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Abstract

Enzymes are the ultimate entities responsible for chemical transformations in natural and 

engineered biosynthetic pathways. However, many natural enzymes suffer from suboptimal 

functional expression due to poor intrinsic protein stability. Further, stability enhancing mutations 

often come at the cost of impaired function. Here we demonstrate an automated protein 

engineering strategy for stabilizing enzymes while retaining catalytic function using deep 
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mutational scanning coupled to multiple-filter based screening and combinatorial mutagenesis. We 

validated this strategy by improving the functional expression of a Type III polyketide synthase 

from the Atropa belladonna biosynthetic pathway for tropane alkaloids. The best variant had a 

total of 8 mutations with over 25-fold improved activity over wild-type in E. coli cell lysates, an 

improved melting temperature of 11.5 ± 0.6°C, and only minimal reduction in catalytic efficiency. 

We show that the multiple-filter approach maintains acceptable sensitivity with homology 

modeling structures up to 4 Å RMS. Our results highlight an automated protein engineering tool 

for improving the stability and solubility of difficult to express enzymes, which has impact for 

biotechnological applications.
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Biomanufacturing is a sustainable alternative to chemical synthetic routes for production of 

high-value products1. Key factors influencing the rapid advancement of this field include the 

dramatic increase of available gene coding sequences, reduced cost of synthetic DNA 

synthesis and assembly2, and improved computational3 and experimental4, 5 tools for 

engineering biology. Still, generating sufficient end titers and specific productivities to be 

cost competitive with plant-derived or traditional chemical synthetic routes remains a grand 

challenge, especially for compounds derived from plant specialized metabolism. For 

example, extensive engineering efforts led to only microgram per liter titers for 

reconstitution of opioid biosynthetic pathways6–8 and precursors of monoterpene indole 

alkaloids9 in yeast. These reported titers are between three and six orders of magnitude too 

low for supplanting other routes to these chemicals.

The reasons why many plant metabolic pathways yield low titers are multifaceted: 

intermediate products can build up and be toxic, pathways can be imbalanced, gene 

expression for pathway members are not optimized, among many other reasons. 

Nonetheless, at the heart of any pathway are the enzymes responsible for chemical 

transformation. Consider such a linear pathway of heterologously expressed enzymes. The 

maximum possible flux (Jmax) for this pathway is given by the product of the turnover 

number (kcat) and the concentration of active enzyme ([E]active) for the weakest pathway 

enzyme:

Jmax = kcat * E active (1)

In other words, negligible product flux occurs whenever the concentration of any active 

enzyme in the pathway approaches zero. In fact, many biomanufacturing platforms have low 

productivities and titers because one or more pathway enzymes, when overexpressed, have 

very little activity6, 10–15.

Intrinsic protein biophysics can account for the limited active expression for many of these 

enzymes. Native proteins are marginally stable, and their native expression levels are often at 

their solubility limit16. Expression in a different environment can thermodynamically favor 
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the unfolded state or result in aggregation. It follows that stabilization of such poorly 

expressed enzymes can improve performance of synthetic metabolic pathways. For example, 

we previously developed a synthetic levoglucosan utilization pathway in E. coli10. Strains 

harboring the original enzyme, levoglucosan kinase (LGK) from Lipomyces starkeyi, 
showed weak growth with levoglucosan as the sole carbon source. Strains expressing a 

thermally stable LGK had 15-fold higher specific growth rates and flux than that of LGK. 

The catalytic efficiencies for the two enzymes were essentially identical, with the sole 

difference between the two strains were three point-mutations that increased the melting 

temperature of the protein by 5.1°C – this increase correlated with an increase in functional 

enzyme expression. Additionally, the Tang group at UCLA demonstrated that engineering 

improved solubility and heterologous expression of simvastatin synthase in E. coli increased 

the productivity of a whole-cell biocatalytic process17.

