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Abstract

Purpose of Review—There is a growing body of evidence indicating the gut microbiota
influence neurodevelopment and behavior. The purposes of this review are to provide an overview
of studies analyzing the microbiota and their metabolites in autism spectrum disorders (ASD) and
to discuss the possible mechanisms of action involved in microbial influence on the brain and
behavior.

Recent Findings—The microbiota-gut-brain (MGB) axis has been extensively studied in animal
models, and it is clear that alterations in the composition of microbiota alter neurological and
behavioral outcomes. However, findings in human studies are less abundant. Although there are
several studies so far showing altered microbiota (dysbiosis) in ASD, the results are heterogeneous
and often contradictory. Intervention studies such as fecal microbiota transplant therapies show
promise and lend credence to the involvement of the microbiota in ASD.

Summary—A role for the microbiota in ASD is likely; however, further studies elucidating
microbial or metabolomic signatures and mechanisms of action are needed. Future research should
focus on intervention studies that can identify specific metabolites and immune mediators that
improve with treatment to help identify etiologies and pathological mechanisms of ASD.
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Introduction

Autism spectrum disorders (ASD) are a heterogeneous group of neurodevelopmental
disorders characterized by deficits in communication, social interaction, and cognition [1].
ASD have increased significantly in prevalence since they were first identified to a current
rate of 1:59, with a preponderance toward boys [1]. No single etiology of ASD has been
identified, with current theories suggesting both genetic and environmental contributions.
Genetic mechanisms account for approximately 10-20% of ASD cases [2], leaving us with
questions about what might be driving etiology of these disorders. Environmental factors
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that have been implicated in increased risk for having a child with ASD include air
pollution, pesticide exposure, maternal infections, and/or inflammatory conditions, or
antibiotics during pregnancy [3-5]. Immune dysfunction and gastrointestinal (GI)
inflammation are also common in individuals with ASD and contribute to severity of
behaviors seen in the disorder [6-8]. New data on the role of the gut microbiome in
neurodevelopmental disorders has prompted theories of the roles commensal bacteria may
play in ASD. The studies discussed in this review have identified significant dysbiosis in
children with ASD; however, it is unknown whether the GI dysfunction and dysbiosis is
sequelae of the larger disorder or whether they directly contribute to causing ASD.

The gut microbiota consists of the collection of microbes present within the human Gl tract,
and their collective genome is the gut microbiome [9]. It is generally understood that initial
colonization begins at birth through the acquisition of maternal microbiota during vaginal
delivery; however, recent research suggests that there may be acquisition of maternal
microbiota during gestation [10]. The infant microbiota are supported with breastmilk which
is high in human oligosaccharides; however, the composition of early-life microbiota can be
altered by delivery methods, hygiene, and feeding practices such as formula feeding [10].
The healthy infant gut is initially dominated by Bifidobacterium and Lactobacillus, however,
it is unstable for the first several years of life, throughout weaning and food introduction,
then stabilizing to a more “adult-like” composition around age 3 [10]. The dominant phyla
of bacteria in the healthy adult gut are Firmicutesand Bacteroidetes, with a smaller portion
of the microbiota made up of Actinobacteria, Proteobacteria, and Verrucomicrobia [9].
Within the last decade, our understanding of the microbiota and its importance to health has
blossomed, and we now recognize that loss or alteration of microbiota may be leading to
chronic diseases [11]. Disturbances of the microbiota can occur through antibiotic treatment,
changes in diet, immune challenges, and stress [10], and this can upset the balance between
beneficial commensals and potentially pathogenic microbes in the gut. This broken balance
is termed dysbiosis [12].

Microbiota-Gut-Brain Axis

The gut microbiota play a critical role in the development of the intestinal architecture and
mucosal immune system and are particularly important for regulation of the immune system
in the gut [reviewed in [13, 14]]. In germ-free (GF) mice, the architecture of the mesenteric
lymph nodes and Peyers patches is smaller and disorganized, with reduced maturation of
isolated lymphoid follicles and fewer numbers of immune cells present. These mice
experience immune dysfunction and are more susceptible to infections than mice kept in
conventional facilities [13, 15]. These deficits can be corrected by colonization with diverse
commensal bacteria; however, this has been shown to be age-dependent, suggesting that both
composition and timing of colonization are critical for the education of the immune system
[16-18].

