of the G 
group of proteins.  The amine portion of this receptor is located 
outside the cell, which is rich in cysteine.  WNT connects to this 
region, this domain is called CRD.  Next to the Fz, there is anoth-
er receptor assistant called the low-density lipoprotein receptor-
related protein 5/6 (LRP5/6) that plays a role in this signaling 
path.  The LRP5/6 is secreted through a chaperone called MESD. 
By secretion of WNT, the extracellular part of the receptors Fz 
and LRP5/6 are attached.  By conformational change of the Fz re-
ceptor, it induces protein phosphorylation called Dishevelled 
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(DVL), which acts as a mediator for signal transmission from the 
receptors.  A number of kinases are known to phosphoryl Dvl, in-
cluding casein kinase I, casein kinase II.  Dvl contributes to phos-
phorylation of the cytoplasmic portion of LRP5/6, which consists 
of five protected PPP (S/T) P motifs, which are characterized by 
Casein kinase 1(CK Iα) and Glycogen synthase kinase 3 β 
(GSK3β). By phosphorylation of the receptor, Axin drops the 
LRP and prevents the formation of a destructive complex to de-
stroy the cytoplasmic and important protein called βcatenin (35).  
βcatenin is known as a transcription factor that is encoded by the 
CTNNB1 gene and is known as an oncogene in colon and liver 
cancer, and activates the genes involved in the cancer [65, 69].  
β-Catenin binds inside the cell and binds to the T-cell factor / 
lymphoid enhancer binding factor1 (TCF/LEF1) in the nucleus, 
which induces expression of target genes [68].  These genes in-
clude C-Myc, Cyclin D1, Axin-2, Sox-2, TCF-1 [65].  Now, in the 
absence of WNT, Axin, CKI, GSK3β and APC form a complex 
and destroy the β-catenin.  For destruction, it is necessary that the 
β-catenin is phosphorylated in the amino portion by GSK3β and 
Ck Iα, which Beta-transducin repeats-containing proteins 
(β-TrCP) serve as the substrate recognition subunits for the E3 
ubiquitin ligases.  These ligases ubiquitinate specifically phos-
phorylated substrates and actually labeled and identified and de-
stroyed by protease [68].  WNT1 gene was first discovered by 
Nusse and varmus in 1982, in mouse that was essentially called 
Int-1 [65].  This gene is located on the chromosome q13.1212 
[70].  WNT1 stimulates the pathway of Canonical WNT / 
βcatenin, which causes changes in cellular fate or cell formation 
[71].  WNT1 acts on target genes via the TCF / LEF-1 complex.  
Recent studies have shown that the increased expression of 
WNT1 has occurred in many cancers, including breast, colon, 
lung and prostate cancers, which, through inhibition of antago-
nists, have an oncogene role.  One of the target genes is C-Myc, 
which plays a role in proliferation and cell growth, and increases 
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cell cycle transitions from G1 to S by activating the Cyclin E/
cdk2 complex [72].  Besides, the above explanation of molecular 
signaling pathways, for these genes in treatment category, Gut 
microbiota is recommended [73].

4.	 Conclusions

Studies have shown changes in the expression of MUTYH, 
KLF6, KLF4 and WNT1 genes in various cancers.  On the other 
hand, environmental factors play an important role in epigenetic 
genes (including DNA methylation), and this change in methy-
lation causes changes in the expression of these genes.  Corre-
spondingly, studies indicate that these genes have the diagnostic 
potentially and the study of the expression of these genes that 
contribute to the incidence of cancer as well as the determination 
of their methylation in different populations can help determine 
the molecular causes of CRC in order to employ them a s a main 
prognostic biomarkers in cancer detection [74].
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