The above findings have not been extended generally to other biomanufacturing platforms 

for several reasons. One, modifying active expression by promoter engineering is much 

easier than by protein engineering. However, in many cases a strong promoter will not drive 

production of enough active enzyme – this effect is clearly seen by results from Wheeldon 

and colleagues in metabolic engineering of ester pathways18. Two, the above pathways are 

examples where the rate-determining step was governed by a single enzyme. Many 

pathways of interest would have multiple poorly behaved enzymes, making the engineering 

challenge more difficult. Three, the protein engineering challenge itself is daunting: one has 

to identify solubility-enhancing mutations; filter away mutations that destroy catalytic 

activity; and, because the stabilizing effect of any single mutation is often modest, combine 

many solubility-enhancing mutations at once. This challenge is compounded by the fact that 

many of the pathway enzymes have neither solved structures or high throughput activity 

assays, preventing traditional computational design19 and directed evolution approaches, 

respectively.

To address this challenge, we recently identified stabilizing ‘hits’ using high-throughput 

screens for stability and solubility in deep mutational scanning experiments20. Existing 

comprehensive single-mutation functional datasets for two enzymes were compared against 

datasets generated with the solubility screens. We found a greater than 90% probability of 

choosing a catalytically neutral mutation by filtering out mutations that were near the active 

site, not evolutionarily conserved, or buried in the protein core. These encouraging results 

suggested to us that automated stabilization of proteins using data-driven methods, even in 

the absence of an activity screen, may be possible. This stabilization method has the 

following characteristics: (i.) use of deep mutational scanning to identify nearly all 

mutations that improve soluble expression; (ii.) predictive identification of a subset of these 

mutations that do not impact catalytic efficiency; (iii.) combine multiple (>5) mutations 

simultaneously into new designs.

Here we tested this method rigorously using a recently uncovered biosynthetic pathway to 

tropinone, a common intermediate for nearly all plant tropane alkaloids (TA)21. Specifically, 

we identified solubility-enhancing mutations in a Type III polyketide synthase from Atropa 
belladonna (Ab) that expresses very poorly in both bacterial and yeast systems. We then 

designed new variants with improved in vivo and in vitro stability without appreciably 
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impacting catalytic efficiency. Finally, we developed an automated computational screening 

process for rapid identification of potential beneficial mutations, which was robust even in 

the absence of a high-quality structural model. Combined, our results showcase the use of 

data-driven approaches to improve enzyme stability and provide a new engineering tool for 

biomanufacturing.

Results and Discussion

Nearly all TAs, including anticholinergics hyoscyamine and scopolamine, come from the 

central precursor tropinone (Figure 1a). In Ab, tropinone is derived from the pathway 

precursor putrescine by four enzymes: Putrescine N-Methyl Transferase (PMT2), N-

Methylputrescine Oxidase (MPO2), a Type III PKS Pyrrolidine Ketide Synthase (PyKS), 

and the cytochrome P450 Tropinone Synthase (TS) / CYP82M3 (Figure 1a).

To test our enzyme stabilization method, we chose PyKS as several lines of evidence clearly 

point to poor functional expression. First, attempts to express and purify PyKS from E. coli 
for previous biochemical characterization work21 yielded extremely low levels of active 

protein in the absence of a Glutathione S-Transferase (GST) solubility tag. Essentially all of 

the protein was insoluble and activity sharply declines at temperatures in excess of 25°C. 

Second, we quantified the mean fluorescence of GFP-tagged Ab gene products expressed in 

Saccharomyces cerevisiae BY471022 by flow cytometry and found that the PyKS expressing 

cells were less fluorescent compared to the other genes, indicating poor soluble expression 

of GFP-tagged PyKS relative to the other pathway enzymes in yeast (Figure 1b). Third, 

while PMT2 expression in Nicotiana benthamiana results in high yields of N-

methylputrescine that diminishes substantially when MPO2 is co-infiltrated with PMT2, the 

tropinone yield is ~20-fold less with simultaneous PyKS and TS expression, suggesting that 

PyKS and/or TS expression is limiting21. Together, these considerations prompted us to 

engineer increased functional expression of PyKS.