The microbiota also play important roles in digestion, nutrient assimilation, vitamin
production, and metabolism [19, 20] and have recently been shown to have significant
influence on the bi-directional signaling that takes place between the gut and the nervous
system, termed the microbiota-gut-brain axis [21]. The gut microbiota can influence brain
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function and lead to changes in behaviors, as shown extensively in animal models [22¢]. For
example, GF rodent studies have shown that microbiota can positively impact stress
responses through the hypothalamus-pituitary-adrenal axis (Fig. 1) [23], such as decreased
anxiety and increased exploratory behaviors [24-27]. Probiotics have also been shown to
increase exploratory behavior in rodents under varied conditions [28-30] including probiotic
treatment after dextran sodium sulfate (DSS)-induced colitis [31]. Conversely, stress in early
life can induce dysbiosis and influence immune responses, as shown in maternal separation
models of stress [32]. Deficits in working memory occur in GF mice [33], and emotional
behavior and memory can be modulated through the administration of probiotics [34]. The
introduction of probiotics influences gene expression in the central nervous system,
specifically altering expression of y-aminobutyric acid (GABA) receptors in the
hippocampus, mediated through stimulation of the vagus nerve [34]. Microbiota have a
profound influence over the synthesis and metabolism of serotonin [26, 35¢]. Microbiota
produce other neuroactive metabolites including GABA by Lactobacillus and Bifidobacteria
[36], acetylcholine by Lactobacillus, dopamine by Bacillusand Serratia, and norepinephrine
by Escherichia and Saccharomyces, which could enter circulation and directly affect neural
processes throughout the body, including the brain (Fig. 1) [37].

The microbiota can also alter the integrity of the intestinal and the blood-brain barriers,
specifically due to their production of short-chain fatty acids [38ee, 39], and disrupted barrier
function could facilitate the translocation of bacterial metabolites and immune mediators
from the gut into circulation (Fig. 1), which could lead to activation of microglia as seen in
an induced dysbiosis mouse model [40]. Through such animal studies, evidence is mounting
that dysbiosis or altered microbiota composition has an impact on neurodevelopment and
behavior.

Dysbiosis and impaired intestinal barrier function were seen in a maternal immune
activation (MIA) model of autism, with improvements in ASD relevant behavior after
treatment with Bacteriodes fragilis [41]. Recently, this model has been shown to be
dependent on microbiota that can induce a T helper (Tw-) 17 response—dams that lacked
certain microbiota could not mount this response, and their offspring did not display the
ASD-like behaviors [42¢, 43+¢]. Other mouse models of ASD such as the BTBR and Shank3
knock-out mice have shown intrinsic dysbiosis that correlated with the behavioral
phenotypes seen in these models [44, 45]. The latter study saw differences specifically in
males, with significant alterations in GABA receptor gene expression in the Shank3 KO
mice that could be modulated with the introduction of the probiotic Lactobacillus reuteri
[45]. In addition, dysbiosis introduced in conventionally housed adult mice also leads to
abnormal behaviors, altered barrier functions, and activation of the microglia, the resident
immune cells of the brain [40].

Microbiota in ASD

Evidence of microbial dysbiosis in ASD has been growing in recent years (Table 1). In
addition to immune and GI dysfunction that may be linked to dysbiosis, there is some
evidence that altering the microbiota in ASD can improve behaviors [46, 79¢]. The earliest
studies investigating the relationship of the microbiota and children with ASD proposed that
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excessive antibiotic use led to an overgrowth of spore-forming Clostridium, which
researchers hypothesized might be exposing these children to high levels of micraobial
metabolites that were neurotoxic. This hypothesis was based on an index case where
regressive autism appeared to coincide with several rounds of antibiotic use, and subsequent
vancomycin treatment significantly improved aspects of behavior. A small pilot study
included 11 children with a regressive form of ASD and who had GI symptoms of diarrhea
that were treated with oral vancomycin for 8 weeks, followed by 4 weeks of probiotics.
Eight of these children (~73%) experienced significantly improved impairments in social
behavior and communication. However, these improvements did not endure, with most
children reverting to their starting behavioral impairments upon removal of the treatment
[46]. Assessment of the microbiota in this study found increased Clostridia (supporting the
hypothesis) as well as overgrowth of other spore-forming anerobes, microaerophilic bacteria,
and several Clostridia species within the gastric and duodenal secretions not seen in controls
[47]. Further classification of the microbiota identified increased Clostridia clusters 1/1X and
C. bolteae (46-fold increase) [48].