In effort to improve the expression of the PyKS, we sought to use deep mutational scanning 

coupled to a high-throughput screen for stability and solubility20. We first explored the use 

of yeast surface display (YSD) coupled to FACS as our previous work utilized this screening 

platform. The PyKS coding sequence was cloned into the pETConNK backbone20 and 

expressed in S. cerevisiae EBY100 by galactose induction. We were unable to successfully 

display the PyKS on the yeast surface (Supporting Figure S1) despite testing several 

alternate induction temperatures (18–30°C) as well as mutating a potential N-linked 

glycosylation site at Asn339 to alanine that we hypothesized could disrupt proper folding 

and display on yeast surface.

Based on the failure of PyKS to yeast display, we assessed an alternative screen involving 

fusing a protein of interest to a monomeric GFP variant. Upon expression, folded proteins 

will permit the folding and subsequent chromophore formation of GFP, while unfolded 

proteins will be non-fluorescent23. Expression of a protein library can then be screened by 

fluorescence intensity using FACS (Figure 2a). We first assessed the ability of the screen to 

identify known stabilizing mutants of the model protein LGK. We fused LGK to fluorescent 

protein variant mGFPmut324, created a comprehensive single-site saturation mutagenesis 
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library using nicking mutagenesis25, and induced fusion protein expression by IPTG in E. 
coli BL21 Star (DE3). Individual cells were sorted using FACS and two populations were 

collected: a gated reference population and the top 5% of cells based on GFP fluorescence 

intensity. Libraries were harvested, prepared, and deep sequenced in a standardized 

pipeline26. Detailed statistics for library deep sequencing and FACS sorting are given in 

Table S1 and Table S2, respectively. The resulting deep sequencing datasets were converted 

to a solubility score centered about a wild-type score of zero. A solubility score greater than 

zero indicates that the protein fusion has a higher fluorescence than the wild-type fusion. 

The per-position scores are provided in Supporting Data S1.

We evaluated the ability of the solubility deep mutational scans to identify known stabilizing 

mutations in LGK (Table S3). These mutations were previously shown to rescue enzyme 

solubility in the context of other destabilizing mutations with an in vitro characterized 

change in melting temperature (ΔTm) ≥ 1°C in the parental background10. We identified a 

mutation as stabilizing if its solubility score was above 0.15, which corresponds to a mean 

fluorescence intensity of 10% above the wild-type sequence. The GFP fusion screens with 

this threshold identified 9/12 of these mutations (p-value 2.0×10−9). Changing the threshold 

for identifying solubility-enhancing mutations based on the distribution of synonymous 

wild-type codons did not alter the significance of the results (Table S4).

It is well known that many of stability-enhancing mutations result in enzymes with reduced 

catalytic efficiency27. Therefore, we asked whether we could predict mutations resulting in 

neutral or improved catalytic efficiency. To this end, we closely followed filtering methods 

of our previous work using YSD screens20. Briefly, we compared a previously published 

single-mutation fitness dataset10 with the GFP fusion dataset. We classified mutations by 

distance to active site, evolutionary conservation as quantified by a position specific scoring 

matrix (PSSM), and degree of burial in the protein core measured by contact number. We 

assessed a strict multiple-filter (PSSM ≥ 0, distance to active site ≥ 15Å, contact number ≤ 

16, and no mutations involving a proline), naïve Bayes classification, and a hybrid method 

combining filtering on PSSM ≥ 3 with Bayes analysis on the remaining filters. Consistent 

with our previous results using YSD20, the multiple-filter performed best (Figure 2b): for the 

GFP screening dataset the probability of finding a neutral mutation is 71% with only a 3% 

chance of uncovering a deleterious mutation. While only 34 LGK mutations (out of >6,000 

total) pass this stringent multiple-filter, most proteins can be stabilized sufficiently with 

approximately 5–15 mutations.