These early findings, coupled with the noteworthy numbers of ASD children with
gastrointestinal complaints and immune dysfunction, prompted additional research to
determine if the microbiota were consistently altered in ASD. Using fluorescence in situ
hybridization (FISH) techniques to identify bacteria present in stool samples, Parracho et al.
confirmed increased Clostridia, and its presence highly correlated with GI symptoms in
ASD children [49]. However, as studies designed to use more in-depth techniques were
published, other bacterial species were identified as having differential abundance in ASD.
Increased Desulfovibrio and Bacteroides vulgatus were identified in children with ASD and
were correlated to autism severity [50]. Desulfovibrio was also elevated in a small cohort of
Slovakian children with ASD and GI dysfunction compared to healthy controls [76].
Desulfovibrio could be an important contributor to Gl inflammation, as its major metabolic
byproduct—hydrogen sulfide—is cytotoxic to colonic epithelial cells [81]. Moreover, when
given to rodents, Desulfovibrio decreased working memory [82].

Ileal and cecal biopsies from children with ASD and GI dysfunction showed increased
Firmicutes and decreased Bacteroidetes [51]. As part of this study, the researchers looked at
gene expression associated with carbohydrate digestion and transport and found impaired
expression of these genes correlated with dysbiosis in ASD [51]. Dysfunctional
carbohydrate digestion could alter the fermentation byproducts of the microbiota present,
and undigested carbohydrate could preferentially select for certain bacteria [51]. Kang et al.
found that children with ASD and GI dysfunction had decreased in commensals important
for carbohydrate fermentation including Prevotella, Coprococcus, and unclassified
Veillonellaceae [74]. A more recent biopsy study examined duodenal samples of ASD
children with GI dysfunction to determine if disaccharidase activity was altered compared to
controls, similar to the previous study. Although they did not see overall differences in
diversity, they identified elevations in Burkholderiaand reduced Prevotellaand Neisseriain
the duodenum of ASD children. Overall, they did not see the same reductions in
disaccharidases; however, they found a correlation between disaccharidase activity with the
presence of Clostridium [77].
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Increased Sutterella, a mucosa-associated microbe, was found in significant numbers in
intestinal biopsies of ASD children with GI dysfunction [56]. Sutterella was also increased
in stool samples of ASD children, irrespective of Gl issues [80]. Increased Ruminococcus
torques [80] was also seen in ASD and is similar to dysbiosis noted in inflammatory bowel
disorders (IBD) [71]. As well as increases in some species, reductions in important
commensals Bifidobacteria and the mucin-degrading Akkermansia muciniphila [52] have
been shown in ASD. One of the largest of recent studies that looked at 40 ASD (36 severe)
and 40 typically developing control children found decreased abundance of the A/istjpes,
Bilophila, Dialister, Parabacteroides, and Veillonella families but increased Collinsella,
Corynebacterium, Dorea, and Lactobacillus, suggesting major changes in the microbiota
composition in ASD. The authors also found that constipation in ASD correlated with
increases in Escherichia/Shigellaand Clostridium cluster XVII11, a cluster known to produce
exotoxins that are pro-inflammatory [78].

Two recent studies have provided evidence to support the hypothesis that children with ASD
and Gl dysfunction have elevated inflammatory immune responses and associated dyshiosis
[57, 83]. Notably, the balance of inflammatory cytokines was skewed in children with ASD
and Gl dysfunction when compared with regulatory cytokines such as transforming growth
factor (TGF) beta 1 [57]. However, whether it is the push towards an inflammatory
environment that influences the microbiota composition in ASD or a bacterial composition
that elicits inflammation needs further study. Inflammatory conditions in the GI tract are
known to exacerbate dyshiosis, for example, during antibiotic-associated inflammation,
increases in host-derived nitrate encourage Proteobacteria such as Escherichia colito bloom
[84, 85]. Differences in microbiota diversity, both at the family level and when comparing
functional KEGG pathways, were also seen in children with ASD compared to typically
developing controls. Interestingly, altered zonulin levels were seen in ASD children with Gl
dysfunction and may suggest increased intestinal permeability [57]. Luna et al. also showed
that increased cytokines associated with mucosal immunity, including interleukin [IL]6,
IL-1, IL-17A, and interferon (IFN)-gamma, were associated with abdominal pain and
increased Clostridialesin ASD [83]. A recent clinical trial which involved fecal microbiota
transplant (FMT) in 18 ASD children led to significantly improved GI symptoms and ASD-
relevant behaviors, with increases in Bifidobacterium, Prevotella, and Desulfovibrio. These
changes persisted at the 8-week follow-up [79¢]. Since immune dysfunction and cytokine
dysregulation are so prominent in ASD [reviewed in [6, 8, 86], measuring immune responses
and inflammatory cytokines in future probiotic and FMT clinical trials could help identify
the role that dysbiosis plays in this dysfunction.

Overall, there does not seem to be consensus for differences in microbiota in ASD, and a
meta-analysis of 15 studies could not amalgamate the often contradictory results [87]. Some
studies found increased diversity of the microbiota in ASD [47, 64], whereas other studies
show the opposite trend towards decreased diversity and richness [73, 74], or no differences
in diversity [75, 77]. Several studies found an increased Firmicutes/Bacteroidetes ratio in
both stool and biopsy samples, including one study that showed probiotic treatment reversed
this trend [51, 76, 78]. However, other studies noted an opposite trend in stool [50, 64].
Tissue/specimen type and sample site may account for the differences in studies. For
example, when fecal samples are analyzed, this will only detect what has moved through the
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Gl tract, not necessarily the dominant colonizers of the varied regions throughout the Gl
tract. This may skew results to those species that have difficulty adhering to the intestinal
epithelium or species that are not surviving well within the GI tract and may explain some of
the opposing trends seen when comparing studies using stools versus biopsy specimens [51].
Other technical issues may relate to comparing profiles to siblings who may also exhibit
broader behavioral impairments rather than typically developing controls. Siblings are also
more likely to have shared a common environment that would alter the microbiota [55, 75].
Additional sources of error include differing techniques; for example, sequencing can vary
in error profile, and results can vary based on read length and sequencing depth [88].
Heterogeneity in age of subjects and sex may also reduce comparability across studies.
Future studies should investigate microbiota profiles at earlier time points pre-diagnoses of
ASD to help determine if there are differences between microbiota and how that relates to
ASD outcome or broader neurodevelopmental concerns such as anxiety and cognition. Note
that the composition of microbiota is very sensitive to changes diet, fiber composition, etc.,
and can also be altered by stress and other compounding factors [10]. Children with ASD
are known to have feeding problems, food sensitivities/aversions, and extremely restricted
diets [89], which could also be contributing to differences in microbiota but not to an ASD
diagnosis. A preliminary study showed that despite no differences in the composition of
microbiota, early-life probiotic treatment and presence of Bifidobacterium during infancy
reduced the risk of neurodevelopmental disorders [90]. This early period of colonization is
an area needing further research with larger studies and advanced technological tools.

Bacteria are not the only microbes to make up the microbiota. New techniques are
identifying the fungal microbiota and its role in human health [91]. GI overgrowth of fungal
species such as Candida may have deleterious immune consequences and have been linked
to IBD and celiac disease [92-94]. Fungal commensals can bloom after antibiotic
administration, and the presence of Candlida can interfere with reassembly of the microbiota
after antibiotic perturbation, contributing to dysbiosis [95]. The immune system responds to
fungal infections with a Ty-17 response, producing IL-17, a cytokine recently implicated in
ASD etiology in the MIA mouse model [42¢, 43+¢]. So far, fungal microbiota studies in ASD
are scant; however, one culture-based study showed significant presence of Candidaspecies
in the feces of children with ASD, the majority of which were Candida albicans.
Fluconozole-resistant species were also found in significant numbers of cultures, including
C. kruseiand C. glabrata [96]. A separate study found Candida present in nearly 60% of
ASD samples, with none present in controls. They also identified hyphae formation,
suggesting that the dimorphic yeast had switched to its invasive and adhesive form [97].
However, one culture-based study looked for the presence of yeast in ASD children and did
not see an over-representation compared to control samples [53]. Newer studies that utilize
sequencing techniques may be more reliable and have shown that Candida is the most
abundant taxa of mycobiota seen in children with ASD, found at nearly twice the rate of
typically developed children [78]. Elevated ratios of the urinary metabolites D-arabinitol/L-
arabinitol (DA/LA) have been used for early identification of invasive candidiasis, as d-
arabinitol is a major metabolite of pathogenic fungal species [98]. A preliminary study of 22
children with ASD and GI dysfunction found that DA concentrations and DA/LA ratios
were significantly reduced with daily administration of probiotics, and improvements were
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seen in certain ASD behaviors including ability to concentrate [62]. Elevated DA (listed as
D-arabitol) was also found in a 2014 study of 21 Italian children with ASD [67]. This group
also saw elevated glycolic acid, which may also be associated with overgrowth of yeast in
the Gl tract [67].