Buoyed by these results, we next sought to apply the validated method to engineer PyKS 

variants with improved functional expression. The objective was to perform a GFP-fusion 

deep mutational scan on PyKS (Figure 2a), filter the resulting hits for probability of 

maintaining catalytic activity with the multiple-filter, and then combine multiple mutations 

into active designs with improved expression. We performed the deep mutational scanning 

experimental and analysis pipeline as for LGK in which we sorted a single-site saturation 

mutagenesis library of PyKS fused to GFP with FACS and deep sequenced the top 8% of the 

population by fluorescence. Unfortunately, the reference population for the gene tile 

covering residues 157–234 did not grow after FACS, and so we chose to omit these positions 

from further analysis.
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Deep sequencing the reference population revealed 84.3% coverage of single 

nonsynonymous (NS) mutations (5107/6060, see Table S5 for complete library statistics). 

Nonsense mutations had a mean solubility score of −0.653 ± 0.48 (1 s.d.), which was 

significantly lower than the mean of −0.0561 ± 0.54 for missense mutations (P-value < 

0.0001, two-tailed unpaired Student’s T-test). To evaluate the reproducibility of the method, 

we performed replicate sorting, deep sequencing, and analysis for one gene tile. The 

Pearson’s correlation coefficient between replicates was found to be 0.72, which is low 

compared to previous deep mutational scanning experiments (coefficients of 0.8520 and 

0.9328 have been previously reported from our lab). As reproducibility generally improves 

with increasing depth of sequencing coverage, we calculated Pearson’s correlation 

coefficients for mutations with at least 100 read counts in the reference population and found 

the coefficient improves to 0.83. Thus, the relatively low depth of coverage in this 

experiment partially but not completely explains the relatively high variance between 

replicates. Since we are interested in variants with improved functional expression, we next 

asked how correlation scales with coverage for variants with a solubility score at or above 

0.15. We found that variants with ≥50 or ≥100 average selected read counts had a Pearson’s 

of 0.84 (n = 247) or 0.90 (n = 193), respectively (Supporting Figure S2). These were deemed 

reasonable thresholds for reliability of the deep sequencing experiment to identify stabilizing 

mutations. Full datasets for the PyKS deep mutational scan are provided in Supporting Data 

S2.

The GFP-fusion experiment identified an astounding 1,115 beneficial missense mutations 

(solubility score at or above 0.15) with ≥50 selected read counts (19.4% of total tested). To 

facilitate analysis, we generated a comparative model of PyKS with I-TASSER using default 

options29 (PDB file for model provided in Supporting Data S3). Hits were spread across the 

primary and tertiary sequence of PyKS (Figure 2c), with 246 out of 303 tested positions 

(81.2%) showing at least one mutation with an improved solubility score. These mutations 

occur at the surface of the enzyme, near the putative active site in the core, as well as at the 

potential homodimer interface (Figure 2d).

These 1,115 individual hits were sorted using the multiple-filter validated on the LGK 

dataset, with the adjustment of permitting mutations with a higher contact number (≤24 

cutoff instead of ≤16) through if they passed a more stringent PSSM filter cutoff (≥3 instead 

of ≥0). This adjustment is justified as filtering on PSSM ≥3 alone shows comparable results 

to the multiple-filter method (Figure 2b). The resulting set of hits post-filter was comprised 

of 116 mutations at 56 unique positions spread throughout the protein sequence and 

structure (Figure 3a and Table S6). Notably, there were approximately 3 times more filter-

passing hits for PKS than LGK.

We first tested the solubility screen and the multiple-filter method before making 

combinatorial designs. Thus, we produced 6 of these 116 point mutants (V12I, S37A, 

M115R, A121G, T245A, S284K) along with two mutants with high solubility scores that 

did not pass the filter (P106A – proline mutation, not evolutionarily conserved, high contact 

number; A143V – high contact number). These mutants, along with the wild-type sequence, 

were expressed in E. coli BL21 Star (DE3) and induced with IPTG under standard 

conditions. Lysates of GFP-fused PyKS mutants were tested for their relative fluorescence 
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intensity per OD600 (expression yield) and PyKS enzymatic activity21 (Table 1). Whereas 

the 6 mutants that passed the filter had comparable or improved expression yield and activity 

to wild-type, both A143V and P106A expressed as soluble fusion proteins but had no 

measurable catalytic activity. These results highlight the importance of employing the binary 

filter for discriminating desired stabilizing mutations that are catalytically neutral.

We next selected 21 mutations at 19 positions to include in combinatorial libraries, which 

were constructed using multi-site nicking mutagenesis25 (primer sequences listed in Table 

S7). BL21 Star (DE3) cells expressing the combinatorial libraries were cultured, induced 

with IPTG and screened by a combination of FACS and visible plate screening. Given the 

large theoretical size of the combinatorial library (2.1×106), FACS enrichment prior to visual 

plate screening enabled us to discard the bulk of “failures” and thus only screen the top 

variants for fluorescence intensity by eye. There were three clear hits from this fluorescence-

based screening, which we named PyKS.D1, PyKS.D2, and PyKS.D3 (full amino acid and 

nucleotide sequences are listed in Supporting Text S1). These designs had 8–11 total 

mutations with 6 in common: PyKS.D1 (V12I, S37A, N64E, M115R, A121G, L235V, 

T245A, S284K, I301V, S318E, D366E), PyKS.D2 (V12I, S37A, N64D, M115R, A121G, 

T245A, G357A, D366E), and PyKS.D3 (V12I, S37A, N64E, N90M, M115R, A121G, 

T245A, D366E). Based on the homology structure, the shared mutations generally appear to 

alter surface charge characteristics, core packing, loop flexibility, or dimeric interface 

contacts (Figure 2d). For example, N64E/D introduces a negative charge to a patch on the 

surface that is otherwise positive, while T245A lies at the dimeric interface where it 

presumably strengthens the protein-protein interaction. Lastly, A121G likely improves loop 

flexibility.

We performed lysate relative expression and activity measurements exactly as performed for 

the point mutants. Compared with wild-type, all three designs had a greater than 10-fold 

improvement in relative expression, with PyKS.D1 showing a 27.1 ± 0.14-fold improvement 

in relative activity (Figure 3b). When lysate activity is normalized to gene expression, 

PyKS.D1 observed a 1.89 ± 0.027-fold improvement over wild-type. This higher functional 

expression is not the result of increased mRNA expression as all variants had statistically 

insignificant or slightly decreased mRNA expression relative to PyKS wild-type (Supporting 

Figure S3). Thus, we conclude that most of the relative lysate activity improvement can be 

attributed to improved gene expression from improved protein solubility and/or stabilization.

To confirm that these designs were not dependent on being in the GFP fusion context, we 

produced and purified recombinant PyKS, PyKS.D1, and PyKS.D2 and evaluated their 

activity on malonyl-CoA and starter unit N-methyl-Δ1-pyrrolinium cation as substrates 

(Supporting Figure S4). PyKS is an efficient enzyme, with a kcat of 47 s−1 and approx. 20 

μM KM for both substrates. Both PyKS.D1 and PyKS.D2 had similar activity to PyKS 

(Figure 3c and 3d): PyKS.D1 has a marginally higher average kcat and PyKS.D2 has a 

slightly lower average kcat, but neither is significantly different than PyKS (p-value = 0.29 

and 0.16, respectively, Figure 3d). There was also no statistically significant difference in 

Michaelis constant for either substrate (Figure 3c). We also assessed the apparent melting 

temperatures (Tm,app) using a well-established dye-shift thermal assay30 (Supporting Figure 

S5). While PyKS had a Tm,app of 40.9±0.2°C, both PyKS.D1 (47.5±0.1°C) and PyKS.D2 
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(52.4±0.4°C) showed statistically significant (p < 0.0001 for both) increases in melting 

temperatures (Figure 3e). It is important that we are not claiming that all thermally 

stabilizing mutations improve functional expression. Improvements to functional expression 

result from several effects including aggregation propensity, thermodynamic stability, and 

kinetic folding and oligomerization rates; these effects are only somewhat correlated with 

thermal stability. However, these results confirm that our designs that result in higher 

function expression in vivo also have higher thermal stability in vitro while maintaining 

statistically similar catalytic parameters to wild-type PyKS.