Microbial Metabolites in ASD

Due to the many limitations of microbiota analysis, some researchers have turned to
metabolomic tools to identify how byproducts of microbial fermentation and metabolism
might be interacting with human health or influencing disease. These tools identify altered
patterns of metabolites within urine, stool, and blood samples that may provide a
biochemical signature of ASD and supportive evidence of dysbiotic gut microbiota [99]. A
summary of metabolomics studies specific to the microbiota and ASD are listed in Table 2.

Altered patterns of bacterial metabolites were seen in a large number of children with ASD
compared to healthy control children. These metabolites included elevated 3-(3-
hydroxyphenyl)-3-hydroxypropionic acid (HPHPA), a catabolic byproduct of Clostridia
[59]. Increased HPHPA was found more recently in study of Italian children with ASD [67],
and a 2016 intervention study showed that Vancomycin treatment could reverse increases of
HPHPA and two associated metabolites [69]. Reduced hippurate, phenyacetylglutamine, and
p-cresylsulfate were seen in ASD children, indicating alterations in gut microbiota [58]. P-
cresol, another microbial metabolite produced by Clostridium species, was significantly
elevated in children with ASD, especially females with severe autism [60]. Further studies
showed that elevations of urinary p-cresol and other derivative metabolites of Clostridia
were associated with repetitive behaviors [65] and constipation in ASD [70]. In animal
models of ASD, elevations of microbial metabolite 4-ethylphenylsulfate (4EPS) correlated
with altered behaviors in mice, and probiotic therapy reduced its concentration and improved
behaviors in MIA model of ASD [41]. 4EPS is chemically related to p-cresol, the uremic
toxin seen elevated in ASD children [41, 60, 65].

Short-chain fatty acids (SCFA) are microbial metabolites of fiber fermentation and can be
found in high concentrations in the colon. SCFA metabolites of commensal microbiota are
generally beneficial to the host; however, some SCFAs such as propionic acid (PPA) can be
neurotoxic in higher concentrations and have been shown to cause behavioral abnormalities
in rodent models [100, 101] (Fig. 1). SCFA influence gene expression epigenetically through
histone deacetylase (HDAC) inhibition. For example, butyrate-producing bacteria promote
peripheral regulatory T cell (Tyegs) €xpansion, altering gut immunity by promoting tolerance.
This occurs through HDAC inhibition leading to increased acetylation at the Foxp3
promotor and expansion of CD4* Foxp3™* Tregs [102+¢]. Therefore, shifts in SCFA
production could potentially contribute to altered immune regulation in the gut and lead to
peripheral inflammation (Fig. 1). Several studies found lower levels of fecal SCFA,
including butyrate in feces of ASD children [53, 64], while a 2012 study found increased
ammonia and SCFA including acetic, butyric, isobutyric, valeric, and isovaleric acids in
ASD [61]. Lower SCFA occurred alongside elevated phenol, 4-(1,1-dimethylethyl)-phenol
and p-cresol, and correlated with increased Bacteroides and Clostridiaand decreased
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Ruminococcoceae [64]. These children also had elevations in free amino acids, indicating
increases in proteolytic bacteria [64].

Tryptophan (Trp) metabolites directly influence host physiology including immune and gut
homeostasis [reviewed in: [103]]. The gut microbiota are critical for regulating Trp
metabolism, either directly by degrading Trp to indole-derivatives or indirectly through
mammalian kynurenine and serotonin pathways. GF mice have increased levels of
circulating Trp, adding evidence to the importance of the microbiota for Trp metabolism [26,
104]. Metabolome studies have repeatedly shown evidence of alterations in tryptophan,
kynurenine, and serotonin pathways in children with ASD, including reports of increased
urinary excretion of tryptophan and associated metabolites [63, 67, 68, 72, 105]. The
primary metabolic pathway of tryptophan is the kynurenine pathway, leading to production
of kynurenic acid. Increases in an alternative branch of the kynurenine pathway led to
reduced kynurenic acid and elevated quinolinic acid (QA), a compound known to be an
excitotoxic N-methyl-D-aspartate (NMDA) receptor agonist, in children with ASD [68]
(Fig. 1). Immune activation may be responsible for this elevation, as activated macrophages
and microglia are the main producers of QA [106]. Bacterial degradation of tryptophan,
yielding increased indolyl 3-acetic acid, indolyl lactate, and other indole derivatives were
also shown in ASD and these shifts were associated with reduced urinary melatonin,
downstream of serotonin production that may be the result of bacterial metabolism of
available tryptophan [68]. In 2014, a meta-analysis of 22 studies that measured alterations in
blood serotonin concluded that there was significantly elevated blood and platelet-rich
plasma 5-HT in ASD individuals compared to controls [66]. Serotonergic metabolites were
also increased with a decrease in Trp in mucosal biopsies of children with ASD and
functional GI disorders, and these findings strongly correlated with several specific bacteria
(Table 2) [83]. Spore-forming gut microbiota mediate the production of peripheral serotonin
(5-HT) from Trp through the production of metabolites that increase expression of
tryptophan hydroxylase (Tph)1 in enterochromaffin (EC) cells of the gut which in turn
increases colonic and circulating levels of 5-HT [35¢]. Serotonin expressed in enteric
neurons early in development can also contribute to the 5-HT pool and motility of the Gl
tract [107]. GF mouse models have shown that the serotonergic system in the brain is also
influenced by the microbiota [24, 26], whereby excess peripheral Trp may cross the BBB to
influence the rate serotonin synthesis in the brain [108]. Serotonin plays important
neurotrophic roles during early development, and elevations of 5-HT during critical time
periods can alter cognition and sensory processing [109].