Finally, to facilitate automatic generation of a list of mutations to pass into a combinatorial 

library, we wrote a custom python script for PyRosetta31. Given an input enzyme sequence 

and structure, this script evaluates the four different components of the filter, returning a 

positive (passed filter) or negative (failed filter result) value for every possible point-

mutation in the protein sequence. This script has been integrated into the Rosetta 

Macromolecular software package and is available on GitHub (User: raisanoshin). Details 

for using the script can be found in Supporting Text S2.

The multiple-filter includes terms that do not require structural information (PSSM, 

mutations involving proline) as well as terms that do (distance to active site, contact 

number). A final key question to assess the general utility of our method is how precise, 

sensitive, and specific the multiple-filtering method is for enzymes with approximated 3D 

structures generated with homology modeling. While not all enzymes will have 

experimentally determined structures, almost all enzyme classes (e.g. polyketide synthases, 

P450s, glycosyl hydrolases, terpene synthases, etc.) have at least one solved structure. In 

these cases, comparative models can be calculated with accuracies of approximately 4–5 Å 

RMSD or better using current comparative modeling computational software packages32.

To assess the accuracy of using our PyRosetta script to generate an accurate list of filter-

passing mutations on enzymes where a predicted structural model is used as input, we used 

decoy sets of varying RMSD for six different enzymes with their corresponding 

experimentally-determined structures. We compared the results of running the script on each 

decoy with results using the solved structure, generating true positives (TP), false positives 

(FP), true negatives (TN), and false negatives (FN) for each mutation in the set of all 

possible mutations. We then calculated precision, sensitivity, and specificity as a function of 

model RMS shown in Figures 4a–c. For this specific application, the most important 

criterion is precision, as incorporating too many false positives into designs would disrupt 

catalytic efficiency of the enzyme. Here, the precision is 0.8 or better up to 4 Å RMS (Figure 

4a). Beyond 4 Å RMS the precision vacillates between 0.6 and 1.0. Also important is the 

sensitivity of the method because we typically end up with 30–50 mutations that pass the 

filter. For RMS values until 5 Å the sensitivity remains above 0.4 (Figure 4b), which still 

allows recovery of enough mutations to fix poorly expressed enzymes. The least important 

metric is specificity, which we include for completeness. Here the specificity remains above 

0.8 for RMS lower than 5 Å (Figure 4c).
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Concluding remarks

In this work, we performed a high-throughput screen for stability and solubility to test 

thousands of mutations on a protein sequence. Combinations of those mutations using a 

stringent multiple-filter led to Type III PyKS designs with enhanced functional expression in 

E. coli. There are several important takeaways from this project.

First, this work provides validation for the filtering method previously developed by 

Klesmith et al.20. Results from the point-mutation analysis indicate that although certain 

mutations provide stabilizing effects, if the position is highly conserved in nature a mutation 

is likely to be deleterious for function. Indeed, proline 106 is a canonical example of this 

stability/function trade-off. P106 lies in the middle of a helix, where prolines are generally 

disfavored, and the solubility screen indicates that several other residues at this position 

improve overall stability of the protein. However, the PSSM indicates that proline is highly 

conserved and thus important to catalytic function. The P106A variant increased the 

solubility of the PyKS-GFP fusion but almost completely ablated activity.

Second, our integrated method has now been validated on 3 different enzymes (PyKS, LGK, 

TEM-1 BLA)20 and thus ready for general deployment towards different biotechnological 

applications. A potential strategy moving forward would be to generate structural models for 

enzymes of interest, run the filtering script to obtain a list of passing mutations, test only the 

subset, and then combine hits into new designs. While deep sequencing driven protein 

science enables the generation of previously unthinkable amounts of mutational data33, 

testing hundreds versus thousands of mutations needed for a comprehensive scan of a gene 

is certainly more practical and economical. We anticipate several potential platforms would 

benefit from enzyme stabilization.