Microbial metabolites and inflammatory mediators are capable of signaling through the
vagus nerve [110] (Fig. 1). As the major nerve of the parasympathetic nervous system, it has
a bidirectional role in enervating organs throughout the body including the gut. The majority
of the fibers of the vagus nerve are afferent sensory fibers, delivering sensory information
from the periphery, including the GI tract, to the brain [110]. It is understood that neural
communication between the brain and the microbiota may be occurring indirectly through
hormones or neurotransmitter release by gut endocrine cells in presence of the microbiota
and metabolites, or perhaps through direct pattern recognition sensing due to Toll-like
receptor expression on afferent fibers [110]. Vagal activation by the microbiota has been
shown in several animal models: vagotomy caused reversal of probiotic effects on memory
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and hippocampal GABA receptor gene expression [34], and also attenuated anxiety in mice
with DSS-induced colitis. Administration of Bifidobacterium longum also reduced anxiety;
however, vagotomy prevented this probiotic effect [111]. Although vagal involvement has
been identified in some studies, others show independence of vagal communication. For
example, alteration of the microbiota increased exploratory behavior in mice and increased
brain-derived neurotrophic factor in the hippocampus. These effects were not influenced by
vagotomy [112]. More research is needed to elucidate this mechanism further.

Conclusion

Why do children with ASD have dysbiosis? Is this inherent to the disorder, or perhaps
causal? These significant questions still remain to be determined. Immune system
dysfunction is a well-known issue in ASD, possibly driving the dysbiotic microbiota, or
alternatively created by it. The relationship between dysbiosis and the high incidence of co-
morbid GI dysfunction in ASD is not well elucidated; however, these studies reviewed here
indicate that a relationship exists. Reports that behaviors improve after modification of the
microbiota support the hypothesis that dysbiotic microbiota, their influence on the immune
system, and their metabolic byproducts contribute directly to the development of these
disorders. More research to clarify mechanism(s) of the influence of dysbiosis on brain and
immune function and behavior are needed.
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Fig. 1.
Mechanisms of the microbiota-gut-brain axis. Possible mechanisms of the MGB-axis are

being actively investigated and include neuroimmune pathways, neural communication
through the vagus nerve, influence of metabolites produced by the microbiota, microbial-
derived neurotransmitters, and the significant influence the microbiota have on tryptophan,
kynurenine, and serotonin metabolism. Short-chain fatty acids (SCFA) can promote
peripheral T regulatory (Treg) cell expansion as well as influence tight junction (TJ) proteins
and intestinal barrier function. Microbiota regulate tryptophan (Trp) metabolites by
degrading Trp to indole-derivatives or through kynurenine and serotonin pathways, such as
increasing expression of tryptophan hydroxylase (Tph)1 in enterochromaffin (EC) cells.
Dysbiosis can promote activation of immune cells, including macrophages that produce
quinolinic acid (QA) through an alternative kynurenine pathway, a known excitotoxic N-
methyl-D-aspartate (NMDA) receptor agonist. Activated immune cells also produce
proinflammatory cytokines which can further disrupt microflora and impact intestinal barrier
function. Neural communication can also occur through the vagus nerve via signaling from
hormones and neurotransmitters release by gut endocrine cells and immune cells. Breech of

Curr Neurol Neurosci Rep. Author manuscript; available in PMC 2019 November 14.
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the intestinal barrier would also allow direct pattern recognition sensing due to Toll-like
receptor expression on afferent fibers
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