Finally, this PyKS is part of a recently described tropane alkaloid pathway. While beyond 

the scope of the present work, our immediate next steps are to develop biomanufacturing 

platforms for tropane alkaloids. Our intent is to test the hypothesis that stabilized PyKS 

variants (and potentially other enzymes) can improve pathway yields, titers, and 

productivities.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The Tropane Alkaloids (TA) pathway from Atropa belladonna (Ab). A.) The conversion of 

putrescine to N-methylputrescine by PMT2 is the first committed step in TA biosynthesis. 

The enzyme engineered for improved solubility in this work, PyKS, performs two rounds of 

ketide synthase (Claisen condensation) activity on N-methyl-Δ1-pyrrolinium with two units 

of malonyl-CoA to form 4-(1-methyl-2-pyrrolidinyl)-3-oxobutanoic acid. Hyoscyamine and 

scopolamine are medicinally relevant small molecules. B.) Expression yield of Ab genes in 

yeast via GFP-tagging confirms poor heterologous expression of PyKS. Fluorescence of S. 
cerevisiae strain BY4710 cells expressing GFP-tagged Ab genes under galactose induction 

was quantified using flow cytometry. Error bars represent one standard deviation of at least 

three independent measurements.
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Figure 2. 
Deep mutational scanning using GFP-fusion solubility screen and filtering to identify 

catalytically neutral stabilizing mutations. A.) Method overview. A comprehensive site-

saturation library for a protein of interest (POI) is generated using nicking mutagenesis (1). 

The POI is genetically encoded as an N-terminal fusion to GFP (2), where upon expression 

folded POIs will permit the folding and subsequent chromophore formation of GFP, while 

unfolded protein will be non-fluorescent. The amount of folded fusion protein per cell 

correlates with solubility/stability of the POI variant. The library is expressed in E. coli and 

screened for GFP fluorescence using FACS (3), and the resulting pre- and post-screening 

libraries are deep sequenced (4). B.) Results from applying various filtering strategies to the 

levoglucosan kinase (LGK) GFP-fusion and fitness selections datasets. The best strategy 

“Multiple filter” includes distance to active site (15 ≥ Å), PSSM (≥ 0), contact number 

(≤16), and exclusion of mutations to/from proline. C.) The frequency of beneficial 

(solubility-enhancing) mutations of PyKS identified from the GFP-fusion experiment as a 

function of distance to catalytic active site. D.) Structural analysis of high solubility score 

mutations indicates that many improve surface charge characteristics (S284K, N64D), 

hydrophobic core packing (T245A), and secondary structural elements like loops (A121G). 

The grey surface representation is the dimer subunit. C167 is the putative catalytic 

nucleophile.
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Figure 3. 
Combinatorial PyKS designs enable higher enzyme flux via engineered enzyme stability. A.) 

Positions with filtered solubility-enhancing hits are shown in yellow surface representation 

on the PyKS model structure. B.) Relative expression yield and bulk lysate activity from E. 
coli lysates expressing wild-type and stabilized PyKS designs. Cells over-expressing each 

sample were lysed and assayed for PyKS activity as well as GFP fluorescence intensity 

(485/507 nm). Measurements are normalized relative to wild-type. Error bars represent one 

standard deviation of three independent measurements. C-D.) KM and kcat kinetic 

characterization of untagged (no GFP-fusion) purified wild-type and designed PyKS 

enzymes. Error bars represent one standard deviation of three independent measurements. 

NS = not statistically significant. E.) Apparent melting temperatures (Tm,app) of wild-type 

and designed PyKS enzymes. Error bars represent one standard deviation of three technical 

replicates.

Wrenbeck et al. Page 14

ACS Synth Biol. Author manuscript; available in PMC 2020 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Automated generation of filter-passing mutations with a PyRosetta script is robust for use on 

predicted structural models. A-C.) Precision (a), sensitivity (b), and specificity (c) were 

calculated by comparing the results of running our PyRosetta mutation filtering script on 

five different PDB crystal structures and their corresponding decoy sets (see methods).